Xi Xue
Paper download is intended for registered attendees only, and is
subjected to the IEEE Copyright Policy. Any other use is strongly forbidden.
Papers from this author
Skin Lesion Classification Using Weakly-Supervised Fine-Grained Method
Xi Xue, Sei-Ichiro Kamata, Daming Luo
Auto-TLDR; Different Region proposal module for skin lesion classification
Abstract Slides Poster Similar
In recent years, skin cancer has become one of the most common cancers. Among all types of skin cancers, melanoma is the most fatal one and many people die of this disease every year. Early detection can greatly reduce the death rate and save more lives. Skin lesions are one of the early symptoms of melanoma and other types of skin cancer. So accurately recognizing various skin lesions in early stage are of great significance. There have been lots of existing works based on convolutional neural networks (CNN) to solve skin lesion classification but seldom do them involve the similarity among different lesions. For example, we find that some lesions of melanoma and nevi look similar in appearance which is hard for neural network to distinguish categories of skin lesions. Inspired by fine-grained image classification, we propose a novel network to distinguish each category accurately. In our paper, we design an effective module, distinct region proposal module (DRPM), to extract the distinct regions from each image. Spatial attention and channel-wise attention are both utilized to enrich feature maps and guide the network to focus on the highlighted areas in a weakly-supervised way. In addition, two preprocessing steps are added to ensure the network to get better results. We demonstrate the potential of the proposed method on ISIC 2017 dataset. Experiments show that our approach is effective and efficient.