Gang Li
Paper download is intended for registered attendees only, and is
subjected to the IEEE Copyright Policy. Any other use is strongly forbidden.
Papers from this author
Nighttime Pedestrian Detection Based on Feature Attention and Transformation
Gang Li, Shanshan Zhang, Jian Yang
Auto-TLDR; FAM and FTM: Enhanced Feature Attention Module and Feature Transformation Module for nighttime pedestrian detection
Abstract Slides Poster Similar
Pedestrian detection at nighttime is an important yet challenging task, which is fundamental for many practical applications, e.g. autonomous driving, video surveillance. To address this problem, in this work we start with some analysis, from which we find that the nighttime features have much more noise than that of daytime, resulting in low discrimination ability. Besides, we also observe some pedestrian examples are under adverse illumination conditions, and they can hardly provide sufficient information for accurate detection. Based on these findings, we propose the Feature Attention Module (FAM) and Feature Transformation Module (FTM) to enhance nighttime features. In FAM, guided by progressive segmentation supervision, hierarchical feature attention is produced to enhance multi-level features. On the other hand, FTM is introduced to enforce features from adverse illumination to approach that from better illumination. Based on feature attention and transformation (FAT) mechanism, a two-stage detector called FATNet is constructed for nighttime pedestrian detection. We conduct extensive experiments on nighttime datasets of EuroCity Persons (Night) and NightOwls to demonstrate the effectiveness of our method. On both two datasets, our method achieves significant improvements to the baseline and also outperforms state-of-the-art detectors.