Gaurvi Goyal
Paper download is intended for registered attendees only, and is
subjected to the IEEE Copyright Policy. Any other use is strongly forbidden.
Papers from this author
Single View Learning in Action Recognition
Gaurvi Goyal, Nicoletta Noceti, Francesca Odone
Auto-TLDR; Cross-View Action Recognition Using Domain Adaptation for Knowledge Transfer
Abstract Slides Poster Similar
Viewpoint is an essential aspect of how an action is visually perceived, with the motion appearing substantially different for some viewpoint pairs. Data driven action recognition algorithms compensate for this by including a variety of viewpoints in their training data, adding to the cost of data acquisition as well as training. We propose a novel methodology that leverages deeply pretrained features to learn actions from a single viewpoint using domain adaptation for knowledge transfer. We demonstrate the effectiveness of this pipeline on 3 different datasets: IXMAS, MoCA and NTU RGBD+, and compare with both classical and deep learning methods. Our method requires low training data and demonstrates unparalleled cross-view action recognition accuracies for single view learning.