Privacy Attributes-Aware Message Passing Neural Network for Visual Privacy Attributes Classification

Hanbin Hong, Wentao Bao, Yuan Hong, Yu Kong

Responsive image

Auto-TLDR; Privacy Attributes-Aware Message Passing Neural Network for Visual Privacy Attribute Classification

Slides Poster

Visual Privacy Attribute Classification (VPAC) identifies privacy information leakage via social media images. These images containing privacy attributes such as skin color, face or gender are classified into multiple privacy attribute categories in VPAC. With limited works in this task, current methods often extract features from images and simply classify the extracted feature into multiple privacy attribute classes. The dependencies between privacy attributes, e.g., skin color and face typically co-exist in the same image, are usually ignored in classification, which causes performance degradation in VPAC. In this paper, we propose a novel end-to-end Privacy Attributes-aware Message Passing Neural Network (PA-MPNN) to address VPAC. Privacy attributes are considered as nodes on a graph and an MPNN is introduced to model the privacy attribute dependencies. To generate representative features for privacy attribute nodes, a class-wise encoder-decoder is proposed to learn a latent space for each attribute. An attention mechanism with multiple correlation matrices is also introduced in MPNN to learn the privacy attributes graph automatically. Experimental results on the Privacy Attribute Dataset demonstrate that our framework achieves better performance than state-of-the-art methods on visual privacy attributes classification.

Similar papers

PrivAttNet: Predicting Privacy Risks in Images Using Visual Attention

Chen Zhang, Thivya Kandappu, Vigneshwaran Subbaraju

Responsive image

Auto-TLDR; PrivAttNet: A Visual Attention Based Approach for Privacy Sensitivity in Images

Slides Poster Similar

Visual privacy concerns associated with image sharing is a critical issue that need to be addressed to enable safe and lawful use of online social platforms. Users of social media platforms often suffer from no guidance in sharing sensitive images in public, and often face with social and legal consequences. Given the recent success of visual attention based deep learning methods in measuring abstract phenomena like image memorability, we are motivated to investigate whether visual attention based methods could be useful in measuring psycho-physical phenomena like "privacy sensitivity". In this paper we propose PrivAttNet -- a visual attention based approach, that can be trained end-to-end to estimate the privacy sensitivity of images without explicitly detecting objects and attributes present in the image. We show that our PrivAttNet model outperforms various SOTA and baseline strategies -- a 1.6 fold reduction in $L1-error$ over SOTA and 7%--10% improvement in Spearman-rank correlation between the predicted and ground truth sensitivity scores. Additionally, the attention maps from PrivAttNet are found to be useful in directing the users to the regions that are responsible for generating the privacy risk score.

Human-Centric Parsing Network for Human-Object Interaction Detection

Guanyu Chen, Chong Chen, Zhicheng Zhao, Fei Su

Responsive image

Auto-TLDR; Human-Centric Parsing Network for Human-Object Interactions Detection

Slides Poster Similar

Human-object interactions detection is an essential task of image inference, but current methods can’t efficiently make use of global knowledge in the image. To tackle this challenge, in this paper, we propose a Human-Centric Parsing Network (HCPN), which integrates global structural knowledge to infer human-object interactions. In HCPN, a semantic parse graph is first constructed by binding human-object relationships, edge features and node features, where the detected human box in image is regarded as the center node and other detected boxes are linked to it. Second, based on the message passing mechanism, edge features and node features with the relation graph are updated and finally, HCPN predicts human-object interactions and associated locations by a readout function. We evaluate our model on V-COCO dataset, and a great improvement is achieved compared with state-of-the-art methods.

What Nodes Vote To? Graph Classification without Readout Phase

Yuxing Tian, Zheng Liu, Weiding Liu, Zeyu Zhang, Yanwen Qu

Responsive image

Auto-TLDR; node voting based graph classification with convolutional operator

Slides Poster Similar

In recent years, many researchers have started to construct Graph Neural Networks (GNNs) to deal with graph classification task. Those GNNs can fit into a framework named Message Passing Neural Networks (MPNNs), which consists of two phases: a Message Passing phase used for updating node embeddings and a Readout phase. In Readout phase, node embeddings are aggregated to extract graph feature used for classification. However, the above operation may obscure the affect of the node embedding of each node on graph classification. Therefore, a node voting based graph classification model is proposed in this paper, called Node Voting net (NVnet). Similar to the MPNNs, NVnet also contains the Message Passing phase. The main differences between NVnet and MPNNs are: 1, a decoder for graph reconstruction is added to NVnet to make node embeddings contain as much graph structure information as possible; 2, NVnet replaces the Readout phase with a new phase called Node Voting phase. In the Node Voting phase, an attention layer based on the gate mechanism is constructed to help each node observe the node embeddings of other nodes in the graph, and each node predicts the graph class from its own perspective. The above process is called node voting. After voting, the results of all nodes are aggregated to get the final graph classification result. In addition, considering that aggregation operation may also obscure the difference between node voting results, our solution is to add a regularization term to drive node voting results to reach group consensus. We evaluate the performance of the NVnet on 4 benchmark datasets. The experimental results show that compared with other 10 baselines, NVnet can achieve higher graph classification accuracy on datasets by using appropriate convolutional operator.

More Correlations Better Performance: Fully Associative Networks for Multi-Label Image Classification

Yaning Li, Liu Yang

Responsive image

Auto-TLDR; Fully Associative Network for Fully Exploiting Correlation Information in Multi-Label Classification

Slides Poster Similar

Recent researches demonstrate that correlation modeling plays a key role in high-performance multi-label classification methods. However, existing methods do not take full advantage of correlation information, especially correlations in feature and label spaces of each image, which limits the performance of correlation-based multi-label classification methods. With more correlations considered, in this study, a Fully Associative Network (FAN) is proposed for fully exploiting correlation information, which involves both visual feature and label correlations. Specifically, FAN introduces a robust covariance pooling to summarize convolution features as global image representation for capturing feature correlation in the multi-label task. Moreover, it constructs an effective label correlation matrix based on a re-weighted scheme, which is fed into a graph convolution network for capturing label correlation. Then, correlation between covariance representations (i.e., feature correlation ) and the outputs of GCN (i.e., label correlation) are modeled for final prediction. Experimental results on two datasets illustrate the effectiveness and efficiency of our proposed FAN compared with state-of-the-art methods.

Region and Relations Based Multi Attention Network for Graph Classification

Manasvi Aggarwal, M. Narasimha Murty

Responsive image

Auto-TLDR; R2POOL: A Graph Pooling Layer for Non-euclidean Structures

Slides Poster Similar

Graphs are non-euclidean structures that can represent many relational data efficiently. Many studies have proposed the convolution and the pooling operators on the non-euclidean domain. The graph convolution operators have shown astounding performance on various tasks such as node representation and classification. For graph classification, different pooling techniques are introduced, but none of them has considered both neighborhood of the node and the long-range dependencies of the node. In this paper, we propose a novel graph pooling layer R2POOL, which balances the structure information around the node as well as the dependencies with far away nodes. Further, we propose a new training strategy to learn coarse to fine representations. We add supervision at only intermediate levels to generate predictions using only intermediate-level features. For this, we propose the concept of an alignment score. Moreover, each layer's prediction is controlled by our proposed branch training strategy. This complete training helps in learning dominant class features at each layer for representing graphs. We call the combined model by R2MAN. Experiments show that R2MAN the potential to improve the performance of graph classification on various datasets.

Exploring and Exploiting the Hierarchical Structure of a Scene for Scene Graph Generation

Ikuto Kurosawa, Tetsunori Kobayashi, Yoshihiko Hayashi

Responsive image

Auto-TLDR; A Hierarchical Model for Scene Graph Generation

Slides Poster Similar

The scene graph of an image is an explicit, concise representation of the image; hence, it can be used in various applications such as visual question answering or robot vision. We propose a novel neural network model for generating scene graphs that maintain global consistency, which prevents the generation of unrealistic scene graphs; the performance in the scene graph generation task is expected to improve. Our proposed model is used to construct a hierarchical structure whose leaf nodes correspond to objects depicted in the image, and a message is passed along the estimated structure on the fly. To this end, we aggregate features of all objects into the root node of the hierarchical structure, and the global context is back-propagated to the root node to maintain all the object nodes. The experimental results on the Visual Genome dataset indicate that the proposed model outperformed the existing models in scene graph generation tasks. We further qualitatively confirmed that the hierarchical structures captured by the proposed model seemed to be valid.

Classification of Intestinal Gland Cell-Graphs Using Graph Neural Networks

Linda Studer, Jannis Wallau, Heather Dawson, Inti Zlobec, Andreas Fischer

Responsive image

Auto-TLDR; Graph Neural Networks for Classification of Dysplastic Gland Glands using Graph Neural Networks

Slides Poster Similar

We propose to classify intestinal glands as normal or dysplastic using cell-graphs and graph-based deep learning methods. Dysplastic intestinal glands can lead to colorectal cancer, which is one of the three most common cancer types in the world. In order to assess the cancer stage and thus the treatment of a patient, pathologists analyse tissue samples of affected patients. Among other factors, they look at the changes in morphology of different tissues, such as the intestinal glands. Cell-graphs have a high representational power and can describe topological and geometrical properties of intestinal glands. However, classical graph-based methods have a high computational complexity and there is only a limited range of machine learning methods available. In this paper, we propose Graph Neural Networks (GNNs) as an efficient learning-based approach to classify cell-graphs. We investigate different variants of so-called Message Passing Neural Networks and compare them with a classical graph-based approach based on approximated Graph Edit Distance and k-nearest neighbours classifier. A promising classification accuracy of 94.1% is achieved by the proposed method on the pT1 Gland Graph dataset, which is an increase of 11.5% over the baseline result.

Edge-Aware Graph Attention Network for Ratio of Edge-User Estimation in Mobile Networks

Jiehui Deng, Sheng Wan, Xiang Wang, Enmei Tu, Xiaolin Huang, Jie Yang, Chen Gong

Responsive image

Auto-TLDR; EAGAT: Edge-Aware Graph Attention Network for Automatic REU Estimation in Mobile Networks

Slides Poster Similar

Estimating the Ratio of Edge-Users (REU) is an important issue in mobile networks, as it helps the subsequent adjustment of loads in different cells. However, existing approaches usually determine the REU manually, which are experience-dependent and labor-intensive, and thus the estimated REU might be imprecise. Considering the inherited graph structure of mobile networks, in this paper, we utilize a graph-based deep learning method for automatic REU estimation, where the practical cells are deemed as nodes and the load switchings among them constitute edges. Concretely, Graph Attention Network (GAT) is employed as the backbone of our method due to its impressive generalizability in dealing with networked data. Nevertheless, conventional GAT cannot make full use of the information in mobile networks, since it only incorporates node features to infer the pairwise importance and conduct graph convolutions, while the edge features that are actually critical in our problem are disregarded. To accommodate this issue, we propose an Edge-Aware Graph Attention Network (EAGAT), which is able to fuse the node features and edge features for REU estimation. Extensive experimental results on two real-world mobile network datasets demonstrate the superiority of our EAGAT approach to several state-of-the-art methods.

Label Incorporated Graph Neural Networks for Text Classification

Yuan Xin, Linli Xu, Junliang Guo, Jiquan Li, Xin Sheng, Yuanyuan Zhou

Responsive image

Auto-TLDR; Graph Neural Networks for Semi-supervised Text Classification

Slides Poster Similar

Graph Neural Networks (GNNs) have achieved great success on graph-structured data, and their applications on traditional data structures such as natural language processing and semi-supervised text classification have been extensively explored in recent years. While previous works only consider the text information while building the graph, heterogeneous information such as labels is ignored. In this paper, we consider to incorporate the label information while building the graph by adding text-label-text paths, through which the supervision information will propagate among the graph more directly. Specifically, we treat labels as nodes in the graph which also contains text and word nodes, and then connect labels with texts belonging to that label. Through graph convolutions, label embeddings are jointly learned with text embeddings in the same latent semantic space. The newly incorporated label nodes will facilitate learning more accurate text embeddings by introducing the label information, and thus benefit the downstream text classification tasks. Extensive results on several benchmark datasets show that the proposed framework outperforms baseline methods by a significant margin.

A General Model for Learning Node and Graph Representations Jointly

Chaofan Chen

Responsive image

Auto-TLDR; Joint Community Detection/Dynamic Routing for Graph Classification

Slides Poster Similar

This paper focuses on two fundamental graph recognition tasks: node classification and graph classification. Existing methods usually learn the node and graph representations for these two tasks separately, and ignore modeling the relations between the local and global structures. In this paper, we propose a general approach to learn the local and global features collaboratively: (1) in order to characterize the correlation among nodes and communities (a set of nodes), we employ the joint community detection/dynamic routing modules to generate the clustering assignment matrices at first and then utilize these matrices to cluster nodes to capture the global information of graphs (locally relevant graph representations). Inspired by the success of spectral clustering, we minimize the ratiocut loss to help optimize the learned assignment matrices. (2) We maximize the mutual information between local and global representations to help learn the globally relevant node representations. Experimental results on a variety of node and graph classification benchmarks show that our model can achieve superior performance over the state-of-the-art approaches.

Prior Knowledge about Attributes: Learning a More Effective Potential Space for Zero-Shot Recognition

Chunlai Chai, Yukuan Lou

Responsive image

Auto-TLDR; Attribute Correlation Potential Space Generation for Zero-Shot Learning

Slides Poster Similar

Zero-shot learning (ZSL) aims to recognize unseen classes accurately by learning seen classes and known attributes, but correlations in attributes were ignored by previous study which lead to classification results confused. To solve this problem, we build an Attribute Correlation Potential Space Generation (ACPSG) model which uses a graph convolution network and attribute correlation to generate a more discriminating potential space. Combining potential discrimination space and user-defined attribute space, we can better classify unseen classes. Our approach outperforms some existing state-of-the-art methods on several benchmark datasets, whether it is conventional ZSL or generalized ZSL.

TreeRNN: Topology-Preserving Deep Graph Embedding and Learning

Yecheng Lyu, Ming Li, Xinming Huang, Ulkuhan Guler, Patrick Schaumont, Ziming Zhang

Responsive image

Auto-TLDR; TreeRNN: Recurrent Neural Network for General Graph Classification

Slides Poster Similar

General graphs are difficult for learning due to their irregular structures. Existing works employ message passing along graph edges to extract local patterns using customized graph kernels, but few of them are effective for the integration of such local patterns into global features. In contrast, in this paper we study the methods to transfer the graphs into trees so that explicit orders are learned to direct the feature integration from local to global. To this end, we apply the breadth first search (BFS) to construct trees from the graphs, which adds direction to the graph edges from the center node to the peripheral nodes. In addition, we proposed a novel projection scheme that transfer the trees to image representations, which is suitable for conventional convolution neural networks (CNNs) and recurrent neural networks (RNNs). To best learn the patterns from the graph-tree-images, we propose TreeRNN, a 2D RNN architecture that recurrently integrates the image pixels by rows and columns to help classify the graph categories. We evaluate the proposed method on several graph classification datasets, and manage to demonstrate comparable accuracy with the state-of-the-art on MUTAG, PTC-MR and NCI1 datasets.

Zero-Shot Text Classification with Semantically Extended Graph Convolutional Network

Tengfei Liu, Yongli Hu, Junbin Gao, Yanfeng Sun, Baocai Yin

Responsive image

Auto-TLDR; Semantically Extended Graph Convolutional Network for Zero-shot Text Classification

Slides Poster Similar

As a challenging task of Natural Language Processing(NLP), zero-shot text classification has attracted more and more attention recently. It aims to detect classes that the model has never seen in the training set. For this purpose, a feasible way is to construct connection between the seen and unseen classes by semantic extension and classify the unseen classes by information propagation over the connection. Although many related zero-shot text classification methods have been exploited, how to realize semantic extension properly and propagate information effectively is far from solved. In this paper, we propose a novel zero-shot text classification method called Semantically Extended Graph Convolutional Network (SEGCN). In the proposed method, the semantic category knowledge from ConceptNet is utilized to semantic extension for linking seen classes to unseen classes and constructing a graph of all classes. Then, we build upon Graph Convolutional Network (GCN) for predicting the textual classifier for each category, which transfers the category knowledge by the convolution operators on the constructed graph and is trained in a semi-supervised manner using the samples of the seen classes. The experimental results on Dbpedia and 20newsgroup datasets show that our method outperforms the state of the art zero-shot text classification methods.

Equation Attention Relationship Network (EARN) : A Geometric Deep Metric Framework for Learning Similar Math Expression Embedding

Saleem Ahmed, Kenny Davila, Srirangaraj Setlur, Venu Govindaraju

Responsive image

Auto-TLDR; Representational Learning for Similarity Based Retrieval of Mathematical Expressions

Slides Poster Similar

Representational Learning in the form of high dimensional embeddings have been used for multiple pattern recognition applications. There has been a significant interest in building embedding based systems for learning representationsin the mathematical domain. At the same time, retrieval of structured information such as mathematical expressions is an important need for modern IR systems. In this work, our motivation is to introduce a robust framework for learning representations for similarity based retrieval of mathematical expressions. Given a query by example, the embedding can find the closest matching expression as a function of euclidean distance between them. We leverage recent advancements in image-based and graph-based deep learning algorithms to learn our similarity embeddings. We do this first, by using uni-modal encoders in graph space and image space and then, a multi-modal combination of the same. To overcome the lack of training data, we force the networks to learn a deep metric using triplets generated with a heuristic scoring function. We also adopt a custom strategy for mining hard samples to train our neural networks. Our system produces rankings similar to those generated by the original scoring function, but using only a fraction of the time. Our results establish the viability of using such a multi-modal embedding for this task.

Multi-Label Contrastive Focal Loss for Pedestrian Attribute Recognition

Xiaoqiang Zheng, Zhenxia Yu, Lin Chen, Fan Zhu, Shilong Wang

Responsive image

Auto-TLDR; Multi-label Contrastive Focal Loss for Pedestrian Attribute Recognition

Slides Poster Similar

Pedestrian Attribute Recognition (PAR) has received extensive attention during the past few years. With the advances of deep constitutional neural networks (CNNs), the performance of PAR has been significantly improved. Existing methods tend to acquire attribute-specific features by designing various complex network structures with additional modules. Such additional modules, however, dramatically increase the number of parameters. Meanwhile, the problems of class imbalance and hard attribute retrieving remain underestimated in PAR. In this paper, we explore the optimization mechanism of the training processing to account for these problems and propose a new loss function called Multi-label Contrastive Focal Loss (MCFL). This proposed MCFL emphasizes the hard and minority attributes by using a separated re-weighting mechanism for different positive and negative classes to alleviate the impact of the imbalance. MCFL is also able to enlarge the gaps between the intra-class of multi-label attributes, to force CNNs to extract more subtle discriminative features. We evaluate the proposed MCFL on three large public pedestrian datasets, including RAP, PA-100K, and PETA. The experimental results indicate that the proposed MCFL with the ResNet-50 backbone is able to outperform other state-of-the-art approaches in comparison.

Learning Disentangled Representations for Identity Preserving Surveillance Face Camouflage

Jingzhi Li, Lutong Han, Hua Zhang, Xiaoguang Han, Jingguo Ge, Xiaochu Cao

Responsive image

Auto-TLDR; Individual Face Privacy under Surveillance Scenario with Multi-task Loss Function

Poster Similar

In this paper, we focus on protecting the person face privacy under the surveillance scenarios, whose goal is to change the visual appearances of faces while keep them to be recognizable by current face recognition systems. This is a challenging problem as that we should retain the most important structures of captured facial images, while alter the salient facial regions to protect personal privacy. To address this problem, we introduce a novel individual face protection model, which can camouflage the face appearance from the perspective of human visual perception and preserve the identity features of faces used for face authentication. To that end, we develop an encoder-decoder network architecture that can separately disentangle the person feature representation into an appearance code and an identity code. Specifically, we first randomly divide the face image into two groups, the source set and the target set, where the source set is used to extract the identity code and the target set provides the appearance code. Then, we recombine the identity and appearance codes to synthesize a new face, which has the same identity with the source subject. Finally, the synthesized faces are used to replace the original face to protect the privacy of individual. Furthermore, our model is trained end-to-end with a multi-task loss function, which can better preserve the identity and stabilize the training loss. Experiments conducted on Cross-Age Celebrity dataset demonstrate the effectiveness of our model and validate our superiority in terms of visual quality and scalability.

PICK: Processing Key Information Extraction from Documents Using Improved Graph Learning-Convolutional Networks

Wenwen Yu, Ning Lu, Xianbiao Qi, Ping Gong, Rong Xiao

Responsive image

Auto-TLDR; PICK: A Graph Learning Framework for Key Information Extraction from Documents

Slides Poster Similar

Computer vision with state-of-the-art deep learning models have achieved huge success in the field of Optical Character Recognition (OCR) including text detection and recognition tasks recently. However, Key Information Extraction (KIE) from documents as the downstream task of OCR, having a large number of use scenarios in real-world, remains a challenge because documents not only have textual features extracting from OCR systems but also have semantic visual features that are not fully exploited and play a critical role in KIE. Too little work has been devoted to efficiently make full use of both textual and visual features of the documents. In this paper, we introduce PICK, a framework that is effective and robust in handling complex documents layout for KIE by combining graph learning with graph convolution operation, yielding a richer semantic representation containing the textual and visual features and global layout without ambiguity. Extensive experiments on real-world datasets have been conducted to show that our method outperforms baselines methods by significant margins.

Context for Object Detection Via Lightweight Global and Mid-Level Representations

Mesut Erhan Unal, Adriana Kovashka

Responsive image

Auto-TLDR; Context-Based Object Detection with Semantic Similarity

Slides Poster Similar

We propose an approach for explicitly capturing context in object detection. We model visual and geometric relationships between object regions, but also model the global scene as a first-class participant. In contrast to prior approaches, both the context we rely on, as well as our proposed mechanism for belief propagation over regions, is lightweight. We also experiment with capturing similarities between regions at a semantic level, by modeling class co-occurrence and linguistic similarity between class names. We show that our approach significantly outperforms Faster R-CNN, and performs competitively with a much more costly approach that also models context.

MEG: Multi-Evidence GNN for Multimodal Semantic Forensics

Ekraam Sabir, Ayush Jaiswal, Wael Abdalmageed, Prem Natarajan

Responsive image

Auto-TLDR; Scalable Image Repurposing Detection with Graph Neural Network Based Model

Slides Poster Similar

Image repurposing is a category of fake news where a digitally unmanipulated image is misrepresented by means of its accompanying metadata such as captions, location, etc., where the image and accompanying metadata together comprise a multimedia package. The problem setup is to authenticate a query multimedia package using a reference dataset of potentially related packages as evidences. Existing methods are limited to using a single evidence (retrieved package), which ignores potential performance improvement from the use of multiple evidences. In this work, we introduce a novel graph neural network based model for image repurposing detection, which effectively utilizes multiple retrieved packages as evidences and is scalable with the number of evidences. We compare the scalability and performance of our model against existing methods. Experimental results show that the proposed model outperforms existing state-of-the-art for image repurposing detection with an error reduction of up to 25%.

Heterogeneous Graph-Based Knowledge Transfer for Generalized Zero-Shot Learning

Junjie Wang, Xiangfeng Wang, Bo Jin, Junchi Yan, Wenjie Zhang, Hongyuan Zha

Responsive image

Auto-TLDR; Heterogeneous Graph-based Knowledge Transfer for Generalized Zero-Shot Learning

Slides Poster Similar

Generalized zero-shot learning (GZSL) tackles the problem of learning to classify instances involving both seen classes and unseen ones. The key issue is how to effectively transfer the model learned from seen classes to unseen classes. Existing works in GZSL usually assume that some prior information about unseen classes are available. However, such an assumption is unrealistic when new unseen classes appear dynamically. To this end, we propose a novel heterogeneous graph-based knowledge transfer method (HGKT) for GZSL, agnostic to unseen classes and instances, by leveraging graph neural network. Specifically, a structured heterogeneous graph is constructed with high-level representative nodes for seen classes, which are chosen through Wasserstein barycenter in order to simultaneously capture inter-class and intra-class relationship. The aggregation and embedding functions can be learned throughgraph neural network, which can be used to compute the embeddings of unseen classes by transferring the knowledge from their neighbors. Extensive experiments on public benchmark datasets show that our method achieves state-of-the-art results.

Constructing Geographic and Long-term Temporal Graph for Traffic Forecasting

Yiwen Sun, Yulu Wang, Kun Fu, Zheng Wang, Changshui Zhang, Jieping Ye

Responsive image

Auto-TLDR; GLT-GCRNN: Geographic and Long-term Temporal Graph Convolutional Recurrent Neural Network for Traffic Forecasting

Slides Poster Similar

Traffic forecasting influences various intelligent transportation system (ITS) services and is of great significance for user experience as well as urban traffic control. It is challenging due to the fact that the road network contains complex and time-varying spatial-temporal dependencies. Recently, deep learning based methods have achieved promising results by adopting graph convolutional network (GCN) to extract the spatial correlations and recurrent neural network (RNN) to capture the temporal dependencies. However, the existing methods often construct the graph only based on road network connectivity, which limits the interaction between roads. In this work, we propose Geographic and Long-term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN), a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or long-term temporal patterns. Extensive experiments on a real-world traffic state dataset validate the effectiveness of our method by showing that GLT-GCRNN outperforms the state-of-the-art methods in terms of different metrics.

Multi-Attribute Learning with Highly Imbalanced Data

Lady Viviana Beltran Beltran, Mickaël Coustaty, Nicholas Journet, Juan C. Caicedo, Antoine Doucet

Responsive image

Auto-TLDR; Data Imbalance in Multi-Attribute Deep Learning Models: Adaptation to face each one of the problems derived from imbalance

Slides Poster Similar

Data is one of the most important keys for success when studying a simple or a complex phenomenon. With the use of deep-learning exploding and its democratization, non-computer science experts may struggle to use highly complex deep learning architectures, even when straightforward models offer them suitable performances. In this article, we study the specific and common problem of data imbalance in real databases as most of the bad performance problems are due to the data itself. We review two points: first, when the data contains different levels of imbalance. Classical imbalanced learning strategies cannot be directly applied when using multi-attribute deep learning models, i.e., multi-task and multi-label architectures. Therefore, one of our contributions is our proposed adaptations to face each one of the problems derived from imbalance. Second, we demonstrate that with little to no imbalance, straightforward deep learning models work well. However, for non-experts, these models can be seen as black boxes, where all the effort is put in pre-processing the data. To simplify the problem, we performed the classification task ignoring information that is costly to extract, such as part localization which is widely used in the state of the art of attribute classification. We make use of a widely known attribute database, CUB-200-2011 - CUB as our main use case due to its deeply imbalanced nature, along with two better structured databases: celebA and Awa2. All of them contain multi-attribute annotations. The results of highly fine-grained attribute learning over CUB demonstrate that in the presence of imbalance, by using our proposed strategies is possible to have competitive results against the state of the art, while taking advantage of multi-attribute deep learning models. We also report results for two better-structured databases over which our models over-perform the state of the art.

Siamese Graph Convolution Network for Face Sketch Recognition

Liang Fan, Xianfang Sun, Paul Rosin

Responsive image

Auto-TLDR; A novel Siamese graph convolution network for face sketch recognition

Slides Poster Similar

In this paper, we present a novel Siamese graph convolution network (GCN) for face sketch recognition. To build a graph from an image, we utilize a deep learning method to detect the image edges, and then use a superpixel method to segment the edge image. Each segmented superpixel region is taken as a node, and each pair of adjacent regions forms an edge of the graph. Graphs from both a face sketch and a face photo are input into the Siamese GCN for recognition. A deep graph matching method is used to share messages between cross-modal graphs in this model. Experiments show that the GCN can obtain high performance on several face photo-sketch datasets, including seen and unseen face photo-sketch datasets. It is also shown that the model performance based on the graph structure representation of the data using the Siamese GCN is more stable than a Siamese CNN model.

Image Inpainting with Contrastive Relation Network

Xiaoqiang Zhou, Junjie Li, Zilei Wang, Ran He, Tieniu Tan

Responsive image

Auto-TLDR; Two-Stage Inpainting with Graph-based Relation Network

Slides Similar

Image inpainting faces the challenging issue of the requirements on structure reasonableness and texture coherence. In this paper, we propose a two-stage inpainting framework to address this issue. The basic idea is to address the two requirements in two separate stages. Completed segmentation of the corrupted image is firstly predicted through segmentation reconstruction network, while fine-grained image details are restored in the second stage through an image generator. The two stages are connected in series as the image details are generated under the guidance of completed segmentation map that predicted in the first stage. Specifically, in the second stage, we propose a novel graph-based relation network to model the relationship existed in corrupted image. In relation network, both intra-relationship for pixels in the same semantic region and inter-relationship between different semantic parts are considered, improving the consistency and compatibility of image textures. Besides, contrastive loss is designed to facilitate the relation network training. Such a framework not only simplifies the inpainting problem directly, but also exploits the relationship in corrupted image explicitly. Extensive experiments on various public datasets quantitatively and qualitatively demonstrate the superiority of our approach compared with the state-of-the-art.

Modeling Extent-Of-Texture Information for Ground Terrain Recognition

Shuvozit Ghose, Pinaki Nath Chowdhury, Partha Pratim Roy, Umapada Pal

Responsive image

Auto-TLDR; Extent-of-Texture Guided Inter-domain Message Passing for Ground Terrain Recognition

Slides Poster Similar

Ground Terrain Recognition is a difficult task as the context information varies significantly over the regions of a ground terrain image. In this paper, we propose a novel approach towards ground-terrain recognition via modeling the Extent-of-Texture information to establish a balance between the order-less texture component and ordered-spatial information locally. At first, the proposed method uses a CNN backbone feature extractor network to capture meaningful information of a ground terrain image, and model the extent of texture and shape information locally. Then, the order-less texture information and ordered shape information are encoded in a patch-wise manner, which is utilized by intra-domain message passing module to make every patch aware of each other for rich feature learning. Next, the Extent-of-Texture (EoT) Guided Inter-domain Message Passing module combines the extent of texture and shape information with the encoded texture and shape information in a patch-wise fashion for sharing knowledge to balance out the order-less texture information with ordered shape information. Further, Bilinear model generates a pairwise correlation between the order-less texture information and ordered shape information. Finally, the ground-terrain image classification is performed by a fully connected layer. The experimental results indicate superior performance of the proposed model over existing state-of-the-art techniques on publicly available datasets like DTD, MINC and GTOS-mobile.

Using Scene Graphs for Detecting Visual Relationships

Anurag Tripathi, Siddharth Srivastava, Brejesh Lall, Santanu Chaudhury

Responsive image

Auto-TLDR; Relationship Detection using Context Aligned Scene Graph Embeddings

Slides Poster Similar

In this paper we solve the problem of detecting relationships between pairs of objects in an image. We develop spatially aware word embeddings using scene graphs and use joint feature representations containing visual, spatial and semantic embeddings from the input images to train a deep network on the task of relationship detection. Further, we propose to utilize context aligned scene graph embeddings from the train set, without requiring explicit availability of scene graphs at test time. We show that the proposed method outperforms the state-of-the-art methods for predicate detection and provides competing results on relationship detection. We also show the generalization ability of the proposed method by performing predictions under zero shot settings. Further, we also provide an exhaustive empirical evaluation on each component of the proposed network.

Open Set Domain Recognition Via Attention-Based GCN and Semantic Matching Optimization

Xinxing He, Yuan Yuan, Zhiyu Jiang

Responsive image

Auto-TLDR; Attention-based GCN and Semantic Matching Optimization for Open Set Domain Recognition

Slides Poster Similar

Open set domain recognition has got the attention in recent years. The task aims to specifically classify each sample in the practical unlabeled target domain, which consists of all known classes in the manually labeled source domain and target-specific unknown categories. The absence of annotated training data or auxiliary attribute information for unknown categories makes this task especially difficult. Moreover, exiting domain discrepancy in label space and data distribution further distracts the knowledge transferred from known classes to unknown classes. To address these issues, this work presents an end-to-end model based on attention-based GCN and semantic matching optimization, which first employs the attention mechanism to enable the central node to learn more discriminating representations from its neighbors in the knowledge graph. Moreover, a coarse-to-fine semantic matching optimization approach is proposed to progressively bridge the domain gap. Experimental results validate that the proposed model not only has superiority on recognizing the images of known and unknown classes, but also can adapt to various openness of the target domain.

AOAM: Automatic Optimization of Adjacency Matrix for Graph Convolutional Network

Yuhang Zhang, Hongshuai Ren, Jiexia Ye, Xitong Gao, Yang Wang, Kejiang Ye, Cheng-Zhong Xu

Responsive image

Auto-TLDR; Adjacency Matrix for Graph Convolutional Network in Non-Euclidean Space

Slides Poster Similar

Graph Convolutional Network (GCN) is adopted to tackle the problem of the convolution operation in non-Euclidean space. Although previous works on GCN have made some progress, one of their limitations is that their input Adjacency Matrix (AM) is designed manually and requires domain knowledge, which is cumbersome, tedious and error-prone. In addition, entries of this fixed Adjacency Matrix are generally designed as binary values (i.e., ones and zeros) which can not reflect more complex relationship between nodes. However, many applications require a weighted and dynamic Adjacency Matrix instead of an unweighted and fixed Adjacency Matrix. To this end, there are few works focusing on designing a more flexible Adjacency Matrix. In this paper, we propose an end-to-end algorithm to improve the GCN performance by focusing on the Adjacency Matrix. We first provide a calculation method that called node information entropy to update the matrix. Then, we analyze the search strategy in a continuous space and introduce the Deep Deterministic Policy Gradient (DDPG) method to overcome the demerit of the discrete space search. Finally, we integrate the GCN and reinforcement learning into an end-to-end framework. Our method can automatically define the adjacency matrix without artificial knowledge. At the same time, the proposed approach can deal with any size of the matrix and provide a better value for the network. Four popular datasets are selected to evaluate the capability of our algorithm. The method in this paper achieves the state-of-the-art performance on Cora and Pubmed datasets, respectively, with the accuracy of 84.6% and 81.6%.

Reinforcement Learning with Dual Attention Guided Graph Convolution for Relation Extraction

Zhixin Li, Yaru Sun, Suqin Tang, Canlong Zhang, Huifang Ma

Responsive image

Auto-TLDR; Dual Attention Graph Convolutional Network for Relation Extraction

Slides Poster Similar

To better learn the dependency relationship between nodes, we address the relationship extraction task by capturing rich contextual dependencies based on the attention mechanism, and using distributional reinforcement learning to generate optimal relation information representation. This method is called Dual Attention Graph Convolutional Network (DAGCN), to adaptively integrate local features with their global dependencies. Specifically, we append two types of attention modules on top of GCN, which model the semantic interdependencies in spatial and relational dimensions respectively. The position attention module selectively aggregates the feature at each position by a weighted sum of the features at all positions of nodes internal features. Meanwhile, the relation attention module selectively emphasizes interdependent node relations by integrating associated features among all nodes. We sum the outputs of the two attention modules and use reinforcement learning to predict the classification of nodes relationship to further improve feature representation which contributes to more precise extraction results. The results on the TACRED and SemEval datasets show that the model can obtain more useful information for relational extraction tasks, and achieve better performances on various evaluation indexes.

Learning Natural Thresholds for Image Ranking

Somayeh Keshavarz, Quang Nhat Tran, Richard Souvenir

Responsive image

Auto-TLDR; Image Representation Learning and Label Discretization for Natural Image Ranking

Slides Poster Similar

For image ranking tasks with naturally continuous output, such as age and scenicness estimation, it is common to discretize the label range and apply methods from (ordered) classification analysis. In this paper, we propose a data-driven approach for simultaneous representation learning and label discretization. Compared to arbitrarily selecting thresholds, we seek to learn thresholds and image representations by minimizing a novel loss function in an end-to-end model. We demonstrate our combined approach on a variety of image ranking tasks and demonstrate that it outperforms task-specific methods. Additionally, our learned partitioning scheme can be transferred to improve methods that rely on discretization.

Revisiting Graph Neural Networks: Graph Filtering Perspective

Hoang Nguyen-Thai, Takanori Maehara, Tsuyoshi Murata

Responsive image

Auto-TLDR; Two-Layers Graph Convolutional Network with Graph Filters Neural Network

Slides Poster Similar

In this work, we develop quantitative results to the learnability of a two-layers Graph Convolutional Network (GCN). Instead of analyzing GCN under some classes of functions, our approach provides a quantitative gap between a two-layers GCN and a two-layers MLP model. From the graph signal processing perspective, we provide useful insights to some flaws of graph neural networks for vertex classification. We empirically demonstrate a few cases when GCN and other state-of-the-art models cannot learn even when true vertex features are extremely low-dimensional. To demonstrate our theoretical findings and propose a solution to the aforementioned adversarial cases, we build a proof of concept graph neural network model with different filters named Graph Filters Neural Network (gfNN).

Adversarial Encoder-Multi-Task-Decoder for Multi-Stage Processes

Andre Mendes, Julian Togelius, Leandro Dos Santos Coelho

Responsive image

Auto-TLDR; Multi-Task Learning and Semi-Supervised Learning for Multi-Stage Processes

Similar

In multi-stage processes, decisions occur in an ordered sequence of stages. Early stages usually have more observations with general information (easier/cheaper to collect), while later stages have fewer observations but more specific data. This situation can be represented by a dual funnel structure, in which the sample size decreases from one stage to the other while the information increases. Training classifiers in this scenario is challenging since information in the early stages may not contain distinct patterns to learn (underfitting). In contrast, the small sample size in later stages can cause overfitting. We address both cases by introducing a framework that combines adversarial autoencoders (AAE), multi-task learning (MTL), and multi-label semi-supervised learning (MLSSL). We improve the decoder of the AAE with an MTL component so it can jointly reconstruct the original input and use feature nets to predict the features for the next stages. We also introduce a sequence constraint in the output of an MLSSL classifier to guarantee the sequential pattern in the predictions. Using real-world data from different domains (selection process, medical diagnosis), we show that our approach outperforms other state-of-the-art methods.

On the Global Self-attention Mechanism for Graph Convolutional Networks

Chen Wang, Deng Chengyuan

Responsive image

Auto-TLDR; Global Self-Attention Mechanism for Graph Convolutional Networks

Slides Similar

Applying Global Self-Attention (GSA) mechanism over features has achieved remarkable success on Convolutional Neural Networks (CNNs). However, it is not clear if Graph Convolutional Networks (GCNs) can similarly benefit from such a technique. In this paper, inspired by the similarity between CNNs and GCNs, we study the impact of the Global Self-Attention mechanism on GCNs. We find that consistent with the intuition, the GSA mechanism allows GCNs to capture feature-based vertex relations regardless of edge connections; As a result, the GSA mechanism can introduce extra expressive power to the GCNs. Furthermore, we analyze the impacts of the GSA mechanism on the issues of overfitting and over-smoothing. We prove that the GSA mechanism can alleviate both the overfitting and the over-smoothing issues based on some recent technical developments. Experiments on multiple benchmark datasets illustrate both superior expressive power and less significant overfitting and over-smoothing problems for the GSA-augmented GCNs, which corroborate the intuitions and the theoretical results.

Named Entity Recognition and Relation Extraction with Graph Neural Networks in Semi Structured Documents

Manuel Carbonell, Pau Riba, Mauricio Villegas, Alicia Fornés, Josep Llados

Responsive image

Auto-TLDR; Graph Neural Network for Entity Recognition and Relation Extraction in Semi-Structured Documents

Slides Similar

The use of administrative documents to communicate and leave record of business information requires of methods able to automatically extract and understand the content from such documents in a robust and efficient way. In addition, the semi-structured nature of these reports is specially suited for the use of graph-based representations which are flexible enough to adapt to the deformations from the different document templates. Moreover, Graph Neural Networks provide the proper methodology to learn relations among the data elements in these documents. In this work we study the use of Graph Neural Network architectures to tackle the problem of entity recognition and relation extraction in semi-structured documents. Our approach achieves state of the art results on the three tasks involved in the process. Moreover, the experimentation with two datasets of different nature demonstrates the good generalization ability of our approach.

Multi-Modal Contextual Graph Neural Network for Text Visual Question Answering

Yaoyuan Liang, Xin Wang, Xuguang Duan, Wenwu Zhu

Responsive image

Auto-TLDR; Multi-modal Contextual Graph Neural Network for Text Visual Question Answering

Slides Poster Similar

Text visual question answering (TextVQA) targets at answering the question related to texts appearing in the given images, posing more challenges than VQA by requiring a deeper recognition and understanding of various shapes of human-readable scene texts as well as their meanings in different contexts. Existing works on TextVQA suffer from two weaknesses: i) scene texts and non-textual objects are processed separately and independently without considering their mutual interactions during the question understanding and answering process, ii) scene texts are encoded only through word embeddings without taking the corresponding visual appearance features as well as their potential relationships with other non-textual objects in the images into account. To overcome the weakness of exiting works, we propose a novel multi-modal contextual graph neural network (MCG) model for TextVQA. The proposed MCG model can capture the relationships between visual features of scene texts and non-textual objects in the given images as well as utilize richer sources of multi-modal features to improve the model performance. In particular, we encode the scene texts into richer features containing textual, visual and positional features, then model the visual relations between scene texts and non-textual objects through a contextual graph neural network. Our extensive experiments on real-world dataset demonstrate the advantages of the proposed MCG model over baseline approaches.

A Two-Stream Recurrent Network for Skeleton-Based Human Interaction Recognition

Qianhui Men, Edmond S. L. Ho, Shum Hubert P. H., Howard Leung

Responsive image

Auto-TLDR; Two-Stream Recurrent Neural Network for Human-Human Interaction Recognition

Slides Poster Similar

This paper addresses the problem of recognizing human-human interaction from skeletal sequences. Existing methods are mainly designed to classify single human action. Many of them simply stack the movement features of two characters to deal with human interaction, while neglecting the abundant relationships between characters. In this paper, we propose a novel two-stream recurrent neural network by adopting the geometric features from both single actions and interactions to describe the spatial correlations with different discriminative abilities. The first stream is constructed under pairwise joint distance (PJD) in a fully-connected mesh to categorize the interactions with explicit distance patterns. To better distinguish similar interactions, in the second stream, we combine PJD with the spatial features from individual joint positions using graph convolutions to detect the implicit correlations among joints, where the joint connections in the graph are adaptive for flexible correlations. After spatial modeling, each stream is fed to a bi-directional LSTM to encode two-way temporal properties. To take advantage of the diverse discriminative power of the two streams, we come up with a late fusion algorithm to combine their output predictions concerning information entropy. Experimental results show that the proposed framework achieves state-of-the-art performance on 3D and comparable performance on 2D interaction datasets. Moreover, the late fusion results demonstrate the effectiveness of improving the recognition accuracy compared with single streams.

Learning Semantic Representations Via Joint 3D Face Reconstruction and Facial Attribute Estimation

Zichun Weng, Youjun Xiang, Xianfeng Li, Juntao Liang, Wanliang Huo, Yuli Fu

Responsive image

Auto-TLDR; Joint Framework for 3D Face Reconstruction with Facial Attribute Estimation

Slides Poster Similar

We propose a novel joint framework for 3D face reconstruction (3DFR) that integrates facial attribute estimation (FAE) as an auxiliary task. One of the essential problems of 3DFR is to extract semantic facial features (e.g., Big Nose, High Cheekbones, and Asian) from in-the-wild 2D images, which is inherently involved with FAE. These two tasks, though heterogeneous, are highly relevant to each other. To achieve this, we leverage a Convolutional Neural Network to extract shared facial representations for both shape decoder and attribute classifier. We further develop an in-batch hybrid-task training scheme that enables our model to learn from heterogeneous facial datasets jointly within a mini-batch. Thanks to the joint loss that provides supervision from both 3DFR and FAE domains, our model learns the correlations between 3D shapes and facial attributes, which benefit both feature extraction and shape inference. Quantitative evaluation and qualitative visualization results confirm the effectiveness and robustness of our joint framework.

TAAN: Task-Aware Attention Network for Few-Shot Classification

Zhe Wang, Li Liu, Fanzhang Li

Responsive image

Auto-TLDR; TAAN: Task-Aware Attention Network for Few-Shot Classification

Slides Poster Similar

Few-shot classification aims to recognize unlabeled samples from unseen classes given only a few labeled samples.Current approaches of few-shot learning usually employ a metriclearning framework to learn a feature similarity comparison between a query (test) example and the few support (training) examples. However, these approaches all extract features from samples independently without looking at the entire task as a whole, and so fail to provide an enough discrimination to features. Moreover, the existing approaches lack the ability to select the most relevant features for the task at hand. In this work, we propose a novel algorithm called Task-Aware Attention Network (TAAN) to address the above problems in few-shot classification. By inserting a Task-Relevant Channel Attention Module into metric-based few-shot learners, TAAN generates channel attentions for each sample by aggregating the context of the entire support set and identifies the most relevant features for similarity comparison. The experiment demonstrates that TAAN is competitive in overall performance comparing to the recent state-of-the-art systems and improves the performance considerably over baseline systems on both mini-ImageNet and tiered-ImageNet benchmarks.

Boundary-Aware Graph Convolution for Semantic Segmentation

Hanzhe Hu, Jinshi Cui, Jinshi Hongbin Zha

Responsive image

Auto-TLDR; Boundary-Aware Graph Convolution for Semantic Segmentation

Slides Poster Similar

Recent works have made great progress in semantic segmentation by exploiting contextual information in a local or global manner with dilated convolutions, pyramid pooling or self-attention mechanism. However, few works have focused on harvesting boundary information to improve the segmentation performance. In order to enhance the feature similarity within the object and keep discrimination from other objects, we propose a boundary-aware graph convolution (BGC) module to propagate features within the object. The graph reasoning is performed among pixels of the same object apart from the boundary pixels. Based on the proposed BGC module, we further introduce the Boundary-aware Graph Convolution Network(BGCNet), which consists of two main components including a basic segmentation network and the BGC module, forming a coarse-to-fine paradigm. Specifically, the BGC module takes the coarse segmentation feature map as node features and boundary prediction to guide graph construction. After graph convolution, the reasoned feature and the input feature are fused together to get the refined feature, producing the refined segmentation result. We conduct extensive experiments on three popular semantic segmentation benchmarks including Cityscapes, PASCAL VOC 2012 and COCO Stuff, and achieve state-of-the-art performance on all three benchmarks.

Self-Supervised Learning with Graph Neural Networks for Region of Interest Retrieval in Histopathology

Yigit Ozen, Selim Aksoy, Kemal Kosemehmetoglu, Sevgen Onder, Aysegul Uner

Responsive image

Auto-TLDR; Self-supervised Contrastive Learning for Deep Representation Learning of Histopathology Images

Slides Poster Similar

Deep learning has achieved successful performance in representation learning and content-based retrieval of histopathology images. The commonly used setting in deep learning-based approaches is supervised training of deep neural networks for classification, and using the trained model to extract representations that are used for computing and ranking the distances between images. However, there are two remaining major challenges. First, supervised training of deep neural networks requires large amount of manually labeled data which is often limited in the medical field. Transfer learning has been used to overcome this challenge, but its success remained limited. Second, the clinical practice in histopathology necessitates working with regions of interest (ROI) of multiple diagnostic classes with arbitrary shapes and sizes. The typical solution to this problem is to aggregate the representations of fixed-sized patches cropped from these regions to obtain region-level representations. However, naive methods cannot sufficiently exploit the rich contextual information in the complex tissue structures. To tackle these two challenges, we propose a generic method that utilizes graph neural networks (GNN), combined with a self-supervised training method using a contrastive loss. GNN enables representing arbitrarily-shaped ROIs as graphs and encoding contextual information. Self-supervised contrastive learning improves quality of learned representations without requiring labeled data. The experiments using a challenging breast histopathology data set show that the proposed method achieves better performance than the state-of-the-art.

GCNs-Based Context-Aware Short Text Similarity Model

Xiaoqi Sun

Responsive image

Auto-TLDR; Context-Aware Graph Convolutional Network for Text Similarity

Slides Poster Similar

Semantic textual similarity is a fundamental task in text mining and natural language processing (NLP), which has profound research value. The essential step for text similarity is text representation learning. Recently, researches have explored the graph convolutional network (GCN) techniques on text representation, since GCN does well in handling complex structures and preserving syntactic information. However, current GCN models are usually limited to very shallow layers due to the vanishing gradient problem, which cannot capture non-local dependency information of sentences. In this paper, we propose a GCNs-based context-aware (GCSTS) model that applies iterated GCN blocks to train deeper GCNs. Recurrently employing the same GCN block prevents over-fitting and provides broad effective input width. Combined with dense connections, GCSTS can be trained more deeply. Besides, we use dynamic graph structures in the block, which further extend the receptive field of each vertex in graphs, learning better sentence representations. Experiments show that our model outperforms existing models on several text similarity datasets, while also verify that GCNs-based text representation models can be trained in a deeper manner, rather than being trained in two or three layers.

Multi-Graph Convolutional Network for Relationship-Driven Stock Movement Prediction

Jiexia Ye, Juanjuan Zhao, Kejiang Ye, Cheng-Zhong Xu

Responsive image

Auto-TLDR; Multi-GCGRU: A Deep Learning Framework for Stock Price Prediction with Cross Effect

Slides Poster Similar

Stock price movement prediction is commonly accepted as a very challenging task due to the volatile nature of financial markets. Previous works typically predict the stock price mainly based on its own information, neglecting the cross effect among involved stocks. However, it is well known that an individual stock price is correlated with prices of other stocks in complex ways. To take the cross effect into consideration, we propose a deep learning framework, called Multi-GCGRU, which comprises graph convolutional network (GCN) and gated recurrent units (GRU) to predict stock movement. Specifically, we first encode multiple relationships among stocks into graphs based on financial domain knowledge and utilize GCN to extract the cross effect based on the pre-defined graphs. The cross-correlation features produced by GCN are concatenated with historical records and fed into GRU to model the temporal pattern in stock price. To further get rid of prior knowledge, we explore an adaptive stock graph learned by data automatically. Experiments on two stock indexes in China market show that our model outperforms other baselines. Note that our model is rather feasible to incorporate more effective pre-defined stock relationships. What's more, it can also learn a data-driven relationship without any domain knowledge.

SAT-Net: Self-Attention and Temporal Fusion for Facial Action Unit Detection

Zhihua Li, Zheng Zhang, Lijun Yin

Responsive image

Auto-TLDR; Temporal Fusion and Self-Attention Network for Facial Action Unit Detection

Slides Poster Similar

Research on facial action unit detection has shown remarkable performances by using deep spatial learning models in recent years, however, it is far from reaching its full capacity in learning due to the lack of use of temporal information of AUs across time. Since the AU occurrence in one frame is highly likely related to previous frames in a temporal sequence, exploring temporal correlation of AUs across frames becomes a key motivation of this work. In this paper, we propose a novel temporal fusion and AU-supervised self-attention network (a so-called SAT-Net) to address the AU detection problem. First of all, we input the deep features of a sequence into a convolutional LSTM network and fuse the previous temporal information into the feature map of the last frame, and continue to learn the AU occurrence. Second, considering the AU detection problem is a multi-label classification problem that individual label depends only on certain facial areas, we propose a new self-learned attention mask by focusing the detection of each AU on parts of facial areas through the learning of individual attention mask for each AU, thus increasing the AU independence without the loss of any spatial relations. Our extensive experiments show that the proposed framework achieves better results of AU detection over the state-of-the-arts on two benchmark databases (BP4D and DISFA).

Detective: An Attentive Recurrent Model for Sparse Object Detection

Amine Kechaou, Manuel Martinez, Monica Haurilet, Rainer Stiefelhagen

Responsive image

Auto-TLDR; Detective: An attentive object detector that identifies objects in images in a sequential manner

Slides Poster Similar

In this work, we present Detective – an attentive object detector that identifies objects in images in a sequential manner. Our network is based on an encoder-decoder architecture, where the encoder is a convolutional neural network, and the decoder is a convolutional recurrent neural network coupled with an attention mechanism. At each iteration, our decoder focuses on the relevant parts of the image using an attention mechanism, and then estimates the object’s class and the bounding box coordinates. Current object detection models generate dense predictions and rely on post-processing to remove duplicate predictions. Detective is a sparse object detector that generates a single bounding box per object instance. However, training a sparse object detector is challenging, as it requires the model to reason at the instance level and not just at the class and spatial levels. We propose a training mechanism based on the Hungarian Algorithm and a loss that balances the localization and classification tasks. This allows Detective to achieve promising results on the PASCAL VOC object detection dataset. Our experiments demonstrate that sparse object detection is possible and has a great potential for future developments in applications where the order of the objects to be predicted is of interest.

What and How? Jointly Forecasting Human Action and Pose

Yanjun Zhu, Yanxia Zhang, Qiong Liu, Andreas Girgensohn

Responsive image

Auto-TLDR; Forecasting Human Actions and Motion Trajectories with Joint Action Classification and Pose Regression

Slides Poster Similar

Forecasting human actions and motion trajectories addresses the problem of predicting what a person is going to do next and how they will perform it. This is crucial in a wide range of applications such as assisted living and future co-robotic settings. We propose to simultaneously learn actions and action-related human motion dynamics, while existing works perform them independently. In this paper, we present a method to jointly forecast categories of human action and the pose of skeletal joints in the hope that the two tasks can help each other. As a result, our system can predict not only the future actions but also the motion trajectories that will result. To achieve this, we define a task of joint action classification and pose regression. We employ a sequence to sequence encoder-decoder model combined with multi-task learning to forecast future actions and poses progressively before the action happens. Experimental results on two public datasets, IkeaDB and OAD, demonstrate the effectiveness of the proposed method.

Improving Visual Relation Detection Using Depth Maps

Sahand Sharifzadeh, Sina Moayed Baharlou, Max Berrendorf, Rajat Koner, Volker Tresp

Responsive image

Auto-TLDR; Exploiting Depth Maps for Visual Relation Detection

Slides Poster Similar

State-of-the-art visual relation detection methods mostly rely on object information extracted from RGB images such as 2D bounding boxes, feature maps, and predicted class probabilities. Depth maps can additionally provide valuable information on object relations, e.g. helping to detect not only spatial relations, such as standing behind, but also non-spatial relations, such as holding. In this work, we study the effect of using different object information with a focus on depth maps. To enable this study, we release a new synthetic dataset of depth maps, VG-Depth, as an extension to Visual Genome (VG). We also note that given the highly imbalanced distribution of relations in VG, typical evaluation metrics for visual relation detection cannot reveal improvements of under-represented relations. To address this problem, we propose using an additional metric, calling it Macro Recall@K, and demonstrate its remarkable performance on VG. Finally, our experiments confirm that by effective utilization of depth maps within a simple, yet competitive framework, the performance of visual relation detection can be improved by a margin of up to 8%.

Visual Oriented Encoder: Integrating Multimodal and Multi-Scale Contexts for Video Captioning

Bang Yang, Yuexian Zou

Responsive image

Auto-TLDR; Visual Oriented Encoder for Video Captioning

Slides Poster Similar

Video captioning is a challenging task which aims at automatically generating a natural language description of a given video. Recent researches have shown that exploiting the intrinsic multi-modalities of videos significantly promotes captioning performance. However, how to integrate multi-modalities to generate effective semantic representations for video captioning is still an open issue. Some researchers proposed to learn multimodal features in parallel during the encoding stage. The downside of these methods lies in the neglect of the interaction among multi-modalities and their rich contextual information. In this study, inspired by the fact that visual contents are generally more important for comprehending videos, we propose a novel Visual Oriented Encoder (VOE) to integrate multimodal features in an interactive manner. Specifically, VOE is designed as a hierarchical structure, where bottom layers are utilized to extract multi-scale contexts from auxiliary modalities while the top layer is exploited to generate joint representations by considering both visual and contextual information. Following the encoder-decoder framework, we systematically develop a VOE-LSTM model and evaluate it on two mainstream benchmarks: MSVD and MSR-VTT. Experimental results show that the proposed VOE surpasses conventional encoders and our VOE-LSTM model achieves competitive results compared with state-of-the-art approaches.

Exploiting Knowledge Embedded Soft Labels for Image Recognition

Lixian Yuan, Riquan Chen, Hefeng Wu, Tianshui Chen, Wentao Wang, Pei Chen

Responsive image

Auto-TLDR; A Soft Label Vector for Image Recognition

Slides Poster Similar

Objects from correlated classes usually share highly similar appearances while objects from uncorrelated classes are very different. Most of current image recognition works treat each class independently, which ignores these class correlations and inevitably leads to sub-optimal performance in many cases. Fortunately, object classes inherently form a hierarchy with different levels of abstraction and this hierarchy encodes rich correlations among different classes. In this work, we utilize a soft label vector that encodes the prior knowledge of class correlations as extra regularization to train the image classifiers. Specifically, for each class, instead of simply using a one-hot vector, we assign a high value to its correlated classes and assign small values to those uncorrelated ones, thus generating knowledge embedded soft labels. We conduct experiments on both general and fine-grained image recognition benchmarks and demonstrate its superiority compared with existing methods.