Beomjo Shin
Paper download is intended for registered attendees only, and is
subjected to the IEEE Copyright Policy. Any other use is strongly forbidden.
Papers from this author
Sparse Network Inversion for Key Instance Detection in Multiple Instance Learning
Beomjo Shin, Junsu Cho, Hwanjo Yu, Seungjin Choi
Auto-TLDR; Improving Attention-based Deep Multiple Instance Learning for Key Instance Detection (KID)
Abstract Slides Poster Similar
Multiple Instance Learning (MIL) involves predicting a single label for a bag of instances, given positive or negative labels at bag-level, without accessing to label for each instance in the training phase. Since a positive bag contains both positive and negative instances, it is often required to detect positive instances (key instances) when a set of instances is categorized as a positive bag. The attention-based deep MIL model is a recent advance in both bag-level classification and key instance detection (KID). However, if the positive and negative instances in a positive bag are not clearly distinguishable, the attention-based deep MIL model has limited KID performance as the attention scores are skewed to few positive instances. In this paper, we present a method to improve the attention-based deep MIL model in the task of KID. The main idea is to use the neural network inversion to find which instances made contribution to the bag-level prediction produced by the trained MIL model. Moreover, we incorporate a sparseness constraint into the neural network inversion, leading to the sparse network inversion which is solved by the proximal gradient method. Numerical experiments on an MNIST-based image MIL dataset and two real-world histopathology datasets verify the validity of our method, demonstrating the KID performance is significantly improved while the performance of bag-level prediction is maintained.