Constantine Kotropoulos
Paper download is intended for registered attendees only, and is
subjected to the IEEE Copyright Policy. Any other use is strongly forbidden.
Papers from this author
Digit Recognition Applied to Reconstructed Audio Signals Using Deep Learning
Anastasia-Sotiria Toufa, Constantine Kotropoulos
Auto-TLDR; Compressed Sensing for Digit Recognition in Audio Reconstruction
Compressed sensing allows signal reconstruction from a few measurements. This work proposes a complete pipeline for digit recognition applied to audio reconstructed signals. The reconstruction procedure exploits the assumption that the original signal lies in the range of a generator. A pretrained generator of a Generative Adversarial Network generates audio digits. A new method for reconstruction is proposed, using only the most active segment of the signal, i.e., the segment with the highest energy. The underlying assumption is that such segment offers a more compact representation, preserving the meaningful content of signal. Cases when the reconstruction produces noise, instead of digit, are treated as outliers. In order to detect and reject them, three unsupervised indicators are used, namely, the total energy of reconstructed signal, the predictions of an one-class Support Vector Machine, and the confidence of a pretrained classifier used for recognition. This classifier is based on neural networks architectures and is pretrained on original audio recordings, employing three input representations, i.e., raw audio, spectrogram, and gammatonegram. Experiments are conducted, analyzing both the quality of reconstruction and the performance of classifiers in digit recognition, demonstrating that the proposed method yields higher performance in both the quality of reconstruction and digit recognition accuracy.