Chen-Wei Huang
Paper download is intended for registered attendees only, and is
subjected to the IEEE Copyright Policy. Any other use is strongly forbidden.
Papers from this author
Defense Mechanism against Adversarial Attacks Using Density-Based Representation of Images
Yen-Ting Huang, Wen-Hung Liao, Chen-Wei Huang
Auto-TLDR; Adversarial Attacks Reduction Using Input Recharacterization
Abstract Slides Poster Similar
Adversarial examples are slightly modified inputs devised to cause erroneous inference of deep learning models. Protection against the intervention of adversarial examples is a fundamental issue that needs to be addressed before the wide adoption of deep-learning based intelligent systems. In this research, we utilize the method known as input recharacterization to effectively eliminate the perturbations found in the adversarial examples. By converting images from the intensity domain into density-based representation using halftoning operation, performance of the classifier can be properly maintained. With adversarial attacks generated using FGSM, I-FGSM, and PGD, the top-5 accuracy of the hybrid model can still achieve 80.97%, 78.77%, 81.56%, respectively. Although the accuracy has been slightly affected, the influence of adversarial examples is significantly discounted. The average improvement over existing input transform defense mechanisms is approximately 10%.