Yifan Liu
Paper download is intended for registered attendees only, and is
subjected to the IEEE Copyright Policy. Any other use is strongly forbidden.
Papers from this author
An Accurate Threshold Insensitive Kernel Detector for Arbitrary Shaped Text
Xijun Qian, Yifan Liu, Yu-Bin Yang
Auto-TLDR; TIKD: threshold insensitive kernel detector for arbitrary shaped text
Recently, segmentation-based methods are popular in scene text detection due to the segmentation results can easily represent scene text of arbitrary shapes. However, previous works segment text instances the same as normal objects. It is obvious that the edge of the text instance differs from normal objects. In this paper, we propose a threshold insensitive kernel detector for arbitrary shaped text called TIKD, which includes a simple but stable base model and a new loss weight called Decay Loss Weight (DLW). By suppressing outlier pixels in a gradual way, the DLW can lead the network to detect more accurate text instances. Our method shows great power in accuracy and stability. It is worth mentioning that we achieve the precision, recall, f-measure of 88.7%, 83.7%, 86.1% respectively on the Total-Text dataset, with a fast speed of 16.3 frames per second. What’s more, even if we set the threshold in an extreme situation range from 0.1 to 0.9, our method can always achieve a stable f-measure over 79.9% on the Total-Text dataset.