Cross-Media Hash Retrieval Using Multi-head Attention Network

Zhixin Li, Feng Ling, Chuansheng Xu, Canlong Zhang, Huifang Ma

Responsive image

Auto-TLDR; Unsupervised Cross-Media Hash Retrieval Using Multi-Head Attention Network

Slides Poster

The cross-media hash retrieval method is to encode multimedia data into a common binary hash space, which can effectively measure the correlation between samples from different modalities. In order to further improve the retrieval accuracy, this paper proposes an unsupervised cross-media hash retrieval method based on multi-head attention network. First of all, we use a multi-head attention network to make better matching images and texts, which contains rich semantic information. At the same time, an auxiliary similarity matrix is constructed to integrate the original neighborhood information from different modalities. Therefore, this method can capture the potential correlations between different modalities and within the same modality, so as to make up for the differences between different modalities and within the same modality. Secondly, the method is unsupervised and does not require additional semantic labels, so it has the potential to achieve large-scale cross-media retrieval. In addition, batch normalization and replacement hash code generation functions are adopted to optimize the model, and two loss functions are designed, which make the performance of this method exceed many supervised deep cross-media hash methods. Experiments on three datasets show that the average performance of this method is about 5 to 6 percentage points higher than the state-of-the-art unsupervised method, which proves the effectiveness and superiority of this method.

Similar papers

Discrete Semantic Matrix Factorization Hashing for Cross-Modal Retrieval

Jianyang Qin, Lunke Fei, Shaohua Teng, Wei Zhang, Genping Zhao, Haoliang Yuan

Responsive image

Auto-TLDR; Discrete Semantic Matrix Factorization Hashing for Cross-Modal Retrieval

Slides Poster Similar

Hashing has been widely studied for cross-modal retrieval due to its promising efficiency and effectiveness in massive data analysis. However, most existing supervised hashing has the limitations of inefficiency for very large-scale search and intractable discrete constraint for hash codes learning. In this paper, we propose a new supervised hashing method, namely, Discrete Semantic Matrix Factorization Hashing (DSMFH), for cross-modal retrieval. First, we conduct the matrix factorization via directly utilizing the available label information to obtain a latent representation, so that both the inter-modality and intra-modality similarities are well preserved. Then, we simultaneously learn the discriminative hash codes and corresponding hash functions by deriving the matrix factorization into a discrete optimization. Finally, we adopt an alternatively iterative procedure to efficiently optimize the matrix factorization and discrete learning. Extensive experimental results on three widely used image-tag databases demonstrate the superiority of the DSMFH over state-of-the-art cross-modal hashing methods.

Fast Discrete Cross-Modal Hashing Based on Label Relaxation and Matrix Factorization

Donglin Zhang, Xiaojun Wu, Zhen Liu, Jun Yu, Josef Kittler

Responsive image

Auto-TLDR; LRMF: Label Relaxation and Discrete Matrix Factorization for Cross-Modal Retrieval

Poster Similar

In recent years, cross-media retrieval has drawn considerable attention due to the exponential growth of multimedia data. Many hashing approaches have been proposed for the cross-media search task. However, there are still open problems that warrant investigation. For example, most existing supervised hashing approaches employ a binary label matrix, which achieves small margins between wrong labels (0) and true labels (1). This may affect the retrieval performance by generating many false negatives and false positives. In addition, some methods adopt a relaxation scheme to solve the binary constraints, which may cause large quantization errors. There are also some discrete hashing methods that have been presented, but most of them are time-consuming. To conquer these problems, we present a label relaxation and discrete matrix factorization method (LRMF) for cross-modal retrieval. It offers a number of innovations. First of all, the proposed approach employs a novel label relaxation scheme to control the margins adaptively, which has the benefit of reducing the quantization error. Second, by virtue of the proposed discrete matrix factorization method designed to learn the binary codes, large quantization errors caused by relaxation can be avoided. The experimental results obtained on two widely-used databases demonstrate that LRMF outperforms state-of-the-art cross-media methods.

VSB^2-Net: Visual-Semantic Bi-Branch Network for Zero-Shot Hashing

Xin Li, Xiangfeng Wang, Bo Jin, Wenjie Zhang, Jun Wang, Hongyuan Zha

Responsive image

Auto-TLDR; VSB^2-Net: inductive zero-shot hashing for image retrieval

Slides Poster Similar

Zero-shot hashing aims at learning hashing model from seen classes and the obtained model is capable of generalizing to unseen classes for image retrieval. Inspired by zero-shot learning, existing zero-shot hashing methods usually transfer the supervised knowledge from seen to unseen classes, by embedding the hamming space to a shared semantic space. However, this makes instances difficult to distinguish due to limited hashing bit numbers, especially for semantically similar unseen classes. We propose a novel inductive zero-shot hashing framework, i.e., VSB^2-Net, where both semantic space and visual feature space are embedded to the same hamming space instead. The reconstructive semantic relationships are established in the hamming space, preserving local similarity relationships and explicitly enlarging the discrepancy between semantic hamming vectors. A two-task architecture, comprising of classification module and visual feature reconstruction module, is employed to enhance the generalization and transfer abilities. Extensive evaluation results on several benchmark datasets demonstratethe superiority of our proposed method compared to several state-of-the-art baselines.

Hierarchical Deep Hashing for Fast Large Scale Image Retrieval

Yongfei Zhang, Cheng Peng, Zhang Jingtao, Xianglong Liu, Shiliang Pu, Changhuai Chen

Responsive image

Auto-TLDR; Hierarchical indexed deep hashing for fast large scale image retrieval

Slides Poster Similar

Fast image retrieval is of great importance in many computer vision tasks and especially practical applications. Deep hashing, the state-of-the-art fast image retrieval scheme, introduces deep learning to learn the hash functions and generate binary hash codes, and outperforms the other image retrieval methods in terms of accuracy. However, all the existing deep hashing methods could only generate one level hash codes and require a linear traversal of all the hash codes to figure out the closest one when a new query arrives, which is very time-consuming and even intractable for large scale applications. In this work, we propose a Hierarchical Deep HASHing(HDHash) scheme to speed up the state-of-the-art deep hashing methods. More specifically, hierarchical deep hash codes of multiple levels can be generated and indexed with tree structures rather than linear ones, and pruning irrelevant branches can sharply decrease the retrieval time. To our best knowledge, this is the first work to introduce hierarchical indexed deep hashing for fast large scale image retrieval. Extensive experimental results on three benchmark datasets demonstrate that the proposed HDHash scheme achieves better or comparable accuracy with significantly improved efficiency and reduced memory as compared to state-of-the-art fast image retrieval schemes.

Object Classification of Remote Sensing Images Based on Optimized Projection Supervised Discrete Hashing

Qianqian Zhang, Yazhou Liu, Quansen Sun

Responsive image

Auto-TLDR; Optimized Projection Supervised Discrete Hashing for Large-Scale Remote Sensing Image Object Classification

Slides Poster Similar

Recently, with the increasing number of large-scale remote sensing images, the demand for large-scale remote sensing image object classification is growing and attracting the interest of many researchers. Hashing, because of its low memory requirements and high time efficiency, has been widely solve the problem of large-scale remote sensing image. Supervised hashing methods mainly leverage the label information of remote sensing image to learn hash function, however, the similarity of the original feature space cannot be well preserved, which can not meet the accurate requirements for object classification of remote sensing image. To solve the mentioned problem, we propose a novel method named Optimized Projection Supervised Discrete Hashing(OPSDH), which jointly learns a discrete binary codes generation and optimized projection constraint model. It uses an effective optimized projection method to further constraint the supervised hash learning and generated hash codes preserve the similarity based on the data label while retaining the similarity of the original feature space. The experimental results show that OPSDH reaches improved performance compared with the existing hash learning methods and demonstrate that the proposed method is more efficient for operational applications

DFH-GAN: A Deep Face Hashing with Generative Adversarial Network

Bo Xiao, Lanxiang Zhou, Yifei Wang, Qiangfang Xu

Responsive image

Auto-TLDR; Deep Face Hashing with GAN for Face Image Retrieval

Slides Poster Similar

Face Image retrieval is one of the key research directions in computer vision field. Thanks to the rapid development of deep neural network in recent years, deep hashing has achieved good performance in the field of image retrieval. But for large-scale face image retrieval, the performance needs to be further improved. In this paper, we propose Deep Face Hashing with GAN (DFH-GAN), a novel deep hashing method for face image retrieval, which mainly consists of three components: a generator network for generating synthesized images, a discriminator network with a shared CNN to learn multi-domain face feature, and a hash encoding network to generate compact binary hash codes. The generator network is used to perform data augmentation so that the model could learn from both real images and diverse synthesized images. We adopt a two-stage training strategy. In the first stage, the GAN is trained to generate fake images, while in the second stage, to make the network convergence faster. The model inherits the trained shared CNN of discriminator to train the DFH model by using many different supervised loss functions not only in the last layer but also in the middle layer of the network. Extensive experiments on two widely used datasets demonstrate that DFH-GAN can generate high-quality binary hash codes and exceed the performance of the state-of-the-art model greatly.

Improved Deep Classwise Hashing with Centers Similarity Learning for Image Retrieval

Ming Zhang, Hong Yan

Responsive image

Auto-TLDR; Deep Classwise Hashing for Image Retrieval Using Center Similarity Learning

Slides Poster Similar

Deep supervised hashing for image retrieval has attracted researchers' attention due to its high efficiency and superior retrieval performance. Most existing deep supervised hashing works, which are based on pairwise/triplet labels, suffer from the expensive computational cost and insufficient utilization of the semantics information. Recently, deep classwise hashing introduced a classwise loss supervised by class labels information alternatively; however, we find it still has its drawback. In this paper, we propose an improved deep classwise hashing, which enables hashing learning and class centers learning simultaneously. Specifically, we design a two-step strategy on center similarity learning. It interacts with the classwise loss to attract the class center to concentrate on the intra-class samples while pushing other class centers as far as possible. The centers similarity learning contributes to generating more compact and discriminative hashing codes. We conduct experiments on three benchmark datasets. It shows that the proposed method effectively surpasses the original method and outperforms state-of-the-art baselines under various commonly-used evaluation metrics for image retrieval.

Leveraging Quadratic Spherical Mutual Information Hashing for Fast Image Retrieval

Nikolaos Passalis, Anastasios Tefas

Responsive image

Auto-TLDR; Quadratic Mutual Information for Large-Scale Hashing and Information Retrieval

Slides Poster Similar

Several deep supervised hashing techniques have been proposed to allow for querying large image databases. However, it is often overlooked that the process of information retrieval can be modeled using information-theoretic metrics, leading to optimizing various proxies for the problem at hand instead. Contrary to this, we propose a deep supervised hashing algorithm that optimizes the learned codes using an information-theoretic measure, the Quadratic Mutual Information (QMI). The proposed method is adapted to the needs of large-scale hashing and information retrieval leading to a novel information-theoretic measure, the Quadratic Spherical Mutual Information (QSMI), that is inspired by QMI, but leads to significant better retrieval precision. Indeed, the effectiveness of the proposed method is demonstrated under several different scenarios, using different datasets and network architectures, outperforming existing deep supervised image hashing techniques.

Label Self-Adaption Hashing for Image Retrieval

Jianglin Lu, Zhihui Lai, Hailing Wang, Jie Zhou

Responsive image

Auto-TLDR; Label Self-Adaption Hashing for Large-Scale Image Retrieval

Slides Poster Similar

Hashing has attracted widespread attention in image retrieval because of its fast retrieval speed and low storage cost. Compared with supervised methods, unsupervised hashing methods are more reasonable and suitable for large-scale image retrieval since it is always difficult and expensive to collect true labels of the massive data. Without label information, however, unsupervised hashing methods can not guarantee the quality of learned binary codes. To resolve this dilemma, this paper proposes a novel unsupervised hashing method called Label Self-Adaption Hashing (LSAH), which contains effective hashing function learning part and self-adaption label generation part. In the first part, we utilize anchor graph to keep the local structure of the data and introduce joint sparsity into the model to extract effective features for high-quality binary code learning. In the second part, a self-adaptive cluster label matrix is learned from the data under the assumption that the nearest neighbor points should have a large probability to be in the same cluster. Therefore, the proposed LSAH can make full use of the potential discriminative information of the data to guide the learning of binary code. It is worth noting that LSAH can learn effective binary codes, hashing function and cluster labels simultaneously in a unified optimization framework. To solve the resulting optimization problem, an Augmented Lagrange Multiplier based iterative algorithm is elaborately designed. Extensive experiments on three large-scale data sets indicate the promising performance of the proposed LSAH.

VSR++: Improving Visual Semantic Reasoning for Fine-Grained Image-Text Matching

Hui Yuan, Yan Huang, Dongbo Zhang, Zerui Chen, Wenlong Cheng, Liang Wang

Responsive image

Auto-TLDR; Improving Visual Semantic Reasoning for Fine-Grained Image-Text Matching

Slides Poster Similar

Image-text matching has made great progresses recently, but there still remains challenges in fine-grained matching. To deal with this problem, we propose an Improved Visual Semantic Reasoning model (VSR++), which jointly models 1) global alignment between images and texts and 2) local correspondence between regions and words in a unified framework. To exploit their complementary advantages, we also develop a suitable learning strategy to balance their relative importance. As a result, our model can distinguish image regions and text words in a fine-grained level, and thus achieves the current stateof-the-art performance on two benchmark datasets.

A Novel Attention-Based Aggregation Function to Combine Vision and Language

Matteo Stefanini, Marcella Cornia, Lorenzo Baraldi, Rita Cucchiara

Responsive image

Auto-TLDR; Fully-Attentive Reduction for Vision and Language

Slides Poster Similar

The joint understanding of vision and language has been recently gaining a lot of attention in both the Computer Vision and Natural Language Processing communities, with the emergence of tasks such as image captioning, image-text matching, and visual question answering. As both images and text can be encoded as sets or sequences of elements - like regions and words - proper reduction functions are needed to transform a set of encoded elements into a single response, like a classification or similarity score. In this paper, we propose a novel fully-attentive reduction method for vision and language. Specifically, our approach computes a set of scores for each element of each modality employing a novel variant of cross-attention, and performs a learnable and cross-modal reduction, which can be used for both classification and ranking. We test our approach on image-text matching and visual question answering, building fair comparisons with other reduction choices, on both COCO and VQA 2.0 datasets. Experimentally, we demonstrate that our approach leads to a performance increase on both tasks. Further, we conduct ablation studies to validate the role of each component of the approach.

Beyond the Deep Metric Learning: Enhance the Cross-Modal Matching with Adversarial Discriminative Domain Regularization

Li Ren, Kai Li, Liqiang Wang, Kien Hua

Responsive image

Auto-TLDR; Adversarial Discriminative Domain Regularization for Efficient Cross-Modal Matching

Slides Poster Similar

Matching information across image and text modalities is a fundamental challenge for many applications that involve both vision and natural language processing. The objective is to find efficient similarity metrics to compare the similarity between visual and textual information. Existing approaches mainly match the local visual objects and the sentence words in a shared space with attention mechanisms. The matching performance is still limited because the similarity computation is based on simple comparisons of the matching features, ignoring the characteristics of their distribution in the data. In this paper, we address this limitation with an efficient learning objective that considers the discriminative feature distributions between the visual objects and sentence words. Specifically, we propose a novel Adversarial Discriminative Domain Regularization (ADDR) learning framework, beyond the paradigm metric learning objective, to construct a set of discriminative data domains within each image-text pairs. Our approach can generally improve the learning efficiency and the performance of existing metrics learning frameworks by regulating the distribution of the hidden space between the matching pairs. The experimental results show that this new approach significantly improves the overall performance of several popular cross-modal matching techniques (SCAN, VSRN, BFAN) on the MS-COCO and Flickr30K benchmarks.

Cross-spectrum Face Recognition Using Subspace Projection Hashing

Hanrui Wang, Xingbo Dong, Jin Zhe, Jean-Luc Dugelay, Massimo Tistarelli

Responsive image

Auto-TLDR; Subspace Projection Hashing for Cross-Spectrum Face Recognition

Slides Poster Similar

Cross-spectrum face recognition, e.g. visible to thermal matching, remains a challenging task due to the large variation originated from different domains. This paper proposed a subspace projection hashing (SPH) to enable the cross-spectrum face recognition task. The intrinsic idea behind SPH is to project the features from different domains onto a common subspace, where matching the faces from different domains can be accomplished. Notably, we proposed a new loss function that can (i) preserve both inter-domain and intra-domain similarity; (ii) regularize a scaled-up pairwise distance between hashed codes, to optimize projection matrix. Three datasets, Wiki, EURECOM VIS-TH paired face and TDFace are adopted to evaluate the proposed SPH. The experimental results indicate that the proposed SPH outperforms the original linear subspace ranking hashing (LSRH) in the benchmark dataset (Wiki) and demonstrates a reasonably good performance for visible-thermal, visible-near-infrared face recognition, therefore suggests the feasibility and effectiveness of the proposed SPH.

Transformer Reasoning Network for Image-Text Matching and Retrieval

Nicola Messina, Fabrizio Falchi, Andrea Esuli, Giuseppe Amato

Responsive image

Auto-TLDR; A Transformer Encoder Reasoning Network for Image-Text Matching in Large-Scale Information Retrieval

Slides Poster Similar

Image-text matching is an interesting and fascinating task in modern AI research. Despite the evolution of deep-learning-based image and text processing systems, multi-modal matching remains a challenging problem. In this work, we consider the problem of accurate image-text matching for the task of multi-modal large-scale information retrieval. State-of-the-art results in image-text matching are achieved by inter-playing image and text features from the two different processing pipelines, usually using mutual attention mechanisms. However, this invalidates any chance to extract separate visual and textual features needed for later indexing steps in large-scale retrieval systems. In this regard, we introduce the Transformer Encoder Reasoning Network (TERN), an architecture built upon one of the modern relationship-aware self-attentive architectures, the Transformer Encoder (TE). This architecture is able to separately reason on the two different modalities and to enforce a final common abstract concept space by sharing the weights of the deeper transformer layers. Thanks to this design, the implemented network is able to produce compact and very rich visual and textual features available for the successive indexing step. Experiments are conducted on the MS-COCO dataset, and we evaluate the results using a discounted cumulative gain metric with relevance computed exploiting caption similarities, in order to assess possibly non-exact but relevant search results. We demonstrate that on this metric we are able to achieve state-of-the-art results in the image retrieval task. Our code is freely available at https://github.com/mesnico/TERN.

Deep Composer: A Hash-Based Duplicative Neural Network for Generating Multi-Instrument Songs

Jacob Galajda, Brandon Royal, Kien Hua

Responsive image

Auto-TLDR; Deep Composer for Intelligence Duplication

Poster Similar

Music is one of the most appreciated forms of art, and generating songs has become a popular subject in the artificial intelligence community. There are various networks that can produce pleasant sounding music, but no model has been able to produce music that duplicates the style of a specific artist or artists. In this paper, we extend a previous single-instrument model: the Deep Composer -a model we believe to be capable of achieving this. Deep Composer originates from the Deep Segment Hash Learning (DSHL) single instrument model and is designed to learn how a specific artist would place individual segments of music together rather than create music similar to a specific genre. To the best of our knowledge, no other network has been designed to achieve this. For these reasons, we introduce a new field of study, Intelligence Duplication (ID). AI research generally focuses on developing techniques to mimic universal intelligence. Intelligence Duplication (ID) research focuses on techniques to artificially duplicate or clone a specific mind such as Mozart. Additionally, we present a new retrieval algorithm, Segment Barrier Retrieval (SBR), to improve retrieval accuracy within the hash-space as opposed to a more traditionally used feature-space. SBR prevents retrieval branches from entering areas of low-density within the hash-space, a phenomena we identify and label as segment sparsity. To test our Deep Composer and the effectiveness of SBR, we evaluate various models with different SBR threshold values and conduct qualitative surveys for each model. The survey results indicate that our Deep Composer model is capable of learning music generation from multiple composers. Our extended Deep Composer model provides a more suitable platform for Intelligence Duplication. Future work can apply this platform to duplicate great composers such as Mozart or allow them to collaborate in the virtual space.

MANet: Multimodal Attention Network Based Point-View Fusion for 3D Shape Recognition

Yaxin Zhao, Jichao Jiao, Ning Li

Responsive image

Auto-TLDR; Fusion Network for 3D Shape Recognition based on Multimodal Attention Mechanism

Slides Poster Similar

3D shape recognition has attracted more and more attention as a task of 3D vision research. The proliferation of 3D data encourages various deep learning methods based on 3D data. Now there have been many deep learning models based on point-cloud data or multi-view data alone. However, in the era of big data, integrating data of two different modals to obtain a unified 3D shape descriptor is bound to improve the recognition accuracy. Therefore, this paper proposes a fusion network based on multimodal attention mechanism for 3D shape recognition. Considering the limitations of multi-view data, we introduce a soft attention scheme, which can use the global point-cloud features to filter the multi-view features, and then realize the effective fusion of the two features. More specifically, we obtain the enhanced multi-view features by mining the contribution of each multi-view image to the overall shape recognition, and then fuse the point-cloud features and the enhanced multi-view features to obtain a more discriminative 3D shape descriptor. We have performed relevant experiments on the ModelNet40 dataset, and experimental results verify the effectiveness of our method.

Webly Supervised Image-Text Embedding with Noisy Tag Refinement

Niluthpol Mithun, Ravdeep Pasricha, Evangelos Papalexakis, Amit Roy-Chowdhury

Responsive image

Auto-TLDR; Robust Joint Embedding for Image-Text Retrieval Using Web Images

Slides Similar

In this paper, we address the problem of utilizing web images in training robust joint embedding models for the image-text retrieval task. Prior webly supervised approaches directly leverage weakly annotated web images in the joint embedding learning framework. The objective of these approaches would suffer significantly when the ratio of noisy and missing tags associated with the web images is very high. In this regard, we propose a CP decomposition based tensor completion framework to refine the tags of web images by modeling observed ternary inter-relations between the sets of labeled images, tags, and web images as a tensor. To effectively deal with the high ratio of missing entries likely in our case, we incorporate intra-modal correlation as side information in the proposed framework. Our tag refinement approach combined with existing web supervised image-text embedding approaches provide a more principled way for learning the joint embedding models in the presence of significant noise from web data and limited clean labeled data. Experiments on benchmark datasets demonstrate that the proposed approach helps to achieve a significant performance gain in image-text retrieval.

Multi-Scale Cascading Network with Compact Feature Learning for RGB-Infrared Person Re-Identification

Can Zhang, Hong Liu, Wei Guo, Mang Ye

Responsive image

Auto-TLDR; Multi-Scale Part-Aware Cascading for RGB-Infrared Person Re-identification

Slides Poster Similar

RGB-Infrared person re-identification (RGB-IR Re-ID) aims to matching persons from heterogeneous images captured by visible and thermal cameras, which is of great significance in surveillance system under poor light conditions. Facing great challenges in complex variances including conventional single-modality and additional inter-modality discrepancies, most of existing RGB-IR Re-ID methods directly work on global features for simultaneous elimination, whereas modality-specific noises and modality-shared features are not well considered. To address these issues, a novel Multi-Scale Part-Aware Cascading framework (MSPAC) is formulated by aggregating multi-scale fine-grained features from part to global in a cascading manner, which results in an unified representation robust to noises. Moreover, a marginal exponential center (MeCen) loss is introduced to jointly eliminate mixed variances, which enables to model cross-modality correlations on sharable salient features. Extensive experiments are conducted for demonstration that the proposed method outperforms all the state-of-the-arts by a large margin.

Integrating Historical States and Co-Attention Mechanism for Visual Dialog

Tianling Jiang, Yi Ji, Chunping Liu

Responsive image

Auto-TLDR; Integrating Historical States and Co-attention for Visual Dialog

Slides Poster Similar

Visual dialog is a typical multi-modal task which involves both vision and language. Nowadays, it faces two major difficulties. In this paper, we propose Integrating Historical States and Co-attention (HSCA) for visual dialog to solve them. It includes two main modules, Co-ATT and MATCH. Specifically, the main purpose of the Co-ATT module is to guide the image with questions and answers in the early stage to get more specific objects. It tackles the temporal sequence issue in historical information which may influence the precise answer for multi-round questions. The MATCH module is, based on a question with pronouns, to retrieve the best matching historical information block. It overcomes the visual reference problem which requires to solve pronouns referring to unknowns in the text message and then to locate the objects in the given image. We quantitatively and qualitatively evaluate our model on VisDial v1.0, at the same time, ablation studies are carried out. The experimental results demonstrate that HSCA outperforms the state-of-the-art methods in many aspects.

Zero-Shot Text Classification with Semantically Extended Graph Convolutional Network

Tengfei Liu, Yongli Hu, Junbin Gao, Yanfeng Sun, Baocai Yin

Responsive image

Auto-TLDR; Semantically Extended Graph Convolutional Network for Zero-shot Text Classification

Slides Poster Similar

As a challenging task of Natural Language Processing(NLP), zero-shot text classification has attracted more and more attention recently. It aims to detect classes that the model has never seen in the training set. For this purpose, a feasible way is to construct connection between the seen and unseen classes by semantic extension and classify the unseen classes by information propagation over the connection. Although many related zero-shot text classification methods have been exploited, how to realize semantic extension properly and propagate information effectively is far from solved. In this paper, we propose a novel zero-shot text classification method called Semantically Extended Graph Convolutional Network (SEGCN). In the proposed method, the semantic category knowledge from ConceptNet is utilized to semantic extension for linking seen classes to unseen classes and constructing a graph of all classes. Then, we build upon Graph Convolutional Network (GCN) for predicting the textual classifier for each category, which transfers the category knowledge by the convolution operators on the constructed graph and is trained in a semi-supervised manner using the samples of the seen classes. The experimental results on Dbpedia and 20newsgroup datasets show that our method outperforms the state of the art zero-shot text classification methods.

Global Context-Based Network with Transformer for Image2latex

Nuo Pang, Chun Yang, Xiaobin Zhu, Jixuan Li, Xu-Cheng Yin

Responsive image

Auto-TLDR; Image2latex with Global Context block and Transformer

Slides Poster Similar

Image2latex usually means converts mathematical formulas in images into latex markup. It is a very challenging job due to the complex two-dimensional structure, variant scales of input, and very long representation sequence. Many researchers use encoder-decoder based model to solve this task and achieved good results. However, these methods don't make full use of the structure and position information of the formula. %In this paper, we improve the encoder by employing Global Context block and Transformer. To solve this problem, we propose a global context-based network with transformer that can (1) learn a more powerful and robust intermediate representation via aggregating global features and (2) encode position information explicitly and (3) learn latent dependencies between symbols by using self-attention mechanism. The experimental results on the dataset IM2LATEX-100K demonstrate the effectiveness of our method.

Aggregating Object Features Based on Attention Weights for Fine-Grained Image Retrieval

Hongli Lin, Yongqi Song, Zixuan Zeng, Weisheng Wang

Responsive image

Auto-TLDR; DSAW: Unsupervised Dual-selection for Fine-Grained Image Retrieval

Similar

Object localization and local feature representation are key issues in fine-grained image retrieval. However, the existing unsupervised methods still need to be improved in these two aspects. For conquering these issues in a unified framework, a novel unsupervised scheme, named DSAW for short, is presented in this paper. Firstly, we proposed a dual-selection (DS) method, which achieves more accurate object localization by using adaptive threshold method to perform feature selection on local and global activation map in turn. Secondly, a novel and faster self-attention weights (AW) method is developed to weight local features by measuring their importance in the global context. Finally, we also evaluated the performance of the proposed method on five fine-grained image datasets and the results showed that our DSAW outperformed the existing best method.

RGB-Infrared Person Re-Identification Via Image Modality Conversion

Huangpeng Dai, Qing Xie, Yanchun Ma, Yongjian Liu, Shengwu Xiong

Responsive image

Auto-TLDR; CE2L: A Novel Network for Cross-Modality Re-identification with Feature Alignment

Slides Poster Similar

As a cross modality retrieval task, RGB-infrared person re-identification(Re-ID) is an important and challenging tasking, because of its important role in video surveillance applications and large cross-modality variations between visible and infrared images. Most previous works addressed the problem of cross-modality gap with feature alignment by original feature representation learning straightly. In this paper, different from existing works, we propose a novel network(CE2L) to tackle the cross-modality gap with feature alignment. CE2L mainly focuses on adding discriminative information and learning robust features by converting modality between visible and infrared images. Its merits are highlighted in two aspects: 1)Using CycleGAN to convert infrared images into color images can not only increase the recognition characteristics of images, but also allow the our network to better learn the two modal image features; 2)Our novel method can serve as data augmentation. Specifically, it can increase data diversity and total data against over-fitting by converting labeled training images to another modal images. Extensive experimental results on two datasets demonstrate superior performance compared to the baseline and the state-of-the-art methods.

Exploiting Local Indexing and Deep Feature Confidence Scores for Fast Image-To-Video Search

Savas Ozkan, Gözde Bozdağı Akar

Responsive image

Auto-TLDR; Fast and Robust Image-to-Video Retrieval Using Local and Global Descriptors

Slides Poster Similar

Cost-effective visual representation and fast query-by-example search are two challenging goals hat should be provided for web-scale visual retrieval task on a moderate hardware. In this paper, we introduce a fast yet robust method that ensures both of these goals by obtaining the state-of-the-art results for an image-to-video search scenario. To this end, we present important enhancements to commonly used indexing and visual representation techniques by promoting faster, better and more moderate retrieval performance. We also boost the effectiveness of the method for visual distortion by exploiting the individual decision results of local and global descriptors in the query time. By this way, local content descriptors effectively represent copied / duplicated scenes with large geometric deformations, while global descriptors for near duplicate and semantic searches are more practical. Experiments are conducted on the large-scale Stanford I2V dataset. The experimental results show that the method is effective in terms of complexity and query processing time for large-scale visual retrieval scenarios, even if local and global representations are used together. In addition, the proposed method is fairly accurate and achieves state-of-the-art performance based on the mAP score of the dataset. Lastly, we report additional mAP scores after updating the ground annotations obtained by the retrieval results of the proposed method showing more clearly the actual performance.

JECL: Joint Embedding and Cluster Learning for Image-Text Pairs

Sean Yang, Kuan-Hao Huang, Bill Howe

Responsive image

Auto-TLDR; JECL: Clustering Image-Caption Pairs with Parallel Encoders and Regularized Clusters

Poster Similar

We propose JECL, a method for clustering image-caption pairs by training parallel encoders with regularized clustering and alignment objectives, simultaneously learning both representations and cluster assignments. These image-caption pairs arise frequently in high-value applications where structured training data is expensive to produce, but free-text descriptions are common. JECL trains by minimizing the Kullback-Leibler divergence between the distribution of the images and text to that of a combined joint target distribution and optimizing the Jensen-Shannon divergence between the soft cluster assignments of the images and text. Regularizers are also applied to JECL to prevent trivial solutions. Experiments show that JECL outperforms both single-view and multi-view methods on large benchmark image-caption datasets, and is remarkably robust to missing captions and varying data sizes.

Object Detection Using Dual Graph Network

Shengjia Chen, Zhixin Li, Feicheng Huang, Canlong Zhang, Huifang Ma

Responsive image

Auto-TLDR; A Graph Convolutional Network for Object Detection with Key Relation Information

Slides Similar

Most object detection methods focus only on the local information near the region proposal and ignore the object's global semantic relation and local spatial relation information, resulting in limited performance. To capture and explore these important relations, we propose a detection method based on a graph convolutional network (GCN). Two independent relation graph networks are used to obtain the global semantic information of the object in labels and the local spatial information in images. Semantic relation networks can implicitly acquire global knowledge, and by constructing a directed graph on the dataset, each node is represented by the word embedding of labels and then sent to the GCN to obtain high-level semantic representation. The spatial relation network encodes the relation by the positional relation module and the visual connection module, and enriches the object features through local key information from objects. The feature representation is further improved by aggregating the outputs of the two networks. Instead of directly disseminating visual features in the network, the dual-graph network explores more advanced feature information, giving the detector the ability to obtain key relations in labels and region proposals. Experiments on the PASCAL VOC and MS COCO datasets demonstrate that key relation information significantly improve the performance of detection with better ability to detect small objects and reasonable boduning box. The results on COCO dataset demonstrate our method obtains around 32.3% improvement on AP in terms of small objects.

Object Detection Model Based on Scene-Level Region Proposal Self-Attention

Yu Quan, Zhixin Li, Canlong Zhang, Huifang Ma

Responsive image

Auto-TLDR; Exploiting Semantic Informations for Object Detection

Slides Poster Similar

The improvement of object detection performance is mostly focused on the extraction of local information near the region of interest in the image, which results in detection performance in this area being unable to achieve the desired effect. First, a depth-wise separable convolution network(D_SCNet-127 R-CNN) is built on the backbone network. Considering the importance of scene and semantic informations for visual recognition, the feature map is sent into the branch of the semantic segmentation module, region proposal network module, and the region proposal self-attention module to build the network of scene-level and region proposal self-attention module. Second, a deep reinforcement learning was utilized to achieve accurate positioning of border regression, and the calculation speed of the whole model was improved through implementing a light-weight head network. This model can effectively solve the limitation of feature extraction in traditional object detection and obtain more comprehensive detailed features. The experimental verification on MSCOCO17, VOC12, and Cityscapes datasets shows that the proposed method has good validity and scalability.

More Correlations Better Performance: Fully Associative Networks for Multi-Label Image Classification

Yaning Li, Liu Yang

Responsive image

Auto-TLDR; Fully Associative Network for Fully Exploiting Correlation Information in Multi-Label Classification

Slides Poster Similar

Recent researches demonstrate that correlation modeling plays a key role in high-performance multi-label classification methods. However, existing methods do not take full advantage of correlation information, especially correlations in feature and label spaces of each image, which limits the performance of correlation-based multi-label classification methods. With more correlations considered, in this study, a Fully Associative Network (FAN) is proposed for fully exploiting correlation information, which involves both visual feature and label correlations. Specifically, FAN introduces a robust covariance pooling to summarize convolution features as global image representation for capturing feature correlation in the multi-label task. Moreover, it constructs an effective label correlation matrix based on a re-weighted scheme, which is fed into a graph convolution network for capturing label correlation. Then, correlation between covariance representations (i.e., feature correlation ) and the outputs of GCN (i.e., label correlation) are modeled for final prediction. Experimental results on two datasets illustrate the effectiveness and efficiency of our proposed FAN compared with state-of-the-art methods.

Edge-Aware Graph Attention Network for Ratio of Edge-User Estimation in Mobile Networks

Jiehui Deng, Sheng Wan, Xiang Wang, Enmei Tu, Xiaolin Huang, Jie Yang, Chen Gong

Responsive image

Auto-TLDR; EAGAT: Edge-Aware Graph Attention Network for Automatic REU Estimation in Mobile Networks

Slides Poster Similar

Estimating the Ratio of Edge-Users (REU) is an important issue in mobile networks, as it helps the subsequent adjustment of loads in different cells. However, existing approaches usually determine the REU manually, which are experience-dependent and labor-intensive, and thus the estimated REU might be imprecise. Considering the inherited graph structure of mobile networks, in this paper, we utilize a graph-based deep learning method for automatic REU estimation, where the practical cells are deemed as nodes and the load switchings among them constitute edges. Concretely, Graph Attention Network (GAT) is employed as the backbone of our method due to its impressive generalizability in dealing with networked data. Nevertheless, conventional GAT cannot make full use of the information in mobile networks, since it only incorporates node features to infer the pairwise importance and conduct graph convolutions, while the edge features that are actually critical in our problem are disregarded. To accommodate this issue, we propose an Edge-Aware Graph Attention Network (EAGAT), which is able to fuse the node features and edge features for REU estimation. Extensive experimental results on two real-world mobile network datasets demonstrate the superiority of our EAGAT approach to several state-of-the-art methods.

Rethinking ReID:Multi-Feature Fusion Person Re-Identification Based on Orientation Constraints

Mingjing Ai, Guozhi Shan, Bo Liu, Tianyang Liu

Responsive image

Auto-TLDR; Person Re-identification with Orientation Constrained Network

Slides Poster Similar

Person re-identification (ReID) aims to identify the specific pedestrian in a series of images or videos. Recently, ReID is receiving more and more attention in the fields of computer vision research and application like intelligent security. One major issue downgrading the ReID model performance lies in that various subjects in the same body orientations look too similar to distinguish by the model, while the same subject viewed in different orientations looks rather different. However, most of the current studies do not particularly differentiate pedestrians in orientation when designing the network, so we rethink this problem particularly from the perspective of person orientation and propose a new network structure by including two branches: one handling samples with the same body orientations and the other handling samples with different body orientations. Correspondingly, we also propose an orientation classifier that can accurately distinguish the orientation of each person. At the same time, the three-part loss functions are introduced for orientation constraint and combined to optimize the network simultaneously. Also, we use global and local features int the training stage in order to make use of multi-level information. Therefore, our network can derive its efficacy from orientation constraints and multiple features. Experiments show that our method not only has competitive performance on multiple datasets, but also can let retrieval results aligned with the orientation of the query sample rank higher, which may have great potential in the practical applications.

Supporting Skin Lesion Diagnosis with Content-Based Image Retrieval

Stefano Allegretti, Federico Bolelli, Federico Pollastri, Sabrina Longhitano, Giovanni Pellacani, Costantino Grana

Responsive image

Auto-TLDR; Skin Images Retrieval Using Convolutional Neural Networks for Skin Lesion Classification and Segmentation

Slides Poster Similar

Given the relevance of skin cancer, many attempts have been dedicated to the creation of automated devices that could assist both expert and beginner dermatologists towards fast and early diagnosis of skin lesions. In recent years, tasks such as skin lesion classification and segmentation have been extensively addressed with deep learning algorithms, which in some cases reach a diagnostic accuracy comparable to that of expert physicians. However, the general lack of interpretability and reliability severely hinders the ability of those approaches to actually support dermatologists in the diagnosis process. In this paper a novel skin images retrieval system is presented, which exploits features extracted by Convolutional Neural Networks to gather similar images from a publicly available dataset, in order to assist the diagnosis process of both expert and novice practitioners. In the proposed framework, Resnet-50 is initially trained for the classification of dermoscopic images; then, the feature extraction part is isolated, and an embedding network is build on top of it. The embedding learns an alternative representation, which allows to check image similarity by means of a distance measure. Experimental results reveal that the proposed method is able to select meaningful images, which can effectively boost the classification accuracy of human dermatologists.

Decoupled Self-Attention Module for Person Re-Identification

Chao Zhao, Zhenyu Zhang, Jian Yang, Yan Yan

Responsive image

Auto-TLDR; Decoupled Self-attention Module for Person Re-identification

Slides Poster Similar

Person re-identification aims to identifying the same person from different cameras, which needs to integrate whole-body information and capture global correlation. However, convolutional neural network is able to only capture short-distance information because of the size of filters. Self-attention is introduced to capture long-distance correlation, but inner-product similarity calculation in self-attention mingles semantic response and semantic difference together. Semantic difference is more important for person re-identification, because it is robust to illumination without the effect of semantic response. However, we find the scale of norms measuring semantic response is much larger than angle measuring semantic difference by decoupling inner-product similarity into norms and angle. To balance the importance of semantic response and semantic difference in self-attention, we propose the decoupled self-attention module for person re-identification to make the most of self-attention. Extensive experiments show that the decoupled self-attention module obtains significant performance with easier convergence and stronger robustness.

A Base-Derivative Framework for Cross-Modality RGB-Infrared Person Re-Identification

Hong Liu, Ziling Miao, Bing Yang, Runwei Ding

Responsive image

Auto-TLDR; Cross-modality RGB-Infrared Person Re-identification with Auxiliary Modalities

Slides Poster Similar

Cross-modality RGB-infrared (RGB-IR) person re-identification (Re-ID) is a challenging research topic due to the heterogeneity of RGB and infrared images. In this paper, we aim to find some auxiliary modalities, which are homologous with the visible or infrared modalities, to help reduce the modality discrepancy caused by heterogeneous images. Accordingly, a new base-derivative framework is proposed, where base refers to the original visible and infrared modalities, and derivative refers to the two auxiliary modalities that are derived from base. In the proposed framework, the double-modality cross-modal learning problem is reformulated as a four-modality one. After that, the images of all the base and derivative modalities are fed into the feature learning network. With the doubled input images, the learned person features become more discriminative. Furthermore, the proposed framework is optimized by the enhanced intra- and cross-modality constraints with the assistance of two derivative modalities. Experimental results on two publicly available datasets SYSU-MM01 and RegDB show that the proposed method outperforms the other state-of-the-art methods. For instance, we achieve a gain of over 13\% in terms of both Rank-1 and mAP on RegDB dataset.

Reinforcement Learning with Dual Attention Guided Graph Convolution for Relation Extraction

Zhixin Li, Yaru Sun, Suqin Tang, Canlong Zhang, Huifang Ma

Responsive image

Auto-TLDR; Dual Attention Graph Convolutional Network for Relation Extraction

Slides Poster Similar

To better learn the dependency relationship between nodes, we address the relationship extraction task by capturing rich contextual dependencies based on the attention mechanism, and using distributional reinforcement learning to generate optimal relation information representation. This method is called Dual Attention Graph Convolutional Network (DAGCN), to adaptively integrate local features with their global dependencies. Specifically, we append two types of attention modules on top of GCN, which model the semantic interdependencies in spatial and relational dimensions respectively. The position attention module selectively aggregates the feature at each position by a weighted sum of the features at all positions of nodes internal features. Meanwhile, the relation attention module selectively emphasizes interdependent node relations by integrating associated features among all nodes. We sum the outputs of the two attention modules and use reinforcement learning to predict the classification of nodes relationship to further improve feature representation which contributes to more precise extraction results. The results on the TACRED and SemEval datasets show that the model can obtain more useful information for relational extraction tasks, and achieve better performances on various evaluation indexes.

Adaptive Image Compression Using GAN Based Semantic-Perceptual Residual Compensation

Ruojing Wang, Zitang Sun, Sei-Ichiro Kamata, Weili Chen

Responsive image

Auto-TLDR; Adaptive Image Compression using GAN based Semantic-Perceptual Residual Compensation

Slides Poster Similar

Image compression is a basic task in image processing. In this paper, We present an adaptive image compression algorithm that relies on GAN based semantic-perceptual residual compensation, which is available to offer visually pleasing reconstruction at a low bitrate. Our method adopt an U-shaped encoding and decoding structure accompanied by a well-designed dense residual connection with strip pooling module to improve the original auto-encoder. Besides, we introduce the idea of adversarial learning by introducing a discriminator thus constructed a complete GAN. To improve the coding efficiency, we creatively designed an adaptive semantic-perception residual compensation block based on Grad-CAM algorithm. In the improvement of the quantizer, we embed the method of soft-quantization so as to solve the problem to some extent that back propagation process is irreversible. Simultaneously, we use the latest FLIF lossless compression algorithm and BPG vector compression algorithm to perform deeper compression on the image. More importantly experimental results including PSNR, MS-SSIM demonstrate that the proposed approach outperforms the current state-of-the-art image compression methods.

Picture-To-Amount (PITA): Predicting Relative Ingredient Amounts from Food Images

Jiatong Li, Fangda Han, Ricardo Guerrero, Vladimir Pavlovic

Responsive image

Auto-TLDR; PITA: A Deep Learning Architecture for Predicting the Relative Amount of Ingredients from Food Images

Slides Poster Similar

Increased awareness of the impact of food consumption on health and lifestyle today has given rise to novel data-driven food analysis systems. Although these systems may recognize the ingredients, a detailed analysis of their amounts in the meal, which is paramount for estimating the correct nutrition, is usually ignored. In this paper, we study the novel and challenging problem of predicting the relative amount of each ingredient from a food image. We propose PITA, the Picture-to-Amount deep learning architecture to solve the problem. More specifically, we predict the ingredient amounts using a domain-driven Wasserstein loss from image-to-recipe cross-modal embeddings learned to align the two views of food data. Experiments on a dataset of recipes collected from the Internet show the model generates promising results and improves the baselines on this challenging task.

Attentive Part-Aware Networks for Partial Person Re-Identification

Lijuan Huo, Chunfeng Song, Zhengyi Liu, Zhaoxiang Zhang

Responsive image

Auto-TLDR; Part-Aware Learning for Partial Person Re-identification

Slides Poster Similar

Partial person re-identification (re-ID) refers to re-identify a person through occluded images. It suffers from two major challenges, i.e., insufficient training data and incomplete probe image. In this paper, we introduce an automatic data augmentation module and a part-aware learning method for partial re-identification. On the one hand, we adopt the data augmentation to enhance the training data and help learns more stabler partial features. On the other hand, we intuitively find that the partial person images usually have fixed percentages of parts, therefore, in partial person re-id task, the probe image could be cropped from the pictures and divided into several different partial types following fixed ratios. Based on the cropped images, we propose the Cropping Type Consistency (CTC) loss to classify the cropping types of partial images. Moreover, in order to help the network better fit the generated and cropped data, we incorporate the Block Attention Mechanism (BAM) into the framework for attentive learning. To enhance the retrieval performance in the inference stage, we implement cropping on gallery images according to the predicted types of probe partial images. Through calculating feature distances between the partial image and the cropped holistic gallery images, we can recognize the right person from the gallery. To validate the effectiveness of our approach, we conduct extensive experiments on the partial re-ID benchmarks and achieve state-of-the-art performance.

Multi-Modal Contextual Graph Neural Network for Text Visual Question Answering

Yaoyuan Liang, Xin Wang, Xuguang Duan, Wenwu Zhu

Responsive image

Auto-TLDR; Multi-modal Contextual Graph Neural Network for Text Visual Question Answering

Slides Poster Similar

Text visual question answering (TextVQA) targets at answering the question related to texts appearing in the given images, posing more challenges than VQA by requiring a deeper recognition and understanding of various shapes of human-readable scene texts as well as their meanings in different contexts. Existing works on TextVQA suffer from two weaknesses: i) scene texts and non-textual objects are processed separately and independently without considering their mutual interactions during the question understanding and answering process, ii) scene texts are encoded only through word embeddings without taking the corresponding visual appearance features as well as their potential relationships with other non-textual objects in the images into account. To overcome the weakness of exiting works, we propose a novel multi-modal contextual graph neural network (MCG) model for TextVQA. The proposed MCG model can capture the relationships between visual features of scene texts and non-textual objects in the given images as well as utilize richer sources of multi-modal features to improve the model performance. In particular, we encode the scene texts into richer features containing textual, visual and positional features, then model the visual relations between scene texts and non-textual objects through a contextual graph neural network. Our extensive experiments on real-world dataset demonstrate the advantages of the proposed MCG model over baseline approaches.

Attention-Based Deep Metric Learning for Near-Duplicate Video Retrieval

Kuan-Hsun Wang, Chia Chun Cheng, Yi-Ling Chen, Yale Song, Shang-Hong Lai

Responsive image

Auto-TLDR; Attention-based Deep Metric Learning for Near-duplicate Video Retrieval

Slides Similar

Near-duplicate video retrieval (NDVR) is an important and challenging problem due to the increasing amount of videos uploaded to the Internet. In this paper, we propose an attention-based deep metric learning method for NDVR. Our method is based on well-established principles: We leverage two-stream networks to combine RGB and optical flow features, and incorporate an attention module to effectively deal with distractor frames commonly observed in near duplicate videos. We further aggregate the features corresponding to multiple video segments to enhance the discriminative power. The whole system is trained using a deep metric learning objective with a Siamese architecture. Our experiments show that the attention module helps eliminate redundant and noisy frames, while focusing on visually relevant frames for solving NVDR. We evaluate our approach on recent large-scale NDVR datasets, CC_WEB_VIDEO, VCDB, FIVR and SVD. To demonstrate the generalization ability of our approach, we report results in both within- and cross-dataset settings, and show that the proposed method significantly outperforms state-of-the-art approaches.

Context Visual Information-Based Deliberation Network for Video Captioning

Min Lu, Xueyong Li, Caihua Liu

Responsive image

Auto-TLDR; Context visual information-based deliberation network for video captioning

Slides Poster Similar

Video captioning is to automatically and accurately generate a textual description for a video. The typical methods following the encoder-decoder architecture directly utilized hidden states to predict words. Nevertheless, these methods did not amend the inaccurate hidden states before feeding those states into word prediction. This led to a cascade of errors on generating word by word. In this paper, the context visual information-based deliberation network is proposed, abbreviated as CVI-DelNet. Its key idea is to introduce the deliberator into the encoder-decoder framework. The encoder-decoder firstly generates a raw hidden state sequence. Unlike the existing methods, the raw hidden state is no more directly used for word prediction but is fed into the deliberator to generate the refined hidden state. The words are then predicted according to the refined hidden states and the contextual visual features. Results on two datasets shows that the proposed method significantly outperforms the baselines.

Attentive Visual Semantic Specialized Network for Video Captioning

Jesus Perez-Martin, Benjamin Bustos, Jorge Pérez

Responsive image

Auto-TLDR; Adaptive Visual Semantic Specialized Network for Video Captioning

Slides Poster Similar

As an essential high-level task of video understanding topic, automatically describing a video with natural language has recently gained attention as a fundamental challenge in computer vision. Previous models for video captioning have several limitations, such as the existence of gaps in current semantic representations and the inexpressibility of the generated captions. To deal with these limitations, in this paper, we present a new architecture that we callAttentive Visual Semantic Specialized Network(AVSSN), which is an encoder-decoder model based on our Adaptive Attention Gate and Specialized LSTM layers. This architecture can selectively decide when to use visual or semantic information into the text generation process. The adaptive gate makes the decoder to automatically select the relevant information for providing a better temporal state representation than the existing decoders. Besides, the model is capable of learning to improve the expressiveness of generated captions attending to their length, using a sentence-length-related loss function. We evaluate the effectiveness of the proposed approach on the Microsoft Video Description(MSVD) and the Microsoft Research Video-to-Text (MSR-VTT) datasets, achieving state-of-the-art performance with several popular evaluation metrics: BLEU-4, METEOR, CIDEr, and ROUGE_L.

Sketch-SNet: Deeper Subdivision of Temporal Cues for Sketch Recognition

Yizhou Tan, Lan Yang, Honggang Zhang

Responsive image

Auto-TLDR; Sketch Recognition using Invariable Structural Feature and Drawing Habits Feature

Slides Poster Similar

Sketch recognition is a central task in sketchrelated researches. Different from the natural image, the sparse pixel distribution of sketch destroys the visual texture which encourages researchers to explore the temporal information of sketch. With the release of million-scale datasets, we explore the invariable structure of sketch and specific order of strokes in sketch. Prior works based on Recurrent Neural Network (RNN) trend to output different features with changed stroke orders. In particular, we adopt a novel method by employing a Graph Convolutional Network (GCN) to extract invariable structural feature under any orders of strokes. Compared to traditional comprehension of sketch, we further split the temporal information of sketch into two types of feature (invariable structural feature (ISF) and drawing habits feature (DHF)) which aim to reduce the confusion in temporal information. We propose a two-branch GCN-RNN network to extract two types of feature respectively, termed Sketch-SNet. The GCN branch is encouraged to extract the ISF through receiving various shuffled strokes of an input sketch. The RNN branch takes the original input to extract DHF by learning the pattern of strokes’ order. Meanwhile, we introduce semantic information to generate soft-labels owing to the high abstractness of sketch. Extensive experiments on the Quick-Draw dataset demonstrate that our further subdivision of temporal information improves the performance of sketch recognition which surpasses state-of-the-art by a large margin.

Cross-Lingual Text Image Recognition Via Multi-Task Sequence to Sequence Learning

Zhuo Chen, Fei Yin, Xu-Yao Zhang, Qing Yang, Cheng-Lin Liu

Responsive image

Auto-TLDR; Cross-Lingual Text Image Recognition with Multi-task Learning

Slides Poster Similar

This paper considers recognizing texts shown in a source language and translating into a target language, without generating the intermediate source language text image recognition results. We call this problem Cross-Lingual Text Image Recognition (CLTIR). To solve this problem, we propose a multi-task system containing a main task of CLTIR and an auxiliary task of Mono-Lingual Text Image Recognition (MLTIR) simultaneously. Two different sequence to sequence learning methods, a convolution based attention model and a BLSTM model with CTC, are adopted for these tasks respectively. We evaluate the system on a newly collected Chinese-English bilingual movie subtitle image dataset. Experimental results demonstrate the multi-task learning framework performs superiorly in both languages.

A CNN-RNN Framework for Image Annotation from Visual Cues and Social Network Metadata

Tobia Tesan, Pasquale Coscia, Lamberto Ballan

Responsive image

Auto-TLDR; Context-Based Image Annotation with Multiple Semantic Embeddings and Recurrent Neural Networks

Slides Poster Similar

Images represent a commonly used form of visual communication among people. Nevertheless, image classification may be a challenging task when dealing with unclear or non-common images needing more context to be correctly annotated. Metadata accompanying images on social-media represent an ideal source of additional information for retrieving proper neighborhoods easing image annotation task. To this end, we blend visual features extracted from neighbors and their metadata to jointly leverage context and visual cues. Our models use multiple semantic embeddings to achieve the dual objective of being robust to vocabulary changes between train and test sets and decoupling the architecture from the low-level metadata representation. Convolutional and recurrent neural networks (CNNs-RNNs) are jointly adopted to infer similarity among neighbors and query images. We perform comprehensive experiments on the NUS-WIDE dataset showing that our models outperform state-of-the-art architectures based on images and metadata, and decrease both sensory and semantic gaps to better annotate images.

TAAN: Task-Aware Attention Network for Few-Shot Classification

Zhe Wang, Li Liu, Fanzhang Li

Responsive image

Auto-TLDR; TAAN: Task-Aware Attention Network for Few-Shot Classification

Slides Poster Similar

Few-shot classification aims to recognize unlabeled samples from unseen classes given only a few labeled samples.Current approaches of few-shot learning usually employ a metriclearning framework to learn a feature similarity comparison between a query (test) example and the few support (training) examples. However, these approaches all extract features from samples independently without looking at the entire task as a whole, and so fail to provide an enough discrimination to features. Moreover, the existing approaches lack the ability to select the most relevant features for the task at hand. In this work, we propose a novel algorithm called Task-Aware Attention Network (TAAN) to address the above problems in few-shot classification. By inserting a Task-Relevant Channel Attention Module into metric-based few-shot learners, TAAN generates channel attentions for each sample by aggregating the context of the entire support set and identifies the most relevant features for similarity comparison. The experiment demonstrates that TAAN is competitive in overall performance comparing to the recent state-of-the-art systems and improves the performance considerably over baseline systems on both mini-ImageNet and tiered-ImageNet benchmarks.

SL-DML: Signal Level Deep Metric Learning for Multimodal One-Shot Action Recognition

Raphael Memmesheimer, Nick Theisen, Dietrich Paulus

Responsive image

Auto-TLDR; One-Shot Action Recognition using Metric Learning

Slides Similar

Recognizing an activity with a single reference sample using metric learning approaches is a promising research field. The majority of few-shot methods focus on object recognition or face-identification. We propose a metric learning approach to reduce the action recognition problem to a nearest neighbor search in embedding space. We encode signals into images and extract features using a deep residual CNN. Using triplet loss, we learn a feature embedding. The resulting encoder transforms features into an embedding space in which closer distances encode similar actions while higher distances encode different actions. Our approach is based on a signal level formulation and remains flexible across a variety of modalities. It further outperforms the baseline on the large scale NTU RGB+D 120 dataset for the One-Shot action recognition protocol by \ntuoneshotimpro%. With just 60% of the training data, our approach still outperforms the baseline approach by \ntuoneshotimproreduced%. With 40% of the training data, our approach performs comparably well as the second follow up. Further, we show that our approach generalizes well in experiments on the UTD-MHAD dataset for inertial, skeleton and fused data and the Simitate dataset for motion capturing data. Furthermore, our inter-joint and inter-sensor experiments suggest good capabilities on previously unseen setups.

Price Suggestion for Online Second-Hand Items

Liang Han, Zhaozheng Yin, Zhurong Xia, Li Guo, Mingqian Tang, Rong Jin

Responsive image

Auto-TLDR; An Intelligent Price Suggestion System for Online Second-hand Items

Slides Poster Similar

This paper describes an intelligent price suggestion system for online second-hand listings. In contrast to conventional pricing strategies which are employed to a large number of identical products, or to non-identical but similar products such as homes on Airbnb, the proposed system provides price suggestions for online second-hand items which are non-identical and fall into numerous different categories. Moreover, simplifying the item listing process for users is taken into consideration when designing the price suggestion system. Specifically, we design a truncate loss to train a vision-based price suggestion module which mainly takes some vision-based features as input to first classify whether an uploaded item image is qualified for price suggestion, and then offer price suggestions for items with qualified images. For the items with unqualified images, we encourage users to input some text descriptions of the items, and with the text descriptions, we design a multimodal item retrieval module to offer price suggestions. Extensive experiments demonstrate the effectiveness of the proposed system.

RWMF: A Real-World Multimodal Foodlog Database

Pengfei Zhou, Cong Bai, Kaining Ying, Jie Xia, Lixin Huang

Responsive image

Auto-TLDR; Real-World Multimodal Foodlog: A Real-World Foodlog Database for Diet Assistant

Slides Poster Similar

With the increasing health concerns on diet, it's worthwhile to develop an intelligent assistant that can help users eat healthier. Such assistants can automatically give personal advice for the users' diet and generate health reports about eating on a regular basis. To boost the research on such diet assistant, we establish a real-world foodlog database using various methods such as filter, cluster and graph convolutional network. This database is built based on real-world lifelog and medical data, which is named as Real-World Multimodal Foodlog (RWMF). It contains 7500 multimodal pairs, and each pair consists of a food image paired with a line of personal biometrics data (such as Blood Glucose) and a textual food description of food composition paired with a line of food nutrition data. In this paper, we present the detailed procedures for setting up the database. We evaluate the performance of RWMF using different food classification and cross-modal retrieval approaches. We also test the performance of multimodal fusion on RWMF through ablation experiments. The experimental results show that the RWMF database is quite challenging and can be widely used to evaluate the performance of food analysis methods based on multimodal data.