Feng Ling
Paper download is intended for registered attendees only, and is
subjected to the IEEE Copyright Policy. Any other use is strongly forbidden.
Papers from this author
Cross-Media Hash Retrieval Using Multi-head Attention Network
Zhixin Li, Feng Ling, Chuansheng Xu, Canlong Zhang, Huifang Ma
Auto-TLDR; Unsupervised Cross-Media Hash Retrieval Using Multi-Head Attention Network
Abstract Slides Poster Similar
The cross-media hash retrieval method is to encode multimedia data into a common binary hash space, which can effectively measure the correlation between samples from different modalities. In order to further improve the retrieval accuracy, this paper proposes an unsupervised cross-media hash retrieval method based on multi-head attention network. First of all, we use a multi-head attention network to make better matching images and texts, which contains rich semantic information. At the same time, an auxiliary similarity matrix is constructed to integrate the original neighborhood information from different modalities. Therefore, this method can capture the potential correlations between different modalities and within the same modality, so as to make up for the differences between different modalities and within the same modality. Secondly, the method is unsupervised and does not require additional semantic labels, so it has the potential to achieve large-scale cross-media retrieval. In addition, batch normalization and replacement hash code generation functions are adopted to optimize the model, and two loss functions are designed, which make the performance of this method exceed many supervised deep cross-media hash methods. Experiments on three datasets show that the average performance of this method is about 5 to 6 percentage points higher than the state-of-the-art unsupervised method, which proves the effectiveness and superiority of this method.