TAAN: Task-Aware Attention Network for Few-Shot Classification

Zhe Wang, Li Liu, Fanzhang Li

Responsive image

Auto-TLDR; TAAN: Task-Aware Attention Network for Few-Shot Classification

Slides Poster

Few-shot classification aims to recognize unlabeled samples from unseen classes given only a few labeled samples.Current approaches of few-shot learning usually employ a metriclearning framework to learn a feature similarity comparison between a query (test) example and the few support (training) examples. However, these approaches all extract features from samples independently without looking at the entire task as a whole, and so fail to provide an enough discrimination to features. Moreover, the existing approaches lack the ability to select the most relevant features for the task at hand. In this work, we propose a novel algorithm called Task-Aware Attention Network (TAAN) to address the above problems in few-shot classification. By inserting a Task-Relevant Channel Attention Module into metric-based few-shot learners, TAAN generates channel attentions for each sample by aggregating the context of the entire support set and identifies the most relevant features for similarity comparison. The experiment demonstrates that TAAN is competitive in overall performance comparing to the recent state-of-the-art systems and improves the performance considerably over baseline systems on both mini-ImageNet and tiered-ImageNet benchmarks.

Similar papers

Meta Generalized Network for Few-Shot Classification

Wei Wu, Shanmin Pang, Zhiqiang Tian, Yaochen Li

Responsive image

Auto-TLDR; Meta Generalized Network for Few-Shot Classification

Similar

Few-shot classification aims to learn a well performance model with very limited labeled examples. There are mainly two directions for this aim, namely, meta- and metric-learning. Meta learning trains models in a particular way to fast adapt to new tasks, but it neglects variational features of images. Metric learning considers relationships among same or different classes, however on the downside, it usually fails to achieve competitive performance on unseen boundary examples. In this paper, we propose a Meta Generalized Network (MGNet) that aims to combine advantages of both meta- and metric-learning. There are two novel components in MGNet. Specifically, we first develop a meta backbone training method that both learns a flexible feature extractor and a classifier initializer efficiently, delightedly leading to fast adaption to unseen few-shot tasks without overfitting. Second, we design a trainable adaptive interval model to improve the cosine classifier, which increases the recognition accuracy of hard examples. We train the meta backbone in the training stage by all classes, and fine-tune the meta-backbone as well as train the adaptive classifier in the testing stage.

Complementing Representation Deficiency in Few-Shot Image Classification: A Meta-Learning Approach

Xian Zhong, Cheng Gu, Wenxin Huang, Lin Li, Shuqin Chen, Chia-Wen Lin

Responsive image

Auto-TLDR; Meta-learning with Complementary Representations Network for Few-Shot Learning

Slides Poster Similar

Few-shot learning is a challenging problem that has attracted more and more attention recently since abundant training samples are difficult to obtain in practical applications. Meta-learning has been proposed to address this issue, which focuses on quickly adapting a predictor as a base-learner to new tasks, given limited labeled samples. However, a critical challenge for meta-learning is the representation deficiency since it is hard to discover common information from a small number of training samples or even one, as is the representation of key features from such little information. As a result, a meta-learner cannot be trained well in a high-dimensional parameter space to generalize to new tasks. Existing methods mostly resort to extracting less expressive features so as to avoid the representation deficiency. Aiming at learning better representations, we propose a meta-learning approach with complemented representations network (MCRNet) for few-shot image classification. In particular, we embed a latent space, where latent codes are reconstructed with extra representation information to complement the representation deficiency. Furthermore, the latent space is established with variational inference, collaborating well with different base-learners, and can be extended to other models. Finally, our end-to-end framework achieves the state-of-the-art performance in image classification on three standard few-shot learning datasets.

MetaMix: Improved Meta-Learning with Interpolation-based Consistency Regularization

Yangbin Chen, Yun Ma, Tom Ko, Jianping Wang, Qing Li

Responsive image

Auto-TLDR; MetaMix: A Meta-Agnostic Meta-Learning Algorithm for Few-Shot Classification

Slides Poster Similar

Model-Agnostic Meta-Learning (MAML) and its variants are popular few-shot classification methods. They train an initializer across a variety of sampled learning tasks (also known as episodes) such that the initialized model can adapt quickly to new tasks. However, within each episode, current MAML-based algorithms have limitations in forming generalizable decision boundaries using only a few training examples. In this paper, we propose an approach called MetaMix. It generates virtual examples within each episode to regularize the backbone models. MetaMix can be applied in any of the MAML-based algorithms and learn the decision boundaries which are more generalizable to new tasks. Experiments on the mini-ImageNet, CUB, and FC100 datasets show that MetaMix improves the performance of MAML-based algorithms and achieves the state-of-the-art result when applied in Meta-Transfer Learning.

Augmented Bi-Path Network for Few-Shot Learning

Baoming Yan, Chen Zhou, Bo Zhao, Kan Guo, Yang Jiang, Xiaobo Li, Zhang Ming, Yizhou Wang

Responsive image

Auto-TLDR; Augmented Bi-path Network for Few-shot Learning

Slides Poster Similar

Few-shot Learning (FSL) which aims to learn from few labeled training data is becoming a popular research topic, due to the expensive labeling cost in many real-world applications. One kind of successful FSL method learns to compare the testing (query) image and training (support) image by simply concatenating the features of two images and feeding it into the neural network. However, with few labeled data in each class, the neural network has difficulty in learning or comparing the local features of two images. Such simple image-level comparison may cause serious mis-classification. To solve this problem, we propose Augmented Bi-path Network (ABNet) for learning to compare both global and local features on multi-scales. Specifically, the salient patches are extracted and embedded as the local features for every image. Then, the model learns to augment the features for better robustness. Finally, the model learns to compare global and local features separately, \emph{i.e.}, in two paths, before merging the similarities. Extensive experiments show that the proposed ABNet outperforms the state-of-the-art methods. Both quantitative and visual ablation studies are provided to verify that the proposed modules lead to more precise comparison results.

Explanation-Guided Training for Cross-Domain Few-Shot Classification

Jiamei Sun, Sebastian Lapuschkin, Wojciech Samek, Yunqing Zhao, Ngai-Man Cheung, Alexander Binder

Responsive image

Auto-TLDR; Explaination-Guided Training for Cross-Domain Few-Shot Classification

Slides Poster Similar

Cross-domain few-shot classification task (CD-FSC) combines few-shot classification with the requirement to generalize across domains represented by datasets. This setup faces challenges originating from the limited labeled data in each class and, additionally, from the domain shift between training and test sets. In this paper, we introduce a novel training approach for existing FSC models. It leverages on the explanation scores, obtained from existing explanation methods when applied to the predictions of FSC models, computed for intermediate feature maps of the models. Firstly, we tailor the layer-wise relevance propagation (LRP) method to explain the prediction outcomes of FSC models. Secondly, we develop a model-agnostic explanation-guided training strategy that dynamically finds and emphasizes the features which are important for the predictions. Our contribution does not target a novel explanation method but lies in a novel application of explanations for the training phase. We show that explanation-guided training effectively improves the model generalization. We observe improved accuracy for three different FSC models: RelationNet, cross attention network, and a graph neural network-based formulation, on five few-shot learning datasets: miniImagenet, CUB, Cars, Places, and Plantae.

Local Propagation for Few-Shot Learning

Yann Lifchitz, Yannis Avrithis, Sylvaine Picard

Responsive image

Auto-TLDR; Local Propagation for Few-Shot Inference

Slides Poster Similar

The challenge in few-shot learning is that available data is not enough to capture the underlying distribution. To mitigate this, two emerging directions are (a) using local image representations, essentially multiplying the amount of data by a constant factor, and (b) using more unlabeled data, for instance by transductive inference, jointly on a number of queries. In this work, we bring these two ideas together, introducing local propagation. We treat local image features as independent examples, we build a graph on them and we use it to propagate both the features themselves and the labels, known and unknown. Interestingly, since there is a number of features per image, even a single query gives rise to transductive inference. As a result, we provide a universally safe choice for few-shot inference under both non-transductive and transductive settings, improving accuracy over corresponding methods. This is in contrast to existing solutions, where one needs to choose the method depending on the quantity of available data.

Few-Shot Few-Shot Learning and the Role of Spatial Attention

Yann Lifchitz, Yannis Avrithis, Sylvaine Picard

Responsive image

Auto-TLDR; Few-shot Learning with Pre-trained Classifier on Large-Scale Datasets

Slides Poster Similar

Few-shot learning is often motivated by the ability of humans to learn new tasks from few examples. However, standard few-shot classification benchmarks assume that the representation is learned on a limited amount of base class data, ignoring the amount of prior knowledge that a human may have accumulated before learning new tasks. At the same time, even if a powerful representation is available, it may happen in some domain that base class data are limited or non-existent. This motivates us to study a problem where the representation is obtained from a classifier pre-trained on a large-scale dataset of a different domain, assuming no access to its training process, while the base class data are limited to few examples per class and their role is to adapt the representation to the domain at hand rather than learn from scratch. We adapt the representation in two stages, namely on the few base class data if available and on the even fewer data of new tasks. In doing so, we obtain from the pre-trained classifier a spatial attention map that allows focusing on objects and suppressing background clutter. This is important in the new problem, because when base class data are few, the network cannot learn where to focus implicitly. We also show that a pre-trained network may be easily adapted to novel classes, without meta-learning.

Graph-Based Interpolation of Feature Vectors for Accurate Few-Shot Classification

Yuqing Hu, Vincent Gripon, Stéphane Pateux

Responsive image

Auto-TLDR; Transductive Learning for Few-Shot Classification using Graph Neural Networks

Slides Poster Similar

In few-shot classification, the aim is to learn models able to discriminate classes using only a small number of labeled examples. In this context, works have proposed to introduce Graph Neural Networks (GNNs) aiming at exploiting the information contained in other samples treated concurrently, what is commonly referred to as the transductive setting in the literature. These GNNs are trained all together with a backbone feature extractor. In this paper, we propose a new method that relies on graphs only to interpolate feature vectors instead, resulting in a transductive learning setting with no additional parameters to train. Our proposed method thus exploits two levels of information: a) transfer features obtained on generic datasets, b) transductive information obtained from other samples to be classified. Using standard few-shot vision classification datasets, we demonstrate its ability to bring significant gains compared to other works.

Few-Shot Learning Based on Metric Learning Using Class Augmentation

Susumu Matsumi, Keiichi Yamada

Responsive image

Auto-TLDR; Metric Learning for Few-shot Learning

Slides Poster Similar

Few-shot learning is a machine learning problem in which new categories are learned from only a few samples. One approach for few-shot learning is metric learning, which learns an embedding space in which learning is efficient for few-shot samples. In this paper, we focus on metric learning and demonstrate that the number of classes in the training data used for metric learning has a greater impact on the accuracy of few-shot learning than the number of samples per class. We propose a few-shot learning approach based on metric learning in which the number of classes in the training data for performing metric learning is increased. The number of classes is augmented by synthesizing samples of imaginary classes at a feature level from the original training data. The proposed method is evaluated on the miniImageNet dataset using the nearest neighbor method or a support vector machine as the classifier, and the effectiveness of the approach is demonstrated.

Multiscale Attention-Based Prototypical Network for Few-Shot Semantic Segmentation

Yifei Zhang, Desire Sidibe, Olivier Morel, Fabrice Meriaudeau

Responsive image

Auto-TLDR; Few-shot Semantic Segmentation with Multiscale Feature Attention

Slides Similar

Deep learning-based image understanding techniques require a large number of labeled images for training. Few-shot semantic segmentation, on the contrary, aims at generalizing the segmentation ability of the model to new categories given only a few labeled samples. To tackle this problem, we propose a novel prototypical network (MAPnet) with multiscale feature attention. To fully exploit the representative features of target classes, we firstly extract rich contextual information of labeled support images via a multiscale feature enhancement module. The learned prototypes from support features provide further semantic guidance on the query image. Then we adaptively integrate multiple similarity-guided probability maps by attention mechanism, yielding an optimal pixel-wise prediction. Furthermore, the proposed method was validated on the PASCAL-5i dataset in terms of 1-way N-shot evaluation. We also test the model with weak annotations, including scribble and bounding box annotations. Both the qualitative and quantitative results demonstrate the advantages of our approach over other state-of-the-art methods.

Directed Variational Cross-encoder Network for Few-Shot Multi-image Co-segmentation

Sayan Banerjee, Divakar Bhat S, Subhasis Chaudhuri, Rajbabu Velmurugan

Responsive image

Auto-TLDR; Directed Variational Inference Cross Encoder for Class Agnostic Co-Segmentation of Multiple Images

Slides Poster Similar

In this paper, we propose a novel framework for class agnostic co-segmentation of multiple images using comparatively smaller datasets. We have developed a novel encoder-decoder network termed as DVICE (Directed Variational Inference Cross Encoder), which learns a continuous embedding space to ensure better similarity learning. We employ a combination of the proposed variational encoder-decoder and a novel few-shot learning approach to tackle the small sample size problem in co-segmentation. Furthermore, the proposed framework does not use any semantic class labels and is entirely class agnostic. Through exhaustive experimentation using a small volume of data over multiple datasets, we have demonstrated that our approach outperforms all existing state-of-the-art techniques.

A Self-Supervised GAN for Unsupervised Few-Shot Object Recognition

Khoi Nguyen, Sinisa Todorovic

Responsive image

Auto-TLDR; Self-supervised Few-Shot Object Recognition with a Triplet GAN

Slides Poster Similar

This paper addresses unsupervised few-shot object recognition, where all training images are unlabeled, and test images are divided into queries and a few labeled support images per object class of interest. The training and test images do not share object classes. We extend the vanilla GAN with two loss functions, both aimed at self-supervised learning. The first is a reconstruction loss that enforces the discriminator to reconstruct the probabilistically sampled latent code which has been used for generating the "fake" image. The second is a triplet loss that enforces the discriminator to output image encodings that are closer for more similar images. Evaluation, comparisons, and detailed ablation studies are done in the context of few-shot classification. Our approach significantly outperforms the state of the art on the Mini-Imagenet and Tiered-Imagenet datasets.

IFSM: An Iterative Feature Selection Mechanism for Few-Shot Image Classification

Chunhao Cai, Minglei Yuan, Tong Lu

Responsive image

Auto-TLDR; Iterative Feature Selection Mechanism for Few-Shot Learning

Slides Poster Similar

Nowadays many deep learning algorithms have been employed to solve different types of multimedia problems; however, most of them require a great amount of training data and tend to struggle in few-shot learning tasks. On the other hand, those methods designed for few-shot learning usually face the difficulty that once one or more samples show a relatively large bias, the predicted result may be much less reliable due to the fact that the sample will cause a large shift of class-level features during few-shot learning. To solve this problem, this paper presents a novel and Iterative Feature Selection Mechanism (IFSM) for few-shot image classification, which can be applied to lots of metric-based few-shot learners. IFSM learns to construct a more feasible class-level feature which is less affected by samples with relatively large biases, using an iterative approach. The proposed mechanism is tested on three previous state-of-the-art few-shot learning methods, and the experimental results show that the proposed mechanism considerably improves (by 1% to 2%) the image classification accuracies of both methods on the miniImageNet, tieredImageNet or CUB benchmarks in 5-way 5-shot tasks. This approves the effectiveness and generality of the proposed mechanism.

Self and Channel Attention Network for Person Re-Identification

Asad Munir, Niki Martinel, Christian Micheloni

Responsive image

Auto-TLDR; SCAN: Self and Channel Attention Network for Person Re-identification

Slides Poster Similar

Recent research has shown promising results for person re-identification by focusing on several trends. One is designing efficient metric learning loss functions such as triplet loss family to learn the most discriminative representations. The other is learning local features by designing part based architectures to form an informative descriptor from semantically coherent parts. Some efforts adjust distant outliers to their most similar positions by using soft attention and learn the relationship between distant similar features. However, only a few prior efforts focus on channel-wise dependencies and learn non-local sharp similar part features directly for the degraded data in the person re-identification task. In this paper, we propose a novel Self and Channel Attention Network (SCAN) to model long-range dependencies between channels and feature maps. We add multiple classifiers to learn discriminative global features by using classification loss. Self Attention (SA) module and Channel Attention (CA) module are introduced to model non-local and channel-wise dependencies in the learned features. Spectral normalization is applied to the whole network to stabilize the training process. Experimental results on the person re-identification benchmarks show the proposed components achieve significant improvement with respect to the baseline.

Dual-Attention Guided Dropblock Module for Weakly Supervised Object Localization

Junhui Yin, Siqing Zhang, Dongliang Chang, Zhanyu Ma, Jun Guo

Responsive image

Auto-TLDR; Dual-Attention Guided Dropblock for Weakly Supervised Object Localization

Slides Poster Similar

Attention mechanisms is frequently used to learn the discriminative features for better feature representations. In this paper, we extend the attention mechanism to the task of weakly supervised object localization (WSOL) and propose the dual-attention guided dropblock module (DGDM), which aims at learning the informative and complementary visual patterns for WSOL. This module contains two key components, the channel attention guided dropout (CAGD) and the spatial attention guided dropblock (SAGD). To model channel interdependencies, the CAGD ranks the channel attentions and treats the top-k attentions with the largest magnitudes as the important ones. It also keeps some low-valued elements to increase their value if they become important during training. The SAGD can efficiently remove the most discriminative information by erasing the contiguous regions of feature maps rather than individual pixels. This guides the model to capture the less discriminative parts for classification. Furthermore, it can also distinguish the foreground objects from the background regions to alleviate the attention misdirection. Experimental results demonstrate that the proposed method achieves new state-of-the-art localization performance.

Incorporating Depth Information into Few-Shot Semantic Segmentation

Yifei Zhang, Desire Sidibe, Olivier Morel, Fabrice Meriaudeau

Responsive image

Auto-TLDR; RDNet: A Deep Neural Network for Few-shot Segmentation Using Depth Information

Slides Poster Similar

Few-shot segmentation presents a significant challenge for semantic scene understanding under limited supervision. Namely, this task targets at generalizing the segmentation ability of the model to new categories given a few samples. In order to obtain complete scene information, we extend the RGB-centric methods to take advantage of complementary depth information. In this paper, we propose a two-stream deep neural network based on metric learning. Our method, known as RDNet, learns class-specific prototype representations within RGB and depth embedding spaces, respectively. The learned prototypes provide effective semantic guidance on the corresponding RGB and depth query image, leading to more accurate performance. Moreover, we build a novel outdoor scene dataset, known as Cityscapes-3i, using labeled RGB images and depth images from the Cityscapes dataset. We also perform ablation studies to explore the effective use of depth information in few-shot segmentation tasks. Experiments on Cityscapes-3i show that our method achieves promising results with visual and complementary geometric cues from only a few labeled examples.

Pose-Robust Face Recognition by Deep Meta Capsule Network-Based Equivariant Embedding

Fangyu Wu, Jeremy Simon Smith, Wenjin Lu, Bailing Zhang

Responsive image

Auto-TLDR; Deep Meta Capsule Network-based Equivariant Embedding Model for Pose-Robust Face Recognition

Similar

Despite the exceptional success in face recognition related technologies, handling large pose variations still remains a key challenge. Current techniques for pose-robust face recognition either, directly extract pose-invariant features, or first synthesize a face that matches the target pose before feature extraction. It is more desirable to learn face representations equivariant to pose variations. To this end, this paper proposes a deep meta Capsule network-based Equivariant Embedding Model (DM-CEEM) with three distinct novelties. First, the proposed RB-CapsNet allows DM-CEEM to learn an equivariant embedding for pose variations and achieve the desired transformation for input face images. Second, we introduce a new version of a Capsule network called RB-CapsNet to extend CapsNet to perform a profile-to-frontal face transformation in deep feature space. Third, we train the DM-CEEM in a meta way by treating a single overall classification target as multiple sub-tasks that satisfy certain unknown probabilities. In each sub-task, we sample the support and query sets randomly. The experimental results on both controlled and in-the-wild databases demonstrate the superiority of DM-CEEM over state-of-the-art.

Aggregating Object Features Based on Attention Weights for Fine-Grained Image Retrieval

Hongli Lin, Yongqi Song, Zixuan Zeng, Weisheng Wang

Responsive image

Auto-TLDR; DSAW: Unsupervised Dual-selection for Fine-Grained Image Retrieval

Similar

Object localization and local feature representation are key issues in fine-grained image retrieval. However, the existing unsupervised methods still need to be improved in these two aspects. For conquering these issues in a unified framework, a novel unsupervised scheme, named DSAW for short, is presented in this paper. Firstly, we proposed a dual-selection (DS) method, which achieves more accurate object localization by using adaptive threshold method to perform feature selection on local and global activation map in turn. Secondly, a novel and faster self-attention weights (AW) method is developed to weight local features by measuring their importance in the global context. Finally, we also evaluated the performance of the proposed method on five fine-grained image datasets and the results showed that our DSAW outperformed the existing best method.

Free-Form Image Inpainting Via Contrastive Attention Network

Xin Ma, Xiaoqiang Zhou, Huaibo Huang, Zhenhua Chai, Xiaolin Wei, Ran He

Responsive image

Auto-TLDR; Self-supervised Siamese inference for image inpainting

Slides Similar

Most deep learning based image inpainting approaches adopt autoencoder or its variants to fill missing regions in images. Encoders are usually utilized to learn powerful representational spaces, which are important for dealing with sophisticated learning tasks. Specifically, in the image inpainting task, masks with any shapes can appear anywhere in images (i.e., free-form masks) forming complex patterns. It is difficult for encoders to capture such powerful representations under this complex situation. To tackle this problem, we propose a self-supervised Siamese inference network to improve the robustness and generalization. Moreover, the restored image usually can not be harmoniously integrated into the exiting content, especially in the boundary area. To address this problem, we propose a novel Dual Attention Fusion module (DAF), which can combine both the restored and known regions in a smoother way and be inserted into decoder layers in a plug-and-play way. DAF is developed to not only adaptively rescale channel-wise features by taking interdependencies between channels into account but also force deep convolutional neural networks (CNNs) focusing more on unknown regions. In this way, the unknown region will be naturally filled from the outside to the inside. Qualitative and quantitative experiments on multiple datasets, including facial and natural datasets (i.e., Celeb-HQ, Pairs Street View, Places2 and ImageNet), demonstrate that our proposed method outperforms against state-of-the-arts in generating high-quality inpainting results.

Global Context-Based Network with Transformer for Image2latex

Nuo Pang, Chun Yang, Xiaobin Zhu, Jixuan Li, Xu-Cheng Yin

Responsive image

Auto-TLDR; Image2latex with Global Context block and Transformer

Slides Poster Similar

Image2latex usually means converts mathematical formulas in images into latex markup. It is a very challenging job due to the complex two-dimensional structure, variant scales of input, and very long representation sequence. Many researchers use encoder-decoder based model to solve this task and achieved good results. However, these methods don't make full use of the structure and position information of the formula. %In this paper, we improve the encoder by employing Global Context block and Transformer. To solve this problem, we propose a global context-based network with transformer that can (1) learn a more powerful and robust intermediate representation via aggregating global features and (2) encode position information explicitly and (3) learn latent dependencies between symbols by using self-attention mechanism. The experimental results on the dataset IM2LATEX-100K demonstrate the effectiveness of our method.

ACRM: Attention Cascade R-CNN with Mix-NMS for Metallic Surface Defect Detection

Junting Fang, Xiaoyang Tan, Yuhui Wang

Responsive image

Auto-TLDR; Attention Cascade R-CNN with Mix Non-Maximum Suppression for Robust Metal Defect Detection

Slides Poster Similar

Metallic surface defect detection is of great significance in quality control for production. However, this task is very challenging due to the noise disturbance, large appearance variation, and the ambiguous definition of the defect individual. Traditional image processing methods are unable to detect the damaged region effectively and efficiently. In this paper, we propose a new defect detection method, Attention Cascade R-CNN with Mix-NMS (ACRM), to classify and locate defects robustly. Three submodules are developed to achieve this goal: 1) a lightweight attention block is introduced, which can improve the ability in capture global and local feature both in the spatial and channel dimension; 2) we firstly apply the cascade R-CNN to our task, which exploits multiple detectors to sequentially refine the detection result robustly; 3) we introduce a new method named Mix Non-Maximum Suppression (Mix-NMS), which can significantly improve its ability in filtering the redundant detection result in our task. Extensive experiments on a real industrial dataset show that ACRM achieves state-of-the-art results compared to the existing methods, demonstrating the effectiveness and robustness of our detection method.

VTT: Long-Term Visual Tracking with Transformers

Tianling Bian, Yang Hua, Tao Song, Zhengui Xue, Ruhui Ma, Neil Robertson, Haibing Guan

Responsive image

Auto-TLDR; Visual Tracking Transformer with transformers for long-term visual tracking

Slides Similar

Long-term visual tracking is a challenging problem. State-of-the-art long-term trackers, e.g., GlobalTrack, utilize region proposal networks (RPNs) to generate target proposals. However, the performance of the trackers is affected by occlusions and large scale or ratio variations. To address these issues, in this paper, we are the first to propose a novel architecture with transformers for long-term visual tracking. Specifically, the proposed Visual Tracking Transformer (VTT) utilizes a transformer encoder-decoder architecture for aggregating global information to deal with occlusion and large scale or ratio variation. Furthermore, it also shows better discriminative power against instance-level distractors without the need for extra labeling and hard-sample mining. We conduct extensive experiments on three largest long-term tracking dataset and have achieved state-of-the-art performance.

Attentive Part-Aware Networks for Partial Person Re-Identification

Lijuan Huo, Chunfeng Song, Zhengyi Liu, Zhaoxiang Zhang

Responsive image

Auto-TLDR; Part-Aware Learning for Partial Person Re-identification

Slides Poster Similar

Partial person re-identification (re-ID) refers to re-identify a person through occluded images. It suffers from two major challenges, i.e., insufficient training data and incomplete probe image. In this paper, we introduce an automatic data augmentation module and a part-aware learning method for partial re-identification. On the one hand, we adopt the data augmentation to enhance the training data and help learns more stabler partial features. On the other hand, we intuitively find that the partial person images usually have fixed percentages of parts, therefore, in partial person re-id task, the probe image could be cropped from the pictures and divided into several different partial types following fixed ratios. Based on the cropped images, we propose the Cropping Type Consistency (CTC) loss to classify the cropping types of partial images. Moreover, in order to help the network better fit the generated and cropped data, we incorporate the Block Attention Mechanism (BAM) into the framework for attentive learning. To enhance the retrieval performance in the inference stage, we implement cropping on gallery images according to the predicted types of probe partial images. Through calculating feature distances between the partial image and the cropped holistic gallery images, we can recognize the right person from the gallery. To validate the effectiveness of our approach, we conduct extensive experiments on the partial re-ID benchmarks and achieve state-of-the-art performance.

Context Matters: Self-Attention for Sign Language Recognition

Fares Ben Slimane, Mohamed Bouguessa

Responsive image

Auto-TLDR; Attentional Network for Continuous Sign Language Recognition

Slides Poster Similar

This paper proposes an attentional network for the task of Continuous Sign Language Recognition. The proposed approach exploits co-independent streams of data to model the sign language modalities. These different channels of information can share a complex temporal structure between each other. For that reason, we apply attention to synchronize and help capture entangled dependencies between the different sign language components. Even though Sign Language is multi-channel, handshapes represent the central entities in sign interpretation. Seeing handshapes in their correct context defines the meaning of a sign. Taking that into account, we utilize the attention mechanism to efficiently aggregate the hand features with their appropriate Spatio-temporal context for better sign recognition. We found that by doing so the model is able to identify the essential Sign Language components that revolve around the dominant hand and the face areas. We test our model on the benchmark dataset RWTH-PHOENIX-Weather 2014, yielding competitive results.

Context-Aware Residual Module for Image Classification

Jing Bai, Ran Chen

Responsive image

Auto-TLDR; Context-Aware Residual Module for Image Classification

Slides Poster Similar

Attention module has achieved great success in numerous vision tasks. However, existing visual attention modules generally consider the features of a single-scale, and cannot make full use of their multi-scale contextual information. Meanwhile, the multi-scale spatial feature representation has demonstrated its outstanding performance in a wide range of applications. However, the multi-scale features are always represented in a layer-wise manner, i.e. it is impossible to know their contextual information at a granular level. Focusing on the above issue, a context-aware residual module for image classification is proposed in this paper. It consists of a novel multi-scale channel attention module MSCAM to learn refined channel weights by considering the visual features of its own scale and its surrounding fields, and a multi-scale spatial aware module MSSAM to further capture more spatial information. Either or both of the two modules can be plugged into any CNN-based backbone image classification architecture with a short residual connection to obtain the context-aware enhanced features. The experiments on public image recognition datasets including CIFAR10, CIFAR100,Tiny-ImageNet and ImageNet consistently demonstrate that our proposed modules significantly outperforms a wide-used state-of-the-art methods, e.g., ResNet and the lightweight networks of MobileNet and SqueezeeNet.

Boundary-Aware Graph Convolution for Semantic Segmentation

Hanzhe Hu, Jinshi Cui, Jinshi Hongbin Zha

Responsive image

Auto-TLDR; Boundary-Aware Graph Convolution for Semantic Segmentation

Slides Poster Similar

Recent works have made great progress in semantic segmentation by exploiting contextual information in a local or global manner with dilated convolutions, pyramid pooling or self-attention mechanism. However, few works have focused on harvesting boundary information to improve the segmentation performance. In order to enhance the feature similarity within the object and keep discrimination from other objects, we propose a boundary-aware graph convolution (BGC) module to propagate features within the object. The graph reasoning is performed among pixels of the same object apart from the boundary pixels. Based on the proposed BGC module, we further introduce the Boundary-aware Graph Convolution Network(BGCNet), which consists of two main components including a basic segmentation network and the BGC module, forming a coarse-to-fine paradigm. Specifically, the BGC module takes the coarse segmentation feature map as node features and boundary prediction to guide graph construction. After graph convolution, the reasoned feature and the input feature are fused together to get the refined feature, producing the refined segmentation result. We conduct extensive experiments on three popular semantic segmentation benchmarks including Cityscapes, PASCAL VOC 2012 and COCO Stuff, and achieve state-of-the-art performance on all three benchmarks.

Multi-Order Feature Statistical Model for Fine-Grained Visual Categorization

Qingtao Wang, Ke Zhang, Shaoli Huang, Lianbo Zhang, Jin Fan

Responsive image

Auto-TLDR; Multi-Order Feature Statistical Method for Fine-Grained Visual Categorization

Slides Poster Similar

Fine-grained visual categorization aims to learn a robust image representation modeling subtle differences from similar categories. Existing methods in this field tackle the problem by designing complex frameworks, which produce high-level features by performing first-order or second-order pooling. Despite the impressive performance achieved by these strategies, the single-order networks only carry linear or non-linear information of the last convolutional layer, neglecting the fact that feature from different orders are mutually complementary. In this paper, we propose a Multi-Order Feature Statistical Method (MOFS), which learns fine-grained features characterizing multiple orders. Specifically, the MOFS consists of two sub-modules: (i) a first-order module modeling both mid-level and high-level features. (ii) a covariance feature statistical module capturing high-order features. By deploying these two sub-modules on the top of existing backbone networks, MOFS simultaneously captures multi-level of discrimative patters including local, global and co-related patters. We evaluate the proposed method on three challenging benchmarks, namely CUB-200-2011, Stanford Cars, and FGVC-Aircraft. Compared with state-of-the-art methods, experiments results exhibit superior performance in recognizing fine-grained objects

A Prototype-Based Generalized Zero-Shot Learning Framework for Hand Gesture Recognition

Jinting Wu, Yujia Zhang, Xiao-Guang Zhao

Responsive image

Auto-TLDR; Generalized Zero-Shot Learning for Hand Gesture Recognition

Slides Poster Similar

Hand gesture recognition plays a significant role in human-computer interaction for understanding various human gestures and their intent. However, most prior works can only recognize gestures of limited labeled classes and fail to adapt to new categories. The task of Generalized Zero-Shot Learning (GZSL) for hand gesture recognition aims to address the above issue by leveraging semantic representations and detecting both seen and unseen class samples. In this paper, we propose an end-to-end prototype-based GZSL framework for hand gesture recognition which consists of two branches. The first branch is a prototype-based detector that learns gesture representations and determines whether an input sample belongs to a seen or unseen category. The second branch is a zero-shot label predictor which takes the features of unseen classes as input and outputs predictions through a learned mapping mechanism between the feature and the semantic space. We further establish a hand gesture dataset that specifically targets this GZSL task, and comprehensive experiments on this dataset demonstrate the effectiveness of our proposed approach on recognizingQuestionnaire both seen and unseen gestures.

VSB^2-Net: Visual-Semantic Bi-Branch Network for Zero-Shot Hashing

Xin Li, Xiangfeng Wang, Bo Jin, Wenjie Zhang, Jun Wang, Hongyuan Zha

Responsive image

Auto-TLDR; VSB^2-Net: inductive zero-shot hashing for image retrieval

Slides Poster Similar

Zero-shot hashing aims at learning hashing model from seen classes and the obtained model is capable of generalizing to unseen classes for image retrieval. Inspired by zero-shot learning, existing zero-shot hashing methods usually transfer the supervised knowledge from seen to unseen classes, by embedding the hamming space to a shared semantic space. However, this makes instances difficult to distinguish due to limited hashing bit numbers, especially for semantically similar unseen classes. We propose a novel inductive zero-shot hashing framework, i.e., VSB^2-Net, where both semantic space and visual feature space are embedded to the same hamming space instead. The reconstructive semantic relationships are established in the hamming space, preserving local similarity relationships and explicitly enlarging the discrepancy between semantic hamming vectors. A two-task architecture, comprising of classification module and visual feature reconstruction module, is employed to enhance the generalization and transfer abilities. Extensive evaluation results on several benchmark datasets demonstratethe superiority of our proposed method compared to several state-of-the-art baselines.

Attention Pyramid Module for Scene Recognition

Zhinan Qiao, Xiaohui Yuan, Chengyuan Zhuang, Abolfazl Meyarian

Responsive image

Auto-TLDR; Attention Pyramid Module for Multi-Scale Scene Recognition

Slides Poster Similar

The unrestricted open vocabulary and diverse substances of scenery images bring significant challenges to scene recognition. However, most deep learning architectures and attention methods are developed on general-purpose datasets and omit the characteristics of scene data. In this paper, we exploit the attention pyramid module (APM) to tackle the predicament of scene recognition. Our method streamlines the multi-scale scene recognition pipeline, learns comprehensive scene features at various scales and locations, addresses the interdependency among scales, and further assists feature re-calibration as well as aggregation process. APM is extremely light-weighted and can be easily plugged into existing network architectures in a parameter-efficient manner. By simply integrating APM into ResNet-50, we obtain a 3.54\% boost in terms of top-1 accuracy on the benchmark scene dataset. Comprehensive experiments show that APM achieves better performance comparing with state-of-the-art attention methods using significant less computation budget. Code and pre-trained models will be made publicly available.

Task-based Focal Loss for Adversarially Robust Meta-Learning

Yufan Hou, Lixin Zou, Weidong Liu

Responsive image

Auto-TLDR; Task-based Adversarial Focal Loss for Few-shot Meta-Learner

Slides Poster Similar

Adversarial robustness of machine learning has been widely studied in recent years, and a series of effective methods are proposed to resist adversarial attacks. However, less attention is paid to few-shot meta-learners which are much more vulnerable due to the lack of training samples. In this paper, we propose Task-based Adversarial Focal Loss (TAFL) to handle this tough challenge on a typical meta-learner called MAML. More concretely, we regard few-shot classification tasks as normal samples in learning models and apply focal loss mechanism on them. Our proposed method focuses more on adversarially fragile tasks, leading to improvement on overall model robustness. Results of extensive experiments on several benchmarks demonstrate that TAFL can effectively promote the performance of the meta-learner on adversarial examples with elaborately designed perturbations.

Is the Meta-Learning Idea Able to Improve the Generalization of Deep Neural Networks on the Standard Supervised Learning?

Xiang Deng, Zhongfei Zhang

Responsive image

Auto-TLDR; Meta-learning Based Training of Deep Neural Networks for Few-Shot Learning

Slides Poster Similar

Substantial efforts have been made on improving the generalization abilities of deep neural networks (DNNs) in order to obtain better performances without introducing more parameters. On the other hand, meta-learning approaches exhibit powerful generalization on new tasks in few-shot learning. Intuitively, few-shot learning is more challenging than the standard supervised learning as each target class only has a very few or no training samples. The natural question that arises is whether the meta-learning idea can be used for improving the generalization of DNNs on the standard supervised learning. In this paper, we propose a novel meta-learning based training procedure (MLTP) for DNNs and demonstrate that the meta-learning idea can indeed improve the generalization abilities of DNNs. MLTP simulates the meta-training process by considering a batch of training samples as a task. The key idea is that the gradient descent step for improving the current task performance should also improve a new task performance, which is ignored by the current standard procedure for training neural networks. MLTP also benefits from all the existing training techniques such as dropout, weight decay, and batch normalization. We evaluate MLTP by training a variety of small and large neural networks on three benchmark datasets, i.e., CIFAR-10, CIFAR-100, and Tiny ImageNet. The experimental results show a consistently improved generalization performance on all the DNNs with different sizes, which verifies the promise of MLTP and demonstrates that the meta-learning idea is indeed able to improve the generalization of DNNs on the standard supervised learning.

Large-Scale Historical Watermark Recognition: Dataset and a New Consistency-Based Approach

Xi Shen, Ilaria Pastrolin, Oumayma Bounou, Spyros Gidaris, Marc Smith, Olivier Poncet, Mathieu Aubry

Responsive image

Auto-TLDR; Historical Watermark Recognition with Fine-Grained Cross-Domain One-Shot Instance Recognition

Slides Poster Similar

Historical watermark recognition is a highly practical, yet unsolved challenge for archivists and historians. With a large number of well-defined classes, cluttered and noisy samples, different types of representations, both subtle differences between classes and high intra-class variation, historical watermarks are also challenging for pattern recognition. In this paper, overcoming the difficulty of data collection, we present a large public dataset with more than 6k new photographs, allowing for the first time to tackle at scale the scenarios of practical interest for scholars: one-shot instance recognition and cross-domain one-shot instance recognition amongst more than 16k fine-grained classes. We demonstrate that this new dataset is large enough to train modern deep learning approaches, and show that standard methods can be improved considerably by using mid-level deep features. More precisely, we design both a matching score and a feature fine-tuning strategy based on filtering local matches using spatial consistency. This consistency-based approach provides important performance boost compared to strong baselines. Our model achieves 55\% as top-1 accuracy on our very challenging 16,753-class one-shot cross-domain recognition task, each class described by a single drawing from the classic Briquet catalog. In addition to watermark classification, we show our approach provides promising results on fine-grained sketch-based image retrieval.

Progressive Learning Algorithm for Efficient Person Re-Identification

Zhen Li, Hanyang Shao, Liang Niu, Nian Xue

Responsive image

Auto-TLDR; Progressive Learning Algorithm for Large-Scale Person Re-Identification

Slides Poster Similar

This paper studies the problem of Person Re-Identification (ReID) for large-scale applications. Recent research efforts have been devoted to building complicated part models, which introduce considerably high computational cost and memory consumption, inhibiting its practicability in large-scale applications. This paper aims to develop a novel learning strategy to find efficient feature embeddings while maintaining the balance of accuracy and model complexity. More specifically, we find by enhancing the classical triplet loss together with cross-entropy loss, our method can explore the hard examples and build a discriminant feature embedding yet compact enough for large-scale applications. Our method is carried out progressively using Bayesian optimization, and we call it the Progressive Learning Algorithm (PLA). Extensive experiments on three large-scale datasets show that our PLA is comparable or better than the state-of-the-arts. Especially, on the challenging Market-1501 dataset, we achieve Rank-1=94.7\%/mAP=89.4\% while saving at least 30\% parameters than strong part models.

Global-Local Attention Network for Semantic Segmentation in Aerial Images

Minglong Li, Lianlei Shan, Weiqiang Wang

Responsive image

Auto-TLDR; GLANet: Global-Local Attention Network for Semantic Segmentation

Slides Poster Similar

Errors in semantic segmentation task could be classified into two types: large area misclassification and local inaccurate boundaries. Previously attention based methods capture rich global contextual information, this is beneficial to diminish the first type of error, but local imprecision still exists. In this paper we propose Global-Local Attention Network (GLANet) with a simultaneous consideration of global context and local details. Specifically, our GLANet is composed of two branches namely global attention branch and local attention branch, and three different modules are embedded in the two branches for the purpose of modeling semantic interdependencies in spatial, channel and boundary dimensions respectively. We sum the outputs of the two branches to further improve feature representation, leading to more precise segmentation results. The proposed method achieves very competitive segmentation accuracy on two public aerial image datasets, bringing significant improvements over baseline.

MANet: Multimodal Attention Network Based Point-View Fusion for 3D Shape Recognition

Yaxin Zhao, Jichao Jiao, Ning Li

Responsive image

Auto-TLDR; Fusion Network for 3D Shape Recognition based on Multimodal Attention Mechanism

Slides Poster Similar

3D shape recognition has attracted more and more attention as a task of 3D vision research. The proliferation of 3D data encourages various deep learning methods based on 3D data. Now there have been many deep learning models based on point-cloud data or multi-view data alone. However, in the era of big data, integrating data of two different modals to obtain a unified 3D shape descriptor is bound to improve the recognition accuracy. Therefore, this paper proposes a fusion network based on multimodal attention mechanism for 3D shape recognition. Considering the limitations of multi-view data, we introduce a soft attention scheme, which can use the global point-cloud features to filter the multi-view features, and then realize the effective fusion of the two features. More specifically, we obtain the enhanced multi-view features by mining the contribution of each multi-view image to the overall shape recognition, and then fuse the point-cloud features and the enhanced multi-view features to obtain a more discriminative 3D shape descriptor. We have performed relevant experiments on the ModelNet40 dataset, and experimental results verify the effectiveness of our method.

Rotation Invariant Aerial Image Retrieval with Group Convolutional Metric Learning

Hyunseung Chung, Woo-Jeoung Nam, Seong-Whan Lee

Responsive image

Auto-TLDR; Robust Remote Sensing Image Retrieval Using Group Convolution with Attention Mechanism and Metric Learning

Slides Poster Similar

Remote sensing image retrieval (RSIR) is the process of ranking database images depending on the degree of similarity compared to the query image. As the complexity of RSIR increases due to the diversity in shooting range, angle, and location of remote sensors, there is an increasing demand for methods to address these issues and improve retrieval performance. In this work, we introduce a novel method for retrieving aerial images by merging group convolution with attention mechanism and metric learning, resulting in robustness to rotational variations. For refinement and emphasis on important features, we applied channel attention in each group convolution stage. By utilizing the characteristics of group convolution and channel-wise attention, it is possible to acknowledge the equality among rotated but identically located images. The training procedure has two main steps: (i) training the network with Aerial Image Dataset (AID) for classification, (ii) fine-tuning the network with triplet-loss for retrieval with Google Earth South Korea and NWPU-RESISC45 datasets. Results show that the proposed method performance exceeds other state-of-the-art retrieval methods in both rotated and original environments. Furthermore, we utilize class activation maps (CAM) to visualize the distinct difference of main features between our method and baseline, resulting in better adaptability in rotated environments.

Open Set Domain Recognition Via Attention-Based GCN and Semantic Matching Optimization

Xinxing He, Yuan Yuan, Zhiyu Jiang

Responsive image

Auto-TLDR; Attention-based GCN and Semantic Matching Optimization for Open Set Domain Recognition

Slides Poster Similar

Open set domain recognition has got the attention in recent years. The task aims to specifically classify each sample in the practical unlabeled target domain, which consists of all known classes in the manually labeled source domain and target-specific unknown categories. The absence of annotated training data or auxiliary attribute information for unknown categories makes this task especially difficult. Moreover, exiting domain discrepancy in label space and data distribution further distracts the knowledge transferred from known classes to unknown classes. To address these issues, this work presents an end-to-end model based on attention-based GCN and semantic matching optimization, which first employs the attention mechanism to enable the central node to learn more discriminating representations from its neighbors in the knowledge graph. Moreover, a coarse-to-fine semantic matching optimization approach is proposed to progressively bridge the domain gap. Experimental results validate that the proposed model not only has superiority on recognizing the images of known and unknown classes, but also can adapt to various openness of the target domain.

Zero-Shot Text Classification with Semantically Extended Graph Convolutional Network

Tengfei Liu, Yongli Hu, Junbin Gao, Yanfeng Sun, Baocai Yin

Responsive image

Auto-TLDR; Semantically Extended Graph Convolutional Network for Zero-shot Text Classification

Slides Poster Similar

As a challenging task of Natural Language Processing(NLP), zero-shot text classification has attracted more and more attention recently. It aims to detect classes that the model has never seen in the training set. For this purpose, a feasible way is to construct connection between the seen and unseen classes by semantic extension and classify the unseen classes by information propagation over the connection. Although many related zero-shot text classification methods have been exploited, how to realize semantic extension properly and propagate information effectively is far from solved. In this paper, we propose a novel zero-shot text classification method called Semantically Extended Graph Convolutional Network (SEGCN). In the proposed method, the semantic category knowledge from ConceptNet is utilized to semantic extension for linking seen classes to unseen classes and constructing a graph of all classes. Then, we build upon Graph Convolutional Network (GCN) for predicting the textual classifier for each category, which transfers the category knowledge by the convolution operators on the constructed graph and is trained in a semi-supervised manner using the samples of the seen classes. The experimental results on Dbpedia and 20newsgroup datasets show that our method outperforms the state of the art zero-shot text classification methods.

Progressive Scene Segmentation Based on Self-Attention Mechanism

Yunyi Pan, Yuan Gan, Kun Liu, Yan Zhang

Responsive image

Auto-TLDR; Two-Stage Semantic Scene Segmentation with Self-Attention

Slides Poster Similar

Semantic scene segmentation is vital for a large variety of applications as it enables understanding of 3D data. Nowadays, various approaches based upon point clouds ignore the mathematical distribution of points and treat the points equally. The methods following this direction neglect the imbalance problem of samples that naturally exists in scenes. To avoid these issues, we propose a two-stage semantic scene segmentation framework based on self-attention mechanism and achieved state-of-the-art performance on 3D scene understanding tasks. We split the whole task into two small ones which efficiently relief the sample imbalance issue. In addition, we have designed a new self-attention block which could be inserted into submanifold convolution networks to model the long-range dependencies that exists among points. The proposed network consists of an encoder and a decoder, with the spatial-wise and channel-wise attention modules inserted. The two-stage network shares a U-Net architecture and is an end-to-end trainable framework which could predict the semantic label for the scene point clouds fed into it. Experiments on standard benchmarks of 3D scenes implies that our network could perform at par or better than the existing state-of-the-art methods.

A Transformer-Based Radical Analysis Network for Chinese Character Recognition

Chen Yang, Qing Wang, Jun Du, Jianshu Zhang, Changjie Wu, Jiaming Wang

Responsive image

Auto-TLDR; Transformer-based Radical Analysis Network for Chinese Character Recognition

Slides Poster Similar

Recently, a novel radical analysis network (RAN) has the capability of effectively recognizing unseen Chinese character classes and largely reducing the requirement of training data by treating a Chinese character as a hierarchical composition of radicals rather than a single character class.} However, when dealing with more challenging issues, such as the recognition of complicated characters, low-frequency character categories, and characters in natural scenes, RAN still has a lot of room for improvement. In this paper, we explore options to further improve the structure generalization and robustness capability of RAN with the Transformer architecture, which has achieved start-of-the-art results for many sequence-to-sequence tasks. More specifically, we propose to replace the original attention module in RAN with the transformer decoder, which is named as a transformer-based radical analysis network (RTN). The experimental results show that the proposed approach can significantly outperform the RAN on both printed Chinese character database and natural scene Chinese character database. Meanwhile, further analysis proves that RTN can be better generalized to complex samples and low-frequency characters, and has better robustness in recognizing Chinese characters with different attributes.

Generalized Local Attention Pooling for Deep Metric Learning

Carlos Roig Mari, David Varas, Issey Masuda, Juan Carlos Riveiro, Elisenda Bou-Balust

Responsive image

Auto-TLDR; Generalized Local Attention Pooling for Deep Metric Learning

Slides Poster Similar

Deep metric learning has been key to recent advances in face verification and image retrieval amongst others. These systems consist on a feature extraction block (extracts feature maps from images) followed by a spatial dimensionality reduction block (generates compact image representations from the feature maps) and an embedding generation module (projects the image representation to the embedding space). While research on deep metric learning has focused on improving the losses for the embedding generation module, the dimensionality reduction block has been overlooked. In this work, we propose a novel method to generate compact image representations which uses local spatial information through an attention mechanism, named Generalized Local Attention Pooling (GLAP). This method, instead of being placed at the end layer of the backbone, is connected at an intermediate level, resulting in lower memory requirements. We assess the performance of the aforementioned method by comparing it with multiple dimensionality reduction techniques, demonstrating the importance of using attention weights to generate robust compact image representations. Moreover, we compare the performance of multiple state-of-the-art losses using the standard deep metric learning system against the same experiment with our GLAP. Experiments showcase that the proposed Generalized Local Attention Pooling mechanism outperforms other pooling methods when compared with current state-of-the-art losses for deep metric learning.

Attention As Activation

Yimian Dai, Stefan Oehmcke, Fabian Gieseke, Yiquan Wu, Kobus Barnard

Responsive image

Auto-TLDR; Attentional Activation Units for Convolutional Networks

Slides Similar

Activation functions and attention mechanisms are typically treated as having different purposes and have evolved differently. However, both concepts can be formulated as a non-linear gating function. Inspired by their similarity, we propose a novel type of activation units called attentional activation~(ATAC) units as a unification of activation functions and attention mechanisms. In particular, we propose a local channel attention module for the simultaneous non-linear activation and element-wise feature refinement, which locally aggregates point-wise cross-channel feature contexts. By replacing the well-known rectified linear units by such ATAC units in convolutional networks, we can construct fully attentional networks that perform significantly better with a modest number of additional parameters. We conducted detailed ablation studies on the ATAC units using several host networks with varying network depths to empirically verify the effectiveness and efficiency of the units. Furthermore, we compared the performance of the ATAC units against existing activation functions as well as other attention mechanisms on the CIFAR-10, CIFAR-100, and ImageNet datasets. Our experimental results show that networks constructed with the proposed ATAC units generally yield performance gains over their competitors given a comparable number of parameters.

Local Clustering with Mean Teacher for Semi-Supervised Learning

Zexi Chen, Benjamin Dutton, Bharathkumar Ramachandra, Tianfu Wu, Ranga Raju Vatsavai

Responsive image

Auto-TLDR; Local Clustering for Semi-supervised Learning

Slides Similar

The Mean Teacher (MT) model of Tarvainen and Valpola has shown favorable performance on several semi-supervised benchmark datasets. MT maintains a teacher model's weights as the exponential moving average of a student model's weights and minimizes the divergence between their probability predictions under diverse perturbations of the inputs. However, MT is known to suffer from confirmation bias, that is, reinforcing incorrect teacher model predictions. In this work, we propose a simple yet effective method called Local Clustering (LC) to mitigate the effect of confirmation bias. In MT, each data point is considered independent of other points during training; however, data points are likely to be close to each other in feature space if they share similar features. Motivated by this, we cluster data points locally by minimizing the pairwise distance between neighboring data points in feature space. Combined with a standard classification cross-entropy objective on labeled data points, the misclassified unlabeled data points are pulled towards high-density regions of their correct class with the help of their neighbors, thus improving model performance. We demonstrate on semi-supervised benchmark datasets SVHN and CIFAR-10 that adding our LC loss to MT yields significant improvements compared to MT and performance comparable to the state of the art in semi-supervised learning.

Cc-Loss: Channel Correlation Loss for Image Classification

Zeyu Song, Dongliang Chang, Zhanyu Ma, Li Xiaoxu, Zheng-Hua Tan

Responsive image

Auto-TLDR; Channel correlation loss for ad- dressing image classification

Slides Poster Similar

The loss function is a key component in deep learning models. A commonly used loss function for classification is the cross-entropy loss, which is simple yet effective application of information theory for classification problems. Based on this loss, many other loss functions have been proposed, e.g., by adding intra-class and inter-class constraints to enhance the discriminative the ability of the learned features. However, these loss functions fail to consider the connections between the feature distribution and the model structure. Aiming at ad- dressing this problem, we propose a channel correlation loss (CC-Loss) that is able to constrain the specific relations between classes and channels as well as maintain the intra- and the inter-class separability. CC-Loss uses a channel attention module to generate channel attention of features for each sample in the training stage. Next, an Euclidean distance matrix is calculated to make the channel attention vectors associated with the same class become identical and to increase the difference between different classes. Finally, we obtain a feature embedding with good intra-class compactness and inter- class separability. Experimental results show that two different backbone models trained with the proposed CC-Loss outperform the state-of-the-art loss functions on three image classification datasets.

A Multi-Head Self-Relation Network for Scene Text Recognition

Zhou Junwei, Hongchao Gao, Jiao Dai, Dongqin Liu, Jizhong Han

Responsive image

Auto-TLDR; Multi-head Self-relation Network for Scene Text Recognition

Slides Poster Similar

The text embedded in scene images can be seen everywhere in our lives. However, recognizing text from natural scene images is still a challenge because of its diverse shapes and distorted patterns. Recently, advanced recognition networks generally treat scene text recognition as a sequence prediction task. Although achieving excellent performance, these recognition networks consider the feature map cells as independent individuals and update cells state without utilizing the information of their neighboring cells. And the local receptive field of traditional convolutional neural network (CNN) makes a single cell that cannot cover the whole text region in an image. Due to these issues, the existing recognition networks cannot extract the global context in a visual scene. To deal with the above problems, we propose a Multi-head Self-relation Network(MSRN) for scene text recognition in this paper. The MSRN consists of several multi-head self-relation layers, which is designed for extracting the global context of a visual scene, so that transforms a cell into a new cell that fuses the information of the related cells. Furthermore, experiments over several public datasets demonstrate that our proposed recognition network achieves superior performance on several benchmark datasets including IC03, IC13, IC15, SVT-Perspective.

Prior Knowledge about Attributes: Learning a More Effective Potential Space for Zero-Shot Recognition

Chunlai Chai, Yukuan Lou

Responsive image

Auto-TLDR; Attribute Correlation Potential Space Generation for Zero-Shot Learning

Slides Poster Similar

Zero-shot learning (ZSL) aims to recognize unseen classes accurately by learning seen classes and known attributes, but correlations in attributes were ignored by previous study which lead to classification results confused. To solve this problem, we build an Attribute Correlation Potential Space Generation (ACPSG) model which uses a graph convolution network and attribute correlation to generate a more discriminating potential space. Combining potential discrimination space and user-defined attribute space, we can better classify unseen classes. Our approach outperforms some existing state-of-the-art methods on several benchmark datasets, whether it is conventional ZSL or generalized ZSL.

Parallel Network to Learn Novelty from the Known

Shuaiyuan Du, Chaoyi Hong, Zhiyu Pan, Chen Feng, Zhiguo Cao

Responsive image

Auto-TLDR; Trainable Parallel Network for Pseudo-Novel Detection

Slides Poster Similar

Towards multi-class novelty detection, we propose an end-to-end trainable Parallel Network (PN) using no additional data but only the training set itself. Our key idea is to first divide the training set into successive subtasks of pseudo-novelty detection to simulate real scenarios. We then design a multi-branch PN to well address the fine-grained division, which yields a compressed and more discriminative classification space and forms a natural ensemble. In practice, we divide the training data into subsets consisting of known and pseudo-novel classes. Each subset forms a sub-task fed to one branch in PN. During training, both known and pseudo-novel classes are uniformly distributed over the branches for better data balance and model diversity. By distinguishing between the known and the diverse pseudo-novel, PN extracts the concept of novelty in a compressed classification space. This provides PN with generalization ability to real novel classes which are absent during training. During online inference, this ability is further strengthened with the ensemble of PN's multiple branches. Experiments on three public datasets show our method's superiority to the mainstream methods.