Yi-Chieh Wu
Paper download is intended for registered attendees only, and is
subjected to the IEEE Copyright Policy. Any other use is strongly forbidden.
Papers from this author
Toward Text-Independent Cross-Lingual Speaker Recognition Using English-Mandarin-Taiwanese Dataset
Auto-TLDR; Cross-lingual Speech for Biometric Recognition
Over 40% of the world's population is bilingual. Existing speaker identification/verification systems, however, assume the same language type for both enrollment and recognition stages. In this work, we investigate the feasibility of employing multilingual speech for biometric application. We establish a dataset containing audio recorded in English, Mandarin and Taiwanese. Three acoustic features, namely, i-vector, d-vector and x-vector have been evaluated for both speaker verification (SV) and identification (SI) tasks. Preliminary experimental results indicate that x-vector achieves the best overall performance. Additionally, model trained with hybrid data demonstrates highest accuracy associated with the cost of data collection efforts. In SI tasks, we obtained over 91\% cross-lingual accuracy all models using 3-second audio. In SV tasks, the EER among cross-lingual test is at most 6.52\%, which is observed on the model trained by English corpus. The outcome suggests the feasibility of adopting cross-lingual speech in building text-independent speaker recognition systems.