Naveen Saini
Paper download is intended for registered attendees only, and is
subjected to the IEEE Copyright Policy. Any other use is strongly forbidden.
Papers from this author
Scientific Document Summarization using Citation Context and Multi-objective Optimization
Naveen Saini, Sushil Kumar, Sriparna Saha, Pushpak Bhattacharyya
Auto-TLDR; SciSumm Summarization using Multi-Objective Optimization
Abstract Slides Poster Similar
The rate of publishing scientific articles is ever increasing which has created difficulty for the researchers to learn about the recent advancements in a faster way. Also, relying on the abstract of these published articles is not a good idea as they cover only broad idea of the article. The summarization of scientific documents (SDS) addresses this challenge. In this paper, we propose a system for SDS having two components: identifying the relevant sentences in the article using citation context; generation of the summary by posing SDS as a binary optimization problem. For the purpose of optimization, a meta-heuristic evolutionary algorithm is utilized. In order to improve the quality of summary, various aspects measuring the relevance of sentences are simultaneously optimized using the concept of multi-objective optimization. Inspired by the popularity of graph-based algorithms like LexRank which is popularly used in solving summarization problems of different real-life applications, its impact is studied in fusion with our optimization framework. An ablation study is also performed to identify the most contributing aspects for the summary generation. We investigated the performance of our proposed framework on two datasets related to the computational linguistic domain, CL-SciSumm 2016 and CL-SciSumm 2017, in terms of ROUGE measures. The results obtained show that our framework effectively improves other existing methods. Further, results are validated using the statistical paired t-test.