Ye Luo
Paper download is intended for registered attendees only, and is
subjected to the IEEE Copyright Policy. Any other use is strongly forbidden.
Papers from this author
Single Image Deblurring Using Bi-Attention Network
Auto-TLDR; Bi-Attention Neural Network for Single Image Deblurring
Recently, deep convolutional neural networks have been extensively applied into image deblurring and have achieved remarkable performance. However, most CNN-based image deblurring methods focus on simply increasing network depth, neglecting the contextual information of the blurred image and the reconstructed image. Meanwhile, most encoder-decoder based methods rarely exploit encoder's multi-layer features. To address these issues, we propose a bi-attention neural network for single image deblurring, which mainly consists of a bi-attention network and a feature fusion network. Specifically, two criss-cross attention modules are plugged before and after the encoder-decoder to capture long-range spatial contextual information in the blurred image and the reconstructed image simultaneously, and the feature fusion network combines multi-layer features from encoder to enable the decoder reconstruct the image with multi-scale features. The whole network is end-to-end trainable. Quantitative and qualitative experiment results validate that the proposed network outperforms state-of-the-art methods in terms of PSNR and SSIM on benchmark datasets.
Ultrasound Image Restoration Using Weighted Nuclear Norm Minimization
Hanmei Yang, Ye Luo, Jianwei Lu, Jian Lu
Auto-TLDR; A Nonconvex Low-Rank Matrix Approximation Model for Ultrasound Images Restoration
Ultrasound images are often contaminated by speckle noise during the acquisition process, which influences the performance of subsequent application. The paper introduces a nonconvex low-rank matrix approximation model for ultrasound images restoration, which integrates the weighted unclear norm minimization (WNNM) and data fidelity term. WNNM can adaptively assign weights on differnt singular values to preserve more details in restored images. The fidelity term about ultrasound images do not be utilized in existing low-rank ultrasound denoising methods. This optimization question can effectively solved by alternating direction method of multipliers (ADMM). The experimental results on simulated images and real medical ultrasound images demonstrate the excellent performance of the proposed method compared with other four state-of-the-art methods.