More Correlations Better Performance: Fully Associative Networks for Multi-Label Image Classification

Yaning Li, Liu Yang

Responsive image

Auto-TLDR; Fully Associative Network for Fully Exploiting Correlation Information in Multi-Label Classification

Slides Poster

Recent researches demonstrate that correlation modeling plays a key role in high-performance multi-label classification methods. However, existing methods do not take full advantage of correlation information, especially correlations in feature and label spaces of each image, which limits the performance of correlation-based multi-label classification methods. With more correlations considered, in this study, a Fully Associative Network (FAN) is proposed for fully exploiting correlation information, which involves both visual feature and label correlations. Specifically, FAN introduces a robust covariance pooling to summarize convolution features as global image representation for capturing feature correlation in the multi-label task. Moreover, it constructs an effective label correlation matrix based on a re-weighted scheme, which is fed into a graph convolution network for capturing label correlation. Then, correlation between covariance representations (i.e., feature correlation ) and the outputs of GCN (i.e., label correlation) are modeled for final prediction. Experimental results on two datasets illustrate the effectiveness and efficiency of our proposed FAN compared with state-of-the-art methods.

Similar papers

Object Detection Using Dual Graph Network

Shengjia Chen, Zhixin Li, Feicheng Huang, Canlong Zhang, Huifang Ma

Responsive image

Auto-TLDR; A Graph Convolutional Network for Object Detection with Key Relation Information

Slides Similar

Most object detection methods focus only on the local information near the region proposal and ignore the object's global semantic relation and local spatial relation information, resulting in limited performance. To capture and explore these important relations, we propose a detection method based on a graph convolutional network (GCN). Two independent relation graph networks are used to obtain the global semantic information of the object in labels and the local spatial information in images. Semantic relation networks can implicitly acquire global knowledge, and by constructing a directed graph on the dataset, each node is represented by the word embedding of labels and then sent to the GCN to obtain high-level semantic representation. The spatial relation network encodes the relation by the positional relation module and the visual connection module, and enriches the object features through local key information from objects. The feature representation is further improved by aggregating the outputs of the two networks. Instead of directly disseminating visual features in the network, the dual-graph network explores more advanced feature information, giving the detector the ability to obtain key relations in labels and region proposals. Experiments on the PASCAL VOC and MS COCO datasets demonstrate that key relation information significantly improve the performance of detection with better ability to detect small objects and reasonable boduning box. The results on COCO dataset demonstrate our method obtains around 32.3% improvement on AP in terms of small objects.

Multi-Order Feature Statistical Model for Fine-Grained Visual Categorization

Qingtao Wang, Ke Zhang, Shaoli Huang, Lianbo Zhang, Jin Fan

Responsive image

Auto-TLDR; Multi-Order Feature Statistical Method for Fine-Grained Visual Categorization

Slides Poster Similar

Fine-grained visual categorization aims to learn a robust image representation modeling subtle differences from similar categories. Existing methods in this field tackle the problem by designing complex frameworks, which produce high-level features by performing first-order or second-order pooling. Despite the impressive performance achieved by these strategies, the single-order networks only carry linear or non-linear information of the last convolutional layer, neglecting the fact that feature from different orders are mutually complementary. In this paper, we propose a Multi-Order Feature Statistical Method (MOFS), which learns fine-grained features characterizing multiple orders. Specifically, the MOFS consists of two sub-modules: (i) a first-order module modeling both mid-level and high-level features. (ii) a covariance feature statistical module capturing high-order features. By deploying these two sub-modules on the top of existing backbone networks, MOFS simultaneously captures multi-level of discrimative patters including local, global and co-related patters. We evaluate the proposed method on three challenging benchmarks, namely CUB-200-2011, Stanford Cars, and FGVC-Aircraft. Compared with state-of-the-art methods, experiments results exhibit superior performance in recognizing fine-grained objects

Boundary-Aware Graph Convolution for Semantic Segmentation

Hanzhe Hu, Jinshi Cui, Jinshi Hongbin Zha

Responsive image

Auto-TLDR; Boundary-Aware Graph Convolution for Semantic Segmentation

Slides Poster Similar

Recent works have made great progress in semantic segmentation by exploiting contextual information in a local or global manner with dilated convolutions, pyramid pooling or self-attention mechanism. However, few works have focused on harvesting boundary information to improve the segmentation performance. In order to enhance the feature similarity within the object and keep discrimination from other objects, we propose a boundary-aware graph convolution (BGC) module to propagate features within the object. The graph reasoning is performed among pixels of the same object apart from the boundary pixels. Based on the proposed BGC module, we further introduce the Boundary-aware Graph Convolution Network(BGCNet), which consists of two main components including a basic segmentation network and the BGC module, forming a coarse-to-fine paradigm. Specifically, the BGC module takes the coarse segmentation feature map as node features and boundary prediction to guide graph construction. After graph convolution, the reasoned feature and the input feature are fused together to get the refined feature, producing the refined segmentation result. We conduct extensive experiments on three popular semantic segmentation benchmarks including Cityscapes, PASCAL VOC 2012 and COCO Stuff, and achieve state-of-the-art performance on all three benchmarks.

Zero-Shot Text Classification with Semantically Extended Graph Convolutional Network

Tengfei Liu, Yongli Hu, Junbin Gao, Yanfeng Sun, Baocai Yin

Responsive image

Auto-TLDR; Semantically Extended Graph Convolutional Network for Zero-shot Text Classification

Slides Poster Similar

As a challenging task of Natural Language Processing(NLP), zero-shot text classification has attracted more and more attention recently. It aims to detect classes that the model has never seen in the training set. For this purpose, a feasible way is to construct connection between the seen and unseen classes by semantic extension and classify the unseen classes by information propagation over the connection. Although many related zero-shot text classification methods have been exploited, how to realize semantic extension properly and propagate information effectively is far from solved. In this paper, we propose a novel zero-shot text classification method called Semantically Extended Graph Convolutional Network (SEGCN). In the proposed method, the semantic category knowledge from ConceptNet is utilized to semantic extension for linking seen classes to unseen classes and constructing a graph of all classes. Then, we build upon Graph Convolutional Network (GCN) for predicting the textual classifier for each category, which transfers the category knowledge by the convolution operators on the constructed graph and is trained in a semi-supervised manner using the samples of the seen classes. The experimental results on Dbpedia and 20newsgroup datasets show that our method outperforms the state of the art zero-shot text classification methods.

Privacy Attributes-Aware Message Passing Neural Network for Visual Privacy Attributes Classification

Hanbin Hong, Wentao Bao, Yuan Hong, Yu Kong

Responsive image

Auto-TLDR; Privacy Attributes-Aware Message Passing Neural Network for Visual Privacy Attribute Classification

Slides Poster Similar

Visual Privacy Attribute Classification (VPAC) identifies privacy information leakage via social media images. These images containing privacy attributes such as skin color, face or gender are classified into multiple privacy attribute categories in VPAC. With limited works in this task, current methods often extract features from images and simply classify the extracted feature into multiple privacy attribute classes. The dependencies between privacy attributes, e.g., skin color and face typically co-exist in the same image, are usually ignored in classification, which causes performance degradation in VPAC. In this paper, we propose a novel end-to-end Privacy Attributes-aware Message Passing Neural Network (PA-MPNN) to address VPAC. Privacy attributes are considered as nodes on a graph and an MPNN is introduced to model the privacy attribute dependencies. To generate representative features for privacy attribute nodes, a class-wise encoder-decoder is proposed to learn a latent space for each attribute. An attention mechanism with multiple correlation matrices is also introduced in MPNN to learn the privacy attributes graph automatically. Experimental results on the Privacy Attribute Dataset demonstrate that our framework achieves better performance than state-of-the-art methods on visual privacy attributes classification.

Label Incorporated Graph Neural Networks for Text Classification

Yuan Xin, Linli Xu, Junliang Guo, Jiquan Li, Xin Sheng, Yuanyuan Zhou

Responsive image

Auto-TLDR; Graph Neural Networks for Semi-supervised Text Classification

Slides Poster Similar

Graph Neural Networks (GNNs) have achieved great success on graph-structured data, and their applications on traditional data structures such as natural language processing and semi-supervised text classification have been extensively explored in recent years. While previous works only consider the text information while building the graph, heterogeneous information such as labels is ignored. In this paper, we consider to incorporate the label information while building the graph by adding text-label-text paths, through which the supervision information will propagate among the graph more directly. Specifically, we treat labels as nodes in the graph which also contains text and word nodes, and then connect labels with texts belonging to that label. Through graph convolutions, label embeddings are jointly learned with text embeddings in the same latent semantic space. The newly incorporated label nodes will facilitate learning more accurate text embeddings by introducing the label information, and thus benefit the downstream text classification tasks. Extensive results on several benchmark datasets show that the proposed framework outperforms baseline methods by a significant margin.

Semantic Bilinear Pooling for Fine-Grained Recognition

Xinjie Li, Chun Yang, Song-Lu Chen, Chao Zhu, Xu-Cheng Yin

Responsive image

Auto-TLDR; Semantic bilinear pooling for fine-grained recognition with hierarchical label tree

Slides Poster Similar

Naturally, fine-grained recognition, e.g., vehicle identification or bird classification, has specific hierarchical labels, where fine categories are always harder to be classified than coarse categories. However, most of the recent deep learning based methods neglect the semantic structure of fine-grained objects and do not take advantage of the traditional fine-grained recognition techniques (e.g. coarse-to-fine classification). In this paper, we propose a novel framework with a two-branch network (coarse branch and fine branch), i.e., semantic bilinear pooling, for fine-grained recognition with a hierarchical label tree. This framework can adaptively learn the semantic information from the hierarchical levels. Specifically, we design a generalized cross-entropy loss for the training of the proposed framework to fully exploit the semantic priors via considering the relevance between adjacent levels and enlarge the distance between samples of different coarse classes. Furthermore, our method leverages only the fine branch when testing so that it adds no overhead to the testing time. Experimental results show that our proposed method achieves state-of-the-art performance on four public datasets.

Context for Object Detection Via Lightweight Global and Mid-Level Representations

Mesut Erhan Unal, Adriana Kovashka

Responsive image

Auto-TLDR; Context-Based Object Detection with Semantic Similarity

Slides Poster Similar

We propose an approach for explicitly capturing context in object detection. We model visual and geometric relationships between object regions, but also model the global scene as a first-class participant. In contrast to prior approaches, both the context we rely on, as well as our proposed mechanism for belief propagation over regions, is lightweight. We also experiment with capturing similarities between regions at a semantic level, by modeling class co-occurrence and linguistic similarity between class names. We show that our approach significantly outperforms Faster R-CNN, and performs competitively with a much more costly approach that also models context.

Second-Order Attention Guided Convolutional Activations for Visual Recognition

Shannan Chen, Qian Wang, Qiule Sun, Bin Liu, Jianxin Zhang, Qiang Zhang

Responsive image

Auto-TLDR; Second-order Attention Guided Network for Convolutional Neural Networks for Visual Recognition

Slides Poster Similar

Recently, modeling deep convolutional activations by the global second-order pooling has shown great advance on visual recognition tasks. However, most of the existing deep second-order statistical models mainly compute second-order statistics of activations of the last convolutional layer as image representations, and they seldom introduce second-order statistics into earlier layers to better fit network topology, thus limiting the representational ability to a certain extent. Motivated by the flexibility of attention blocks that are commonly plugged into intermediate layers of deep convolutional networks (ConvNets), this work makes an attempt to combine deep second-order statistics with attention mechanisms in ConvNets, and further proposes a novel Second-order Attention Guided Network (SoAG-Net) for visual recognition. More specifically, SoAG-Net involves several SoAG modules seemingly inserted into intermediate layers of the network, in which SoAG collects second-order statistics of convolutional activations by polynomial kernel approximation to predict channel-wise attention maps utilized for guiding the learning of convolutional activations through tensor scaling along channel dimension. SoAG improves the nonlinearity of ConvNets and enables ConvNets to fit more complicated distribution of convolutional activations. Experiment results on three commonly used datasets illuminate that SoAG-Net outperforms its counterparts and achieves competitive performance with state-of-the-art models under the same backbone.

Exploiting Knowledge Embedded Soft Labels for Image Recognition

Lixian Yuan, Riquan Chen, Hefeng Wu, Tianshui Chen, Wentao Wang, Pei Chen

Responsive image

Auto-TLDR; A Soft Label Vector for Image Recognition

Slides Poster Similar

Objects from correlated classes usually share highly similar appearances while objects from uncorrelated classes are very different. Most of current image recognition works treat each class independently, which ignores these class correlations and inevitably leads to sub-optimal performance in many cases. Fortunately, object classes inherently form a hierarchy with different levels of abstraction and this hierarchy encodes rich correlations among different classes. In this work, we utilize a soft label vector that encodes the prior knowledge of class correlations as extra regularization to train the image classifiers. Specifically, for each class, instead of simply using a one-hot vector, we assign a high value to its correlated classes and assign small values to those uncorrelated ones, thus generating knowledge embedded soft labels. We conduct experiments on both general and fine-grained image recognition benchmarks and demonstrate its superiority compared with existing methods.

GCNs-Based Context-Aware Short Text Similarity Model

Xiaoqi Sun

Responsive image

Auto-TLDR; Context-Aware Graph Convolutional Network for Text Similarity

Slides Poster Similar

Semantic textual similarity is a fundamental task in text mining and natural language processing (NLP), which has profound research value. The essential step for text similarity is text representation learning. Recently, researches have explored the graph convolutional network (GCN) techniques on text representation, since GCN does well in handling complex structures and preserving syntactic information. However, current GCN models are usually limited to very shallow layers due to the vanishing gradient problem, which cannot capture non-local dependency information of sentences. In this paper, we propose a GCNs-based context-aware (GCSTS) model that applies iterated GCN blocks to train deeper GCNs. Recurrently employing the same GCN block prevents over-fitting and provides broad effective input width. Combined with dense connections, GCSTS can be trained more deeply. Besides, we use dynamic graph structures in the block, which further extend the receptive field of each vertex in graphs, learning better sentence representations. Experiments show that our model outperforms existing models on several text similarity datasets, while also verify that GCNs-based text representation models can be trained in a deeper manner, rather than being trained in two or three layers.

Prior Knowledge about Attributes: Learning a More Effective Potential Space for Zero-Shot Recognition

Chunlai Chai, Yukuan Lou

Responsive image

Auto-TLDR; Attribute Correlation Potential Space Generation for Zero-Shot Learning

Slides Poster Similar

Zero-shot learning (ZSL) aims to recognize unseen classes accurately by learning seen classes and known attributes, but correlations in attributes were ignored by previous study which lead to classification results confused. To solve this problem, we build an Attribute Correlation Potential Space Generation (ACPSG) model which uses a graph convolution network and attribute correlation to generate a more discriminating potential space. Combining potential discrimination space and user-defined attribute space, we can better classify unseen classes. Our approach outperforms some existing state-of-the-art methods on several benchmark datasets, whether it is conventional ZSL or generalized ZSL.

Adaptive Word Embedding Module for Semantic Reasoning in Large-Scale Detection

Yu Zhang, Xiaoyu Wu, Ruolin Zhu

Responsive image

Auto-TLDR; Adaptive Word Embedding Module for Object Detection

Slides Poster Similar

In recent years, convolutional neural networks have achieved rapid development in the field of object detection. However, due to the imbalance of data, high costs in labor and uneven level of data labeling, the overall performance of the previous detection network has dropped sharply when dataset extended to the large-scale with hundreds and thousands categories. We present the Adaptive Word Embedding Module, extracting the adaptive semantic knowledge graph to reach semantic consistency within one image. Our method endows the ability to infer global semantic of detection networks without other attribute or relationship annotations. Compared with Faster RCNN, the algorithm on the MSCOCO dataset was significantly improved by 4.1%, and the mAP value has reached 32.8%. On the VG1000 dataset, it increased by 0.9% to 6.7% compared with Faster RCNN. Adaptive Word Embedding Module is lightweight, general-purpose and can be plugged into diverse detection networks. Code will be made available.

Efficient-Receptive Field Block with Group Spatial Attention Mechanism for Object Detection

Jiacheng Zhang, Zhicheng Zhao, Fei Su

Responsive image

Auto-TLDR; E-RFB: Efficient-Receptive Field Block for Deep Neural Network for Object Detection

Slides Poster Similar

Object detection has been paid rising attention in computer vision field. Convolutional Neural Networks (CNNs) extract high-level semantic features of images, which directly determine the performance of object detection. As a common solution, embedding integration modules into CNNs can enrich extracted features and thereby improve the performance. However, the instability and inconsistency of internal multiple branches exist in these modules. To address this problem, we propose a novel multibranch module called Efficient-Receptive Field Block (E-RFB), in which multiple levels of features are combined for network optimization. Specifically, by downsampling and increasing depth, the E-RFB provides sufficient RF. Second, in order to eliminate the inconsistency across different branches, a novel spatial attention mechanism, namely, Group Spatial Attention Module (GSAM) is proposed. The GSAM gradually narrows a feature map by channel grouping; thus it encodes the information between spatial and channel dimensions into the final attention heat map. Third, the proposed module can be easily joined in various CNNs to enhance feature representation as a plug-and-play component. With SSD-style detectors, our method halves the parameters of the original detection head and achieves high accuracy on the PASCAL VOC and MS COCO datasets. Moreover, the proposed method achieves superior performance compared with state-of-the-art methods based on similar framework.

Edge-Aware Graph Attention Network for Ratio of Edge-User Estimation in Mobile Networks

Jiehui Deng, Sheng Wan, Xiang Wang, Enmei Tu, Xiaolin Huang, Jie Yang, Chen Gong

Responsive image

Auto-TLDR; EAGAT: Edge-Aware Graph Attention Network for Automatic REU Estimation in Mobile Networks

Slides Poster Similar

Estimating the Ratio of Edge-Users (REU) is an important issue in mobile networks, as it helps the subsequent adjustment of loads in different cells. However, existing approaches usually determine the REU manually, which are experience-dependent and labor-intensive, and thus the estimated REU might be imprecise. Considering the inherited graph structure of mobile networks, in this paper, we utilize a graph-based deep learning method for automatic REU estimation, where the practical cells are deemed as nodes and the load switchings among them constitute edges. Concretely, Graph Attention Network (GAT) is employed as the backbone of our method due to its impressive generalizability in dealing with networked data. Nevertheless, conventional GAT cannot make full use of the information in mobile networks, since it only incorporates node features to infer the pairwise importance and conduct graph convolutions, while the edge features that are actually critical in our problem are disregarded. To accommodate this issue, we propose an Edge-Aware Graph Attention Network (EAGAT), which is able to fuse the node features and edge features for REU estimation. Extensive experimental results on two real-world mobile network datasets demonstrate the superiority of our EAGAT approach to several state-of-the-art methods.

MFI: Multi-Range Feature Interchange for Video Action Recognition

Sikai Bai, Qi Wang, Xuelong Li

Responsive image

Auto-TLDR; Multi-range Feature Interchange Network for Action Recognition in Videos

Slides Poster Similar

Short-range motion features and long-range dependencies are two complementary and vital cues for action recognition in videos, but it remains unclear how to efficiently and effectively extract these two features. In this paper, we propose a novel network to capture these two features in a unified 2D framework. Specifically, we first construct a Short-range Temporal Interchange (STI) block, which contains a Channels-wise Temporal Interchange (CTI) module for encoding short-range motion features. Then a Graph-based Regional Interchange (GRI) module is built to present long-range dependencies using graph convolution. Finally, we replace original bottleneck blocks in the ResNet with STI blocks and insert several GRI modules between STI blocks, to form a Multi-range Feature Interchange (MFI) Network. Practically, extensive experiments are conducted on three action recognition datasets (i.e., Something-Something V1, HMDB51, and UCF101), which demonstrate that the proposed MFI network achieves impressive results with very limited computing cost.

VSR++: Improving Visual Semantic Reasoning for Fine-Grained Image-Text Matching

Hui Yuan, Yan Huang, Dongbo Zhang, Zerui Chen, Wenlong Cheng, Liang Wang

Responsive image

Auto-TLDR; Improving Visual Semantic Reasoning for Fine-Grained Image-Text Matching

Slides Poster Similar

Image-text matching has made great progresses recently, but there still remains challenges in fine-grained matching. To deal with this problem, we propose an Improved Visual Semantic Reasoning model (VSR++), which jointly models 1) global alignment between images and texts and 2) local correspondence between regions and words in a unified framework. To exploit their complementary advantages, we also develop a suitable learning strategy to balance their relative importance. As a result, our model can distinguish image regions and text words in a fine-grained level, and thus achieves the current stateof-the-art performance on two benchmark datasets.

Sketch-SNet: Deeper Subdivision of Temporal Cues for Sketch Recognition

Yizhou Tan, Lan Yang, Honggang Zhang

Responsive image

Auto-TLDR; Sketch Recognition using Invariable Structural Feature and Drawing Habits Feature

Slides Poster Similar

Sketch recognition is a central task in sketchrelated researches. Different from the natural image, the sparse pixel distribution of sketch destroys the visual texture which encourages researchers to explore the temporal information of sketch. With the release of million-scale datasets, we explore the invariable structure of sketch and specific order of strokes in sketch. Prior works based on Recurrent Neural Network (RNN) trend to output different features with changed stroke orders. In particular, we adopt a novel method by employing a Graph Convolutional Network (GCN) to extract invariable structural feature under any orders of strokes. Compared to traditional comprehension of sketch, we further split the temporal information of sketch into two types of feature (invariable structural feature (ISF) and drawing habits feature (DHF)) which aim to reduce the confusion in temporal information. We propose a two-branch GCN-RNN network to extract two types of feature respectively, termed Sketch-SNet. The GCN branch is encouraged to extract the ISF through receiving various shuffled strokes of an input sketch. The RNN branch takes the original input to extract DHF by learning the pattern of strokes’ order. Meanwhile, we introduce semantic information to generate soft-labels owing to the high abstractness of sketch. Extensive experiments on the Quick-Draw dataset demonstrate that our further subdivision of temporal information improves the performance of sketch recognition which surpasses state-of-the-art by a large margin.

Constructing Geographic and Long-term Temporal Graph for Traffic Forecasting

Yiwen Sun, Yulu Wang, Kun Fu, Zheng Wang, Changshui Zhang, Jieping Ye

Responsive image

Auto-TLDR; GLT-GCRNN: Geographic and Long-term Temporal Graph Convolutional Recurrent Neural Network for Traffic Forecasting

Slides Poster Similar

Traffic forecasting influences various intelligent transportation system (ITS) services and is of great significance for user experience as well as urban traffic control. It is challenging due to the fact that the road network contains complex and time-varying spatial-temporal dependencies. Recently, deep learning based methods have achieved promising results by adopting graph convolutional network (GCN) to extract the spatial correlations and recurrent neural network (RNN) to capture the temporal dependencies. However, the existing methods often construct the graph only based on road network connectivity, which limits the interaction between roads. In this work, we propose Geographic and Long-term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN), a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or long-term temporal patterns. Extensive experiments on a real-world traffic state dataset validate the effectiveness of our method by showing that GLT-GCRNN outperforms the state-of-the-art methods in terms of different metrics.

Reinforcement Learning with Dual Attention Guided Graph Convolution for Relation Extraction

Zhixin Li, Yaru Sun, Suqin Tang, Canlong Zhang, Huifang Ma

Responsive image

Auto-TLDR; Dual Attention Graph Convolutional Network for Relation Extraction

Slides Poster Similar

To better learn the dependency relationship between nodes, we address the relationship extraction task by capturing rich contextual dependencies based on the attention mechanism, and using distributional reinforcement learning to generate optimal relation information representation. This method is called Dual Attention Graph Convolutional Network (DAGCN), to adaptively integrate local features with their global dependencies. Specifically, we append two types of attention modules on top of GCN, which model the semantic interdependencies in spatial and relational dimensions respectively. The position attention module selectively aggregates the feature at each position by a weighted sum of the features at all positions of nodes internal features. Meanwhile, the relation attention module selectively emphasizes interdependent node relations by integrating associated features among all nodes. We sum the outputs of the two attention modules and use reinforcement learning to predict the classification of nodes relationship to further improve feature representation which contributes to more precise extraction results. The results on the TACRED and SemEval datasets show that the model can obtain more useful information for relational extraction tasks, and achieve better performances on various evaluation indexes.

You Ought to Look Around: Precise, Large Span Action Detection

Ge Pan, Zhang Han, Fan Yu, Yonghong Song, Yuanlin Zhang, Han Yuan

Responsive image

Auto-TLDR; YOLA: Local Feature Extraction for Action Localization with Variable receptive field

Slides Similar

For the action localization task, pre-defined action anchors are the cornerstone of mainstream techniques. State-of-the-art models mostly rely on a dense segmenting scheme, where anchors are sampled uniformly over the temporal domain with a predefined set of scales. However, it is not sufficient because action duration varies greatly. Therefore, it is necessary for the anchors or proposals to have a variable receptive field. In this paper, we propose a method called YOLA (You Ought to Look Around) which includes three parts: 1) a robust backbone SPN-I3D for extracting spatio-temporal features. In this part, we employ a stronger backbone I3D with SPN (Segment Pyramid Network) instead of C3D to obtain multi-scale features; 2) a simple but useful feature fusion module named LFE (Local Feature Extraction). Compared with the fully connected layer and global average pooling, our LFE model is more advantageous for network to fit and fuse features. 3) a new feature segment aligning method called TPGC (Two Pathway Graph Convolution), which allows one proposal to leverage semantic features of adjacent proposals to update its content and make sure the proposals have a variable receptive field. YOLA add only a small overhead to the baseline network, and is easy to train in an end-to-end manner, running at a speed of 1097 fps. YOLA achieves a mAP of 58.3%, outperforming all existing models including both RGB-based and two stream on THUMOS'14, and achieves competitive results on ActivityNet 1.3.

A Novel Attention-Based Aggregation Function to Combine Vision and Language

Matteo Stefanini, Marcella Cornia, Lorenzo Baraldi, Rita Cucchiara

Responsive image

Auto-TLDR; Fully-Attentive Reduction for Vision and Language

Slides Poster Similar

The joint understanding of vision and language has been recently gaining a lot of attention in both the Computer Vision and Natural Language Processing communities, with the emergence of tasks such as image captioning, image-text matching, and visual question answering. As both images and text can be encoded as sets or sequences of elements - like regions and words - proper reduction functions are needed to transform a set of encoded elements into a single response, like a classification or similarity score. In this paper, we propose a novel fully-attentive reduction method for vision and language. Specifically, our approach computes a set of scores for each element of each modality employing a novel variant of cross-attention, and performs a learnable and cross-modal reduction, which can be used for both classification and ranking. We test our approach on image-text matching and visual question answering, building fair comparisons with other reduction choices, on both COCO and VQA 2.0 datasets. Experimentally, we demonstrate that our approach leads to a performance increase on both tasks. Further, we conduct ablation studies to validate the role of each component of the approach.

Multi-Graph Convolutional Network for Relationship-Driven Stock Movement Prediction

Jiexia Ye, Juanjuan Zhao, Kejiang Ye, Cheng-Zhong Xu

Responsive image

Auto-TLDR; Multi-GCGRU: A Deep Learning Framework for Stock Price Prediction with Cross Effect

Slides Poster Similar

Stock price movement prediction is commonly accepted as a very challenging task due to the volatile nature of financial markets. Previous works typically predict the stock price mainly based on its own information, neglecting the cross effect among involved stocks. However, it is well known that an individual stock price is correlated with prices of other stocks in complex ways. To take the cross effect into consideration, we propose a deep learning framework, called Multi-GCGRU, which comprises graph convolutional network (GCN) and gated recurrent units (GRU) to predict stock movement. Specifically, we first encode multiple relationships among stocks into graphs based on financial domain knowledge and utilize GCN to extract the cross effect based on the pre-defined graphs. The cross-correlation features produced by GCN are concatenated with historical records and fed into GRU to model the temporal pattern in stock price. To further get rid of prior knowledge, we explore an adaptive stock graph learned by data automatically. Experiments on two stock indexes in China market show that our model outperforms other baselines. Note that our model is rather feasible to incorporate more effective pre-defined stock relationships. What's more, it can also learn a data-driven relationship without any domain knowledge.

Open Set Domain Recognition Via Attention-Based GCN and Semantic Matching Optimization

Xinxing He, Yuan Yuan, Zhiyu Jiang

Responsive image

Auto-TLDR; Attention-based GCN and Semantic Matching Optimization for Open Set Domain Recognition

Slides Poster Similar

Open set domain recognition has got the attention in recent years. The task aims to specifically classify each sample in the practical unlabeled target domain, which consists of all known classes in the manually labeled source domain and target-specific unknown categories. The absence of annotated training data or auxiliary attribute information for unknown categories makes this task especially difficult. Moreover, exiting domain discrepancy in label space and data distribution further distracts the knowledge transferred from known classes to unknown classes. To address these issues, this work presents an end-to-end model based on attention-based GCN and semantic matching optimization, which first employs the attention mechanism to enable the central node to learn more discriminating representations from its neighbors in the knowledge graph. Moreover, a coarse-to-fine semantic matching optimization approach is proposed to progressively bridge the domain gap. Experimental results validate that the proposed model not only has superiority on recognizing the images of known and unknown classes, but also can adapt to various openness of the target domain.

Question-Agnostic Attention for Visual Question Answering

Moshiur R Farazi, Salman Hameed Khan, Nick Barnes

Responsive image

Auto-TLDR; Question-Agnostic Attention for Visual Question Answering

Slides Poster Similar

Visual Question Answering (VQA) models employ attention mechanisms to discover image locations that are most relevant for answering a specific question. For this purpose, several multimodal fusion strategies have been proposed, ranging from relatively simple operations (e.g., linear sum) to more complex ones (e.g., Block). The resulting multimodal representations define an intermediate feature space for capturing the interplay between visual and semantic features, that is helpful in selectively focusing on image content. In this paper, we propose a question-agnostic attention mechanism that is complementary to the existing question-dependent attention mechanisms. Our proposed model parses object instances to obtain an `object map' and applies this map on the visual features to generate Question-Agnostic Attention (QAA) features. In contrast to question-dependent attention approaches that are learned end-to-end, the proposed QAA does not involve question-specific training, and can be easily included in almost any existing VQA model as a generic light-weight pre-processing step, thereby adding minimal computation overhead for training. Further, when used in complement with the question-dependent attention, the QAA allows the model to focus on the regions containing objects that might have been overlooked by the learned attention representation. Through extensive evaluation on VQAv1, VQAv2 and TDIUC datasets, we show that incorporating complementary QAA allows state-of-the-art VQA models to perform better, and provides significant boost to simplistic VQA models, enabling them to performance on par with highly sophisticated fusion strategies.

Temporal Attention-Augmented Graph Convolutional Network for Efficient Skeleton-Based Human Action Recognition

Negar Heidari, Alexandros Iosifidis

Responsive image

Auto-TLDR; Temporal Attention Module for Efficient Graph Convolutional Network-based Action Recognition

Slides Poster Similar

Graph convolutional networks (GCNs) have been very successful in modeling non-Euclidean data structures, like sequences of body skeletons forming actions modeled as spatio-temporal graphs. Most GCN-based action recognition methods use deep feed-forward networks with high computational complexity to process all skeletons in an action. This leads to a high number of floating point operations (ranging from 16G to 100G FLOPs) to process a single sample, making their adoption in restricted computation application scenarios infeasible. In this paper, we propose a temporal attention module (TAM) for increasing the efficiency in skeleton-based action recognition by selecting the most informative skeletons of an action at the early layers of the network. We incorporate the TAM in a light-weight GCN topology to further reduce the overall number of computations. Experimental results on two benchmark datasets show that the proposed method outperforms with a large margin the baseline GCN-based method while having 2.9 times less number of computations. Moreover, it performs on par with the state-of-the-art with up to 9.6 times less number of computations.

Aggregating Object Features Based on Attention Weights for Fine-Grained Image Retrieval

Hongli Lin, Yongqi Song, Zixuan Zeng, Weisheng Wang

Responsive image

Auto-TLDR; DSAW: Unsupervised Dual-selection for Fine-Grained Image Retrieval

Similar

Object localization and local feature representation are key issues in fine-grained image retrieval. However, the existing unsupervised methods still need to be improved in these two aspects. For conquering these issues in a unified framework, a novel unsupervised scheme, named DSAW for short, is presented in this paper. Firstly, we proposed a dual-selection (DS) method, which achieves more accurate object localization by using adaptive threshold method to perform feature selection on local and global activation map in turn. Secondly, a novel and faster self-attention weights (AW) method is developed to weight local features by measuring their importance in the global context. Finally, we also evaluated the performance of the proposed method on five fine-grained image datasets and the results showed that our DSAW outperformed the existing best method.

Dual Path Multi-Modal High-Order Features for Textual Content Based Visual Question Answering

Yanan Li, Yuetan Lin, Hongrui Zhao, Donghui Wang

Responsive image

Auto-TLDR; TextVQA: An End-to-End Visual Question Answering Model for Text-Based VQA

Slides Similar

As a typical cross-modal problem, visual question answering (VQA) has received increasing attention from the communities of computer vision and natural language processing. Reading and reasoning about texts and visual contents in the images is a burgeoning and important research topic in VQA, especially for the visually impaired assistance applications. Given an image, it aims to predict an answer to a provided natural language question closely related to its textual contents. In this paper, we propose a novel end-to-end textual content based VQA model, which grounds question answering both on the visual and textual information. After encoding the image, question and recognized text words, it uses multi-modal factorized high-order modules and the attention mechanism to fuse question-image and question-text features respectively. The complex correlations among different features can be captured efficiently. To ensure the model's extendibility, it embeds candidate answers and recognized texts in a semantic embedding space and adopts semantic embedding based classifier to perform answer prediction. Extensive experiments on the newly proposed benchmark TextVQA demonstrate that the proposed model can achieve promising results.

G-FAN: Graph-Based Feature Aggregation Network for Video Face Recognition

He Zhao, Yongjie Shi, Xin Tong, Jingsi Wen, Xianghua Ying, Jinshi Hongbin Zha

Responsive image

Auto-TLDR; Graph-based Feature Aggregation Network for Video Face Recognition

Slides Poster Similar

In this paper, we propose a graph-based feature aggregation network (G-FAN) for video face recognition. Compared with the still image, video face recognition exhibits great challenges due to huge intra-class variability and high inter-class ambiguity. To address this problem, our G-FAN first uses a Convolutional Neural Network to extract deep features for every input face of a subject. Then, we build an affinity graph based on the relation between facial features and apply Graph Convolutional Network to generate fine-grained quality vectors for each frame. Finally, the features among multiple frames are adaptively aggregated into a discriminative vector to represent a video face. Different from previous works that take a single image as input, our G-FAN could utilize the correlation information between image pairs and aggregate a template of faces simultaneously. The experiments on video face recognition benchmarks, including YTF, IJB-A, and IJB-C show that: (i) G-FAN automatically learns to advocate high-quality frames while repelling low-quality ones. (ii) G-FAN significantly boosts recognition accuracy and outperforms other state-of-the-art aggregation methods.

Multi-Stage Attention Based Visual Question Answering

Aakansha Mishra, Ashish Anand, Prithwijit Guha

Responsive image

Auto-TLDR; Alternative Bi-directional Attention for Visual Question Answering

Poster Similar

Recent developments in the field of Visual Question Answering (VQA) have witnessed promising improvements in performance through contributions in attention based networks. Most such approaches have focused on unidirectional attention that leverage over attention from textual domain (question) on visual space. These approaches mostly focused on learning high-quality attention in the visual space. In contrast, this work proposes an alternating bi-directional attention framework. First, a question to image attention helps to learn the robust visual space embedding, and second, an image to question attention helps to improve the question embedding. This attention mechanism is realized in an alternating fashion i.e. question-to-image followed by image-to-question and is repeated for maximizing performance. We believe that this process of alternating attention generation helps both the modalities and leads to better representations for the VQA task. This proposal is benchmark on TDIUC dataset and against state-of-art approaches. Our ablation analysis shows that alternate attention is the key to achieve high performance in VQA.

Video-Based Facial Expression Recognition Using Graph Convolutional Networks

Daizong Liu, Hongting Zhang, Pan Zhou

Responsive image

Auto-TLDR; Graph Convolutional Network for Video-based Facial Expression Recognition

Slides Poster Similar

Facial expression recognition (FER), aiming to classify the expression present in the facial image or video, has attracted a lot of research interests in the field of artificial intelligence and multimedia. In terms of video based FER task, it is sensible to capture the dynamic expression variation among the frames to recognize facial expression. However, existing methods directly utilize CNN-RNN or 3D CNN to extract the spatial-temporal features from different facial units, instead of concentrating on a certain region during expression variation capturing, which leads to limited performance in FER. In our paper, we introduce a Graph Convolutional Network (GCN) layer into a common CNN-RNN based model for video-based FER. First, the GCN layer is utilized to learn more contributing facial expression features which concentrate on certain regions after sharing information between nodes those represent CNN extracted features. Then, a LSTM layer is applied to learn long-term dependencies among the GCN learned features to model the variation. In addition, a weight assignment mechanism is also designed to weight the output of different nodes for final classification by characterizing the expression intensities in each frame. To the best of our knowledge, it is the first time to use GCN in FER task. We evaluate our method on three widely-used datasets, CK+, Oulu-CASIA and MMI, and also one challenging wild dataset AFEW8.0, and the experimental results demonstrate that our method has superior performance to existing methods.

Kernel-based Graph Convolutional Networks

Hichem Sahbi

Responsive image

Auto-TLDR; Spatial Graph Convolutional Networks in Recurrent Kernel Hilbert Space

Slides Poster Similar

Learning graph convolutional networks (GCNs) is an emerging field which aims at generalizing deep learning to arbitrary non-regular domains. Most of the existing GCNs follow a neighborhood aggregation scheme, where the representation of a node is recursively obtained by aggregating its neighboring node representations using averaging or sorting operations. However, these operations are either ill-posed or weak to be discriminant or increase the number of training parameters and thereby the computational complexity and the risk of overfitting. In this paper, we introduce a novel GCN framework that achieves spatial graph convolution in a reproducing kernel Hilbert space. The latter makes it possible to design, via implicit kernel representations, convolutional graph filters in a high dimensional and more discriminating space without increasing the number of training parameters. The particularity of our GCN model also resides in its ability to achieve convolutions without explicitly realigning nodes in the receptive fields of the learned graph filters with those of the input graphs, thereby making convolutions permutation agnostic and well defined. Experiments conducted on the challenging task of skeleton-based action recognition show the superiority of the proposed method against different baselines as well as the related work.

VSB^2-Net: Visual-Semantic Bi-Branch Network for Zero-Shot Hashing

Xin Li, Xiangfeng Wang, Bo Jin, Wenjie Zhang, Jun Wang, Hongyuan Zha

Responsive image

Auto-TLDR; VSB^2-Net: inductive zero-shot hashing for image retrieval

Slides Poster Similar

Zero-shot hashing aims at learning hashing model from seen classes and the obtained model is capable of generalizing to unseen classes for image retrieval. Inspired by zero-shot learning, existing zero-shot hashing methods usually transfer the supervised knowledge from seen to unseen classes, by embedding the hamming space to a shared semantic space. However, this makes instances difficult to distinguish due to limited hashing bit numbers, especially for semantically similar unseen classes. We propose a novel inductive zero-shot hashing framework, i.e., VSB^2-Net, where both semantic space and visual feature space are embedded to the same hamming space instead. The reconstructive semantic relationships are established in the hamming space, preserving local similarity relationships and explicitly enlarging the discrepancy between semantic hamming vectors. A two-task architecture, comprising of classification module and visual feature reconstruction module, is employed to enhance the generalization and transfer abilities. Extensive evaluation results on several benchmark datasets demonstratethe superiority of our proposed method compared to several state-of-the-art baselines.

Recurrent Graph Convolutional Networks for Skeleton-Based Action Recognition

Guangming Zhu, Lu Yang, Liang Zhang, Peiyi Shen, Juan Song

Responsive image

Auto-TLDR; Recurrent Graph Convolutional Network for Human Action Recognition

Slides Poster Similar

Human action recognition is one of the challenging and active research fields due to its wide applications. Recently, graph convolutions for skeleton-based action recognition have attracted much attention. Generally, the adjacency matrices of the graph are fixed to the hand-crafted physical connectivity of the human joints, or learned adaptively via deep learining. The hand-crafted or learned adjacency matrices are fixed when processing each frame of an action sequence. However, the interactions of different subsets of joints may play a core role at different phases of an action. Therefore, it is reasonable to evolve the graph topology with time. In this paper, a recurrent graph convolution is proposed, in which the graph topology is evolved via a long short-term memory (LSTM) network. The proposed recurrent graph convolutional network (R-GCN) can recurrently learn the data-dependent graph topologies for different layers, different time steps and different kinds of actions. Experimental results on the NTU RGB+D and Kinetics-Skeleton datasets demonstrate the advantages of the proposed R-GCN.

A CNN-RNN Framework for Image Annotation from Visual Cues and Social Network Metadata

Tobia Tesan, Pasquale Coscia, Lamberto Ballan

Responsive image

Auto-TLDR; Context-Based Image Annotation with Multiple Semantic Embeddings and Recurrent Neural Networks

Slides Poster Similar

Images represent a commonly used form of visual communication among people. Nevertheless, image classification may be a challenging task when dealing with unclear or non-common images needing more context to be correctly annotated. Metadata accompanying images on social-media represent an ideal source of additional information for retrieving proper neighborhoods easing image annotation task. To this end, we blend visual features extracted from neighbors and their metadata to jointly leverage context and visual cues. Our models use multiple semantic embeddings to achieve the dual objective of being robust to vocabulary changes between train and test sets and decoupling the architecture from the low-level metadata representation. Convolutional and recurrent neural networks (CNNs-RNNs) are jointly adopted to infer similarity among neighbors and query images. We perform comprehensive experiments on the NUS-WIDE dataset showing that our models outperform state-of-the-art architectures based on images and metadata, and decrease both sensory and semantic gaps to better annotate images.

Using Scene Graphs for Detecting Visual Relationships

Anurag Tripathi, Siddharth Srivastava, Brejesh Lall, Santanu Chaudhury

Responsive image

Auto-TLDR; Relationship Detection using Context Aligned Scene Graph Embeddings

Slides Poster Similar

In this paper we solve the problem of detecting relationships between pairs of objects in an image. We develop spatially aware word embeddings using scene graphs and use joint feature representations containing visual, spatial and semantic embeddings from the input images to train a deep network on the task of relationship detection. Further, we propose to utilize context aligned scene graph embeddings from the train set, without requiring explicit availability of scene graphs at test time. We show that the proposed method outperforms the state-of-the-art methods for predicate detection and provides competing results on relationship detection. We also show the generalization ability of the proposed method by performing predictions under zero shot settings. Further, we also provide an exhaustive empirical evaluation on each component of the proposed network.

A Two-Stream Recurrent Network for Skeleton-Based Human Interaction Recognition

Qianhui Men, Edmond S. L. Ho, Shum Hubert P. H., Howard Leung

Responsive image

Auto-TLDR; Two-Stream Recurrent Neural Network for Human-Human Interaction Recognition

Slides Poster Similar

This paper addresses the problem of recognizing human-human interaction from skeletal sequences. Existing methods are mainly designed to classify single human action. Many of them simply stack the movement features of two characters to deal with human interaction, while neglecting the abundant relationships between characters. In this paper, we propose a novel two-stream recurrent neural network by adopting the geometric features from both single actions and interactions to describe the spatial correlations with different discriminative abilities. The first stream is constructed under pairwise joint distance (PJD) in a fully-connected mesh to categorize the interactions with explicit distance patterns. To better distinguish similar interactions, in the second stream, we combine PJD with the spatial features from individual joint positions using graph convolutions to detect the implicit correlations among joints, where the joint connections in the graph are adaptive for flexible correlations. After spatial modeling, each stream is fed to a bi-directional LSTM to encode two-way temporal properties. To take advantage of the diverse discriminative power of the two streams, we come up with a late fusion algorithm to combine their output predictions concerning information entropy. Experimental results show that the proposed framework achieves state-of-the-art performance on 3D and comparable performance on 2D interaction datasets. Moreover, the late fusion results demonstrate the effectiveness of improving the recognition accuracy compared with single streams.

Augmented Bi-Path Network for Few-Shot Learning

Baoming Yan, Chen Zhou, Bo Zhao, Kan Guo, Yang Jiang, Xiaobo Li, Zhang Ming, Yizhou Wang

Responsive image

Auto-TLDR; Augmented Bi-path Network for Few-shot Learning

Slides Poster Similar

Few-shot Learning (FSL) which aims to learn from few labeled training data is becoming a popular research topic, due to the expensive labeling cost in many real-world applications. One kind of successful FSL method learns to compare the testing (query) image and training (support) image by simply concatenating the features of two images and feeding it into the neural network. However, with few labeled data in each class, the neural network has difficulty in learning or comparing the local features of two images. Such simple image-level comparison may cause serious mis-classification. To solve this problem, we propose Augmented Bi-path Network (ABNet) for learning to compare both global and local features on multi-scales. Specifically, the salient patches are extracted and embedded as the local features for every image. Then, the model learns to augment the features for better robustness. Finally, the model learns to compare global and local features separately, \emph{i.e.}, in two paths, before merging the similarities. Extensive experiments show that the proposed ABNet outperforms the state-of-the-art methods. Both quantitative and visual ablation studies are provided to verify that the proposed modules lead to more precise comparison results.

PICK: Processing Key Information Extraction from Documents Using Improved Graph Learning-Convolutional Networks

Wenwen Yu, Ning Lu, Xianbiao Qi, Ping Gong, Rong Xiao

Responsive image

Auto-TLDR; PICK: A Graph Learning Framework for Key Information Extraction from Documents

Slides Poster Similar

Computer vision with state-of-the-art deep learning models have achieved huge success in the field of Optical Character Recognition (OCR) including text detection and recognition tasks recently. However, Key Information Extraction (KIE) from documents as the downstream task of OCR, having a large number of use scenarios in real-world, remains a challenge because documents not only have textual features extracting from OCR systems but also have semantic visual features that are not fully exploited and play a critical role in KIE. Too little work has been devoted to efficiently make full use of both textual and visual features of the documents. In this paper, we introduce PICK, a framework that is effective and robust in handling complex documents layout for KIE by combining graph learning with graph convolution operation, yielding a richer semantic representation containing the textual and visual features and global layout without ambiguity. Extensive experiments on real-world datasets have been conducted to show that our method outperforms baselines methods by significant margins.

On the Global Self-attention Mechanism for Graph Convolutional Networks

Chen Wang, Deng Chengyuan

Responsive image

Auto-TLDR; Global Self-Attention Mechanism for Graph Convolutional Networks

Slides Similar

Applying Global Self-Attention (GSA) mechanism over features has achieved remarkable success on Convolutional Neural Networks (CNNs). However, it is not clear if Graph Convolutional Networks (GCNs) can similarly benefit from such a technique. In this paper, inspired by the similarity between CNNs and GCNs, we study the impact of the Global Self-Attention mechanism on GCNs. We find that consistent with the intuition, the GSA mechanism allows GCNs to capture feature-based vertex relations regardless of edge connections; As a result, the GSA mechanism can introduce extra expressive power to the GCNs. Furthermore, we analyze the impacts of the GSA mechanism on the issues of overfitting and over-smoothing. We prove that the GSA mechanism can alleviate both the overfitting and the over-smoothing issues based on some recent technical developments. Experiments on multiple benchmark datasets illustrate both superior expressive power and less significant overfitting and over-smoothing problems for the GSA-augmented GCNs, which corroborate the intuitions and the theoretical results.

Human-Centric Parsing Network for Human-Object Interaction Detection

Guanyu Chen, Chong Chen, Zhicheng Zhao, Fei Su

Responsive image

Auto-TLDR; Human-Centric Parsing Network for Human-Object Interactions Detection

Slides Poster Similar

Human-object interactions detection is an essential task of image inference, but current methods can’t efficiently make use of global knowledge in the image. To tackle this challenge, in this paper, we propose a Human-Centric Parsing Network (HCPN), which integrates global structural knowledge to infer human-object interactions. In HCPN, a semantic parse graph is first constructed by binding human-object relationships, edge features and node features, where the detected human box in image is regarded as the center node and other detected boxes are linked to it. Second, based on the message passing mechanism, edge features and node features with the relation graph are updated and finally, HCPN predicts human-object interactions and associated locations by a readout function. We evaluate our model on V-COCO dataset, and a great improvement is achieved compared with state-of-the-art methods.

Learnable Higher-Order Representation for Action Recognition

Jie Shao, Xiangyang Xue

Responsive image

Auto-TLDR; Learningable Higher-Order Operations for Spatiotemporal Dynamics in Video Recognition

Similar

Capturing spatiotemporal dynamics is an essential topic in video recognition. In this paper, we present learnable higher-order operations as a generic family of building blocks for capturing spatiotemporal dynamics from RGB input video space. Similar to higher-order functions, the weights of higher-order operations are themselves derived from the data with learnable parameters. Classical architectures such as residual learning and network-in-network are first-order operations where weights are directly learned from the data. Higher-order operations make it easier to capture context-sensitive patterns, such as motion. Self-attention models are also higher-order operations, but the attention weights are mostly computed from an affine operation or dot product. The learnable higher-order operations can be more generic and flexible. Experimentally, we show that on the task of video recognition, our higher-order models can achieve results on par with or better than the existing state-of-the-art methods on Something-Something (V1 and V2), Kinetics and Charades datasets.

AOAM: Automatic Optimization of Adjacency Matrix for Graph Convolutional Network

Yuhang Zhang, Hongshuai Ren, Jiexia Ye, Xitong Gao, Yang Wang, Kejiang Ye, Cheng-Zhong Xu

Responsive image

Auto-TLDR; Adjacency Matrix for Graph Convolutional Network in Non-Euclidean Space

Slides Poster Similar

Graph Convolutional Network (GCN) is adopted to tackle the problem of the convolution operation in non-Euclidean space. Although previous works on GCN have made some progress, one of their limitations is that their input Adjacency Matrix (AM) is designed manually and requires domain knowledge, which is cumbersome, tedious and error-prone. In addition, entries of this fixed Adjacency Matrix are generally designed as binary values (i.e., ones and zeros) which can not reflect more complex relationship between nodes. However, many applications require a weighted and dynamic Adjacency Matrix instead of an unweighted and fixed Adjacency Matrix. To this end, there are few works focusing on designing a more flexible Adjacency Matrix. In this paper, we propose an end-to-end algorithm to improve the GCN performance by focusing on the Adjacency Matrix. We first provide a calculation method that called node information entropy to update the matrix. Then, we analyze the search strategy in a continuous space and introduce the Deep Deterministic Policy Gradient (DDPG) method to overcome the demerit of the discrete space search. Finally, we integrate the GCN and reinforcement learning into an end-to-end framework. Our method can automatically define the adjacency matrix without artificial knowledge. At the same time, the proposed approach can deal with any size of the matrix and provide a better value for the network. Four popular datasets are selected to evaluate the capability of our algorithm. The method in this paper achieves the state-of-the-art performance on Cora and Pubmed datasets, respectively, with the accuracy of 84.6% and 81.6%.

Multi-Modal Contextual Graph Neural Network for Text Visual Question Answering

Yaoyuan Liang, Xin Wang, Xuguang Duan, Wenwu Zhu

Responsive image

Auto-TLDR; Multi-modal Contextual Graph Neural Network for Text Visual Question Answering

Slides Poster Similar

Text visual question answering (TextVQA) targets at answering the question related to texts appearing in the given images, posing more challenges than VQA by requiring a deeper recognition and understanding of various shapes of human-readable scene texts as well as their meanings in different contexts. Existing works on TextVQA suffer from two weaknesses: i) scene texts and non-textual objects are processed separately and independently without considering their mutual interactions during the question understanding and answering process, ii) scene texts are encoded only through word embeddings without taking the corresponding visual appearance features as well as their potential relationships with other non-textual objects in the images into account. To overcome the weakness of exiting works, we propose a novel multi-modal contextual graph neural network (MCG) model for TextVQA. The proposed MCG model can capture the relationships between visual features of scene texts and non-textual objects in the given images as well as utilize richer sources of multi-modal features to improve the model performance. In particular, we encode the scene texts into richer features containing textual, visual and positional features, then model the visual relations between scene texts and non-textual objects through a contextual graph neural network. Our extensive experiments on real-world dataset demonstrate the advantages of the proposed MCG model over baseline approaches.

PrivAttNet: Predicting Privacy Risks in Images Using Visual Attention

Chen Zhang, Thivya Kandappu, Vigneshwaran Subbaraju

Responsive image

Auto-TLDR; PrivAttNet: A Visual Attention Based Approach for Privacy Sensitivity in Images

Slides Poster Similar

Visual privacy concerns associated with image sharing is a critical issue that need to be addressed to enable safe and lawful use of online social platforms. Users of social media platforms often suffer from no guidance in sharing sensitive images in public, and often face with social and legal consequences. Given the recent success of visual attention based deep learning methods in measuring abstract phenomena like image memorability, we are motivated to investigate whether visual attention based methods could be useful in measuring psycho-physical phenomena like "privacy sensitivity". In this paper we propose PrivAttNet -- a visual attention based approach, that can be trained end-to-end to estimate the privacy sensitivity of images without explicitly detecting objects and attributes present in the image. We show that our PrivAttNet model outperforms various SOTA and baseline strategies -- a 1.6 fold reduction in $L1-error$ over SOTA and 7%--10% improvement in Spearman-rank correlation between the predicted and ground truth sensitivity scores. Additionally, the attention maps from PrivAttNet are found to be useful in directing the users to the regions that are responsible for generating the privacy risk score.

Attentive Hybrid Feature Based a Two-Step Fusion for Facial Expression Recognition

Jun Weng, Yang Yang, Zichang Tan, Zhen Lei

Responsive image

Auto-TLDR; Attentive Hybrid Architecture for Facial Expression Recognition

Slides Poster Similar

Facial expression recognition is inherently a challenging task, especially for the in-the-wild images with various occlusions and large pose variations, which may lead to the loss of some crucial information. To address it, in this paper, we propose an attentive hybrid architecture (AHA) which learns global, local and integrated features based on different face regions. Compared with one type of feature, our extracted features own complementary information and can reduce the loss of crucial information. Specifically, AHA contains three branches, where all sub-networks in those branches employ the attention mechanism to further localize the interested pixels/regions. Moreover, we propose a two-step fusion strategy based on LSTM to deeply explore the hidden correlations among different face regions. Extensive experiments on four popular expression databases (i.e., CK+, FER-2013, SFEW 2.0, RAF-DB) show the effectiveness of the proposed method.

Video Representation Fusion Network For Multi-Label Movie Genre Classification

Tianyu Bi, Dmitri Jarnikov, Johan Lukkien

Responsive image

Auto-TLDR; A Video Representation Fusion Network for Movie Genre Classification

Slides Poster Similar

In this paper, we introduce a Video Representation Fusion Network (VRFN) for movie genre classification. Different from the previous works, which use frame-level features for movie genre classification, our approach uses video classification architecture to create video-level features from a group of frames and fuse these features temporally to learn long-term spatiotemporal information for the movie genre classification task. We use a pre-trained I3D model to generate intermediate video representations and connect it with a C3D-LSTM model for feature fusion and movie genre classification. LMTD-9 dataset which contains 4007 trailers multi-labeled with 9 movie genres is used for training and evaluation of the model. The experimental results demonstrate that learning long-term temporal dependencies by fusing video representations improves the performance in movie genre classification. Our best model outperforms the state-of-the-art methods by 3.4% improvement in AUPRC (macro).

Learning Connectivity with Graph Convolutional Networks

Hichem Sahbi

Responsive image

Auto-TLDR; Learning Graph Convolutional Networks Using Topological Properties of Graphs

Slides Poster Similar

Learning graph convolutional networks (GCNs) is an emerging field which aims at generalizing convolutional operations to arbitrary non-regular domains. In particular, GCNs operating on spatial domains show superior performances compared to spectral ones, however their success is highly dependent on how the topology of input graphs is defined. In this paper, we introduce a novel framework for graph convolutional networks that learns the topological properties of graphs. The design principle of our method is based on the optimization of a constrained objective function which learns not only the usual convolutional parameters in GCNs but also a transformation basis that conveys the most relevant topological relationships in these graphs. Experiments conducted on the challenging task of skeleton-based action recognition shows the superiority of the proposed method compared to handcrafted graph design as well as the related work.