K. Selcuk Candan
Paper download is intended for registered attendees only, and is
subjected to the IEEE Copyright Policy. Any other use is strongly forbidden.
Papers from this author
SDMA: Saliency Driven Mutual Cross Attention for Multi-Variate Time Series

Auto-TLDR; Salient-Driven Mutual Cross Attention for Intelligent Time Series Analytics
Abstract Slides Poster Similar
Integration of rich sensory technologies into critical applications, such as gesture recognition and building energy optimization, has highlighted the importance of intelligent time series analytics. To accommodate this demand, uni-variate approaches have been extended for multi-variate scenarios, but naive extensions have lead to deterioration in model performances due to their limited ability to capture the information recorded in different variates and complex multi-variate time series patterns’ evolution over time. Furthermore, real-world time series are often contaminated with noisy information. In this paper, we note that a time series often carry robust localized temporal events that could help improve model performance by highlighting the relevant information; however, the lack of sufficient data to train for these events make it impossible for neural architectures to identify and make use of these temporal events. We, therefore, argue that a companion process helping identify salient events in the input time series and driving model’s attention to the associated salient sub-sequences can help with learning a high-performing network. Relying on this observation, we propose a novel Saliency-Driven Mutual Cross Attention (SDMA) framework that extracts localized temporal events and generate a saliency series to complement the input time series. We further propose an architecture which accounts for the mutual cross-talk between the input and saliency series branches where input and saliency series attend each other. Experiments show that the proposed mutually-cross attention framework can offer significant boosts in model performance when compared against non-attentioned, conventionally attentioned, and conventionally cross-attentioned models.