Explanation-Guided Training for Cross-Domain Few-Shot Classification

Jiamei Sun, Sebastian Lapuschkin, Wojciech Samek, Yunqing Zhao, Ngai-Man Cheung, Alexander Binder

Responsive image

Auto-TLDR; Explaination-Guided Training for Cross-Domain Few-Shot Classification

Slides Poster

Cross-domain few-shot classification task (CD-FSC) combines few-shot classification with the requirement to generalize across domains represented by datasets. This setup faces challenges originating from the limited labeled data in each class and, additionally, from the domain shift between training and test sets. In this paper, we introduce a novel training approach for existing FSC models. It leverages on the explanation scores, obtained from existing explanation methods when applied to the predictions of FSC models, computed for intermediate feature maps of the models. Firstly, we tailor the layer-wise relevance propagation (LRP) method to explain the prediction outcomes of FSC models. Secondly, we develop a model-agnostic explanation-guided training strategy that dynamically finds and emphasizes the features which are important for the predictions. Our contribution does not target a novel explanation method but lies in a novel application of explanations for the training phase. We show that explanation-guided training effectively improves the model generalization. We observe improved accuracy for three different FSC models: RelationNet, cross attention network, and a graph neural network-based formulation, on five few-shot learning datasets: miniImagenet, CUB, Cars, Places, and Plantae.

Similar papers

TAAN: Task-Aware Attention Network for Few-Shot Classification

Zhe Wang, Li Liu, Fanzhang Li

Responsive image

Auto-TLDR; TAAN: Task-Aware Attention Network for Few-Shot Classification

Slides Poster Similar

Few-shot classification aims to recognize unlabeled samples from unseen classes given only a few labeled samples.Current approaches of few-shot learning usually employ a metriclearning framework to learn a feature similarity comparison between a query (test) example and the few support (training) examples. However, these approaches all extract features from samples independently without looking at the entire task as a whole, and so fail to provide an enough discrimination to features. Moreover, the existing approaches lack the ability to select the most relevant features for the task at hand. In this work, we propose a novel algorithm called Task-Aware Attention Network (TAAN) to address the above problems in few-shot classification. By inserting a Task-Relevant Channel Attention Module into metric-based few-shot learners, TAAN generates channel attentions for each sample by aggregating the context of the entire support set and identifies the most relevant features for similarity comparison. The experiment demonstrates that TAAN is competitive in overall performance comparing to the recent state-of-the-art systems and improves the performance considerably over baseline systems on both mini-ImageNet and tiered-ImageNet benchmarks.

MetaMix: Improved Meta-Learning with Interpolation-based Consistency Regularization

Yangbin Chen, Yun Ma, Tom Ko, Jianping Wang, Qing Li

Responsive image

Auto-TLDR; MetaMix: A Meta-Agnostic Meta-Learning Algorithm for Few-Shot Classification

Slides Poster Similar

Model-Agnostic Meta-Learning (MAML) and its variants are popular few-shot classification methods. They train an initializer across a variety of sampled learning tasks (also known as episodes) such that the initialized model can adapt quickly to new tasks. However, within each episode, current MAML-based algorithms have limitations in forming generalizable decision boundaries using only a few training examples. In this paper, we propose an approach called MetaMix. It generates virtual examples within each episode to regularize the backbone models. MetaMix can be applied in any of the MAML-based algorithms and learn the decision boundaries which are more generalizable to new tasks. Experiments on the mini-ImageNet, CUB, and FC100 datasets show that MetaMix improves the performance of MAML-based algorithms and achieves the state-of-the-art result when applied in Meta-Transfer Learning.

Local Propagation for Few-Shot Learning

Yann Lifchitz, Yannis Avrithis, Sylvaine Picard

Responsive image

Auto-TLDR; Local Propagation for Few-Shot Inference

Slides Poster Similar

The challenge in few-shot learning is that available data is not enough to capture the underlying distribution. To mitigate this, two emerging directions are (a) using local image representations, essentially multiplying the amount of data by a constant factor, and (b) using more unlabeled data, for instance by transductive inference, jointly on a number of queries. In this work, we bring these two ideas together, introducing local propagation. We treat local image features as independent examples, we build a graph on them and we use it to propagate both the features themselves and the labels, known and unknown. Interestingly, since there is a number of features per image, even a single query gives rise to transductive inference. As a result, we provide a universally safe choice for few-shot inference under both non-transductive and transductive settings, improving accuracy over corresponding methods. This is in contrast to existing solutions, where one needs to choose the method depending on the quantity of available data.

Augmented Bi-Path Network for Few-Shot Learning

Baoming Yan, Chen Zhou, Bo Zhao, Kan Guo, Yang Jiang, Xiaobo Li, Zhang Ming, Yizhou Wang

Responsive image

Auto-TLDR; Augmented Bi-path Network for Few-shot Learning

Slides Poster Similar

Few-shot Learning (FSL) which aims to learn from few labeled training data is becoming a popular research topic, due to the expensive labeling cost in many real-world applications. One kind of successful FSL method learns to compare the testing (query) image and training (support) image by simply concatenating the features of two images and feeding it into the neural network. However, with few labeled data in each class, the neural network has difficulty in learning or comparing the local features of two images. Such simple image-level comparison may cause serious mis-classification. To solve this problem, we propose Augmented Bi-path Network (ABNet) for learning to compare both global and local features on multi-scales. Specifically, the salient patches are extracted and embedded as the local features for every image. Then, the model learns to augment the features for better robustness. Finally, the model learns to compare global and local features separately, \emph{i.e.}, in two paths, before merging the similarities. Extensive experiments show that the proposed ABNet outperforms the state-of-the-art methods. Both quantitative and visual ablation studies are provided to verify that the proposed modules lead to more precise comparison results.

Meta Generalized Network for Few-Shot Classification

Wei Wu, Shanmin Pang, Zhiqiang Tian, Yaochen Li

Responsive image

Auto-TLDR; Meta Generalized Network for Few-Shot Classification

Similar

Few-shot classification aims to learn a well performance model with very limited labeled examples. There are mainly two directions for this aim, namely, meta- and metric-learning. Meta learning trains models in a particular way to fast adapt to new tasks, but it neglects variational features of images. Metric learning considers relationships among same or different classes, however on the downside, it usually fails to achieve competitive performance on unseen boundary examples. In this paper, we propose a Meta Generalized Network (MGNet) that aims to combine advantages of both meta- and metric-learning. There are two novel components in MGNet. Specifically, we first develop a meta backbone training method that both learns a flexible feature extractor and a classifier initializer efficiently, delightedly leading to fast adaption to unseen few-shot tasks without overfitting. Second, we design a trainable adaptive interval model to improve the cosine classifier, which increases the recognition accuracy of hard examples. We train the meta backbone in the training stage by all classes, and fine-tune the meta-backbone as well as train the adaptive classifier in the testing stage.

Few-Shot Few-Shot Learning and the Role of Spatial Attention

Yann Lifchitz, Yannis Avrithis, Sylvaine Picard

Responsive image

Auto-TLDR; Few-shot Learning with Pre-trained Classifier on Large-Scale Datasets

Slides Poster Similar

Few-shot learning is often motivated by the ability of humans to learn new tasks from few examples. However, standard few-shot classification benchmarks assume that the representation is learned on a limited amount of base class data, ignoring the amount of prior knowledge that a human may have accumulated before learning new tasks. At the same time, even if a powerful representation is available, it may happen in some domain that base class data are limited or non-existent. This motivates us to study a problem where the representation is obtained from a classifier pre-trained on a large-scale dataset of a different domain, assuming no access to its training process, while the base class data are limited to few examples per class and their role is to adapt the representation to the domain at hand rather than learn from scratch. We adapt the representation in two stages, namely on the few base class data if available and on the even fewer data of new tasks. In doing so, we obtain from the pre-trained classifier a spatial attention map that allows focusing on objects and suppressing background clutter. This is important in the new problem, because when base class data are few, the network cannot learn where to focus implicitly. We also show that a pre-trained network may be easily adapted to novel classes, without meta-learning.

Graph-Based Interpolation of Feature Vectors for Accurate Few-Shot Classification

Yuqing Hu, Vincent Gripon, Stéphane Pateux

Responsive image

Auto-TLDR; Transductive Learning for Few-Shot Classification using Graph Neural Networks

Slides Poster Similar

In few-shot classification, the aim is to learn models able to discriminate classes using only a small number of labeled examples. In this context, works have proposed to introduce Graph Neural Networks (GNNs) aiming at exploiting the information contained in other samples treated concurrently, what is commonly referred to as the transductive setting in the literature. These GNNs are trained all together with a backbone feature extractor. In this paper, we propose a new method that relies on graphs only to interpolate feature vectors instead, resulting in a transductive learning setting with no additional parameters to train. Our proposed method thus exploits two levels of information: a) transfer features obtained on generic datasets, b) transductive information obtained from other samples to be classified. Using standard few-shot vision classification datasets, we demonstrate its ability to bring significant gains compared to other works.

Complementing Representation Deficiency in Few-Shot Image Classification: A Meta-Learning Approach

Xian Zhong, Cheng Gu, Wenxin Huang, Lin Li, Shuqin Chen, Chia-Wen Lin

Responsive image

Auto-TLDR; Meta-learning with Complementary Representations Network for Few-Shot Learning

Slides Poster Similar

Few-shot learning is a challenging problem that has attracted more and more attention recently since abundant training samples are difficult to obtain in practical applications. Meta-learning has been proposed to address this issue, which focuses on quickly adapting a predictor as a base-learner to new tasks, given limited labeled samples. However, a critical challenge for meta-learning is the representation deficiency since it is hard to discover common information from a small number of training samples or even one, as is the representation of key features from such little information. As a result, a meta-learner cannot be trained well in a high-dimensional parameter space to generalize to new tasks. Existing methods mostly resort to extracting less expressive features so as to avoid the representation deficiency. Aiming at learning better representations, we propose a meta-learning approach with complemented representations network (MCRNet) for few-shot image classification. In particular, we embed a latent space, where latent codes are reconstructed with extra representation information to complement the representation deficiency. Furthermore, the latent space is established with variational inference, collaborating well with different base-learners, and can be extended to other models. Finally, our end-to-end framework achieves the state-of-the-art performance in image classification on three standard few-shot learning datasets.

Multiscale Attention-Based Prototypical Network for Few-Shot Semantic Segmentation

Yifei Zhang, Desire Sidibe, Olivier Morel, Fabrice Meriaudeau

Responsive image

Auto-TLDR; Few-shot Semantic Segmentation with Multiscale Feature Attention

Slides Similar

Deep learning-based image understanding techniques require a large number of labeled images for training. Few-shot semantic segmentation, on the contrary, aims at generalizing the segmentation ability of the model to new categories given only a few labeled samples. To tackle this problem, we propose a novel prototypical network (MAPnet) with multiscale feature attention. To fully exploit the representative features of target classes, we firstly extract rich contextual information of labeled support images via a multiscale feature enhancement module. The learned prototypes from support features provide further semantic guidance on the query image. Then we adaptively integrate multiple similarity-guided probability maps by attention mechanism, yielding an optimal pixel-wise prediction. Furthermore, the proposed method was validated on the PASCAL-5i dataset in terms of 1-way N-shot evaluation. We also test the model with weak annotations, including scribble and bounding box annotations. Both the qualitative and quantitative results demonstrate the advantages of our approach over other state-of-the-art methods.

Few-Shot Learning Based on Metric Learning Using Class Augmentation

Susumu Matsumi, Keiichi Yamada

Responsive image

Auto-TLDR; Metric Learning for Few-shot Learning

Slides Poster Similar

Few-shot learning is a machine learning problem in which new categories are learned from only a few samples. One approach for few-shot learning is metric learning, which learns an embedding space in which learning is efficient for few-shot samples. In this paper, we focus on metric learning and demonstrate that the number of classes in the training data used for metric learning has a greater impact on the accuracy of few-shot learning than the number of samples per class. We propose a few-shot learning approach based on metric learning in which the number of classes in the training data for performing metric learning is increased. The number of classes is augmented by synthesizing samples of imaginary classes at a feature level from the original training data. The proposed method is evaluated on the miniImageNet dataset using the nearest neighbor method or a support vector machine as the classifier, and the effectiveness of the approach is demonstrated.

Task-based Focal Loss for Adversarially Robust Meta-Learning

Yufan Hou, Lixin Zou, Weidong Liu

Responsive image

Auto-TLDR; Task-based Adversarial Focal Loss for Few-shot Meta-Learner

Slides Poster Similar

Adversarial robustness of machine learning has been widely studied in recent years, and a series of effective methods are proposed to resist adversarial attacks. However, less attention is paid to few-shot meta-learners which are much more vulnerable due to the lack of training samples. In this paper, we propose Task-based Adversarial Focal Loss (TAFL) to handle this tough challenge on a typical meta-learner called MAML. More concretely, we regard few-shot classification tasks as normal samples in learning models and apply focal loss mechanism on them. Our proposed method focuses more on adversarially fragile tasks, leading to improvement on overall model robustness. Results of extensive experiments on several benchmarks demonstrate that TAFL can effectively promote the performance of the meta-learner on adversarial examples with elaborately designed perturbations.

Heterogeneous Graph-Based Knowledge Transfer for Generalized Zero-Shot Learning

Junjie Wang, Xiangfeng Wang, Bo Jin, Junchi Yan, Wenjie Zhang, Hongyuan Zha

Responsive image

Auto-TLDR; Heterogeneous Graph-based Knowledge Transfer for Generalized Zero-Shot Learning

Slides Poster Similar

Generalized zero-shot learning (GZSL) tackles the problem of learning to classify instances involving both seen classes and unseen ones. The key issue is how to effectively transfer the model learned from seen classes to unseen classes. Existing works in GZSL usually assume that some prior information about unseen classes are available. However, such an assumption is unrealistic when new unseen classes appear dynamically. To this end, we propose a novel heterogeneous graph-based knowledge transfer method (HGKT) for GZSL, agnostic to unseen classes and instances, by leveraging graph neural network. Specifically, a structured heterogeneous graph is constructed with high-level representative nodes for seen classes, which are chosen through Wasserstein barycenter in order to simultaneously capture inter-class and intra-class relationship. The aggregation and embedding functions can be learned throughgraph neural network, which can be used to compute the embeddings of unseen classes by transferring the knowledge from their neighbors. Extensive experiments on public benchmark datasets show that our method achieves state-of-the-art results.

Directed Variational Cross-encoder Network for Few-Shot Multi-image Co-segmentation

Sayan Banerjee, Divakar Bhat S, Subhasis Chaudhuri, Rajbabu Velmurugan

Responsive image

Auto-TLDR; Directed Variational Inference Cross Encoder for Class Agnostic Co-Segmentation of Multiple Images

Slides Poster Similar

In this paper, we propose a novel framework for class agnostic co-segmentation of multiple images using comparatively smaller datasets. We have developed a novel encoder-decoder network termed as DVICE (Directed Variational Inference Cross Encoder), which learns a continuous embedding space to ensure better similarity learning. We employ a combination of the proposed variational encoder-decoder and a novel few-shot learning approach to tackle the small sample size problem in co-segmentation. Furthermore, the proposed framework does not use any semantic class labels and is entirely class agnostic. Through exhaustive experimentation using a small volume of data over multiple datasets, we have demonstrated that our approach outperforms all existing state-of-the-art techniques.

A Self-Supervised GAN for Unsupervised Few-Shot Object Recognition

Khoi Nguyen, Sinisa Todorovic

Responsive image

Auto-TLDR; Self-supervised Few-Shot Object Recognition with a Triplet GAN

Slides Poster Similar

This paper addresses unsupervised few-shot object recognition, where all training images are unlabeled, and test images are divided into queries and a few labeled support images per object class of interest. The training and test images do not share object classes. We extend the vanilla GAN with two loss functions, both aimed at self-supervised learning. The first is a reconstruction loss that enforces the discriminator to reconstruct the probabilistically sampled latent code which has been used for generating the "fake" image. The second is a triplet loss that enforces the discriminator to output image encodings that are closer for more similar images. Evaluation, comparisons, and detailed ablation studies are done in the context of few-shot classification. Our approach significantly outperforms the state of the art on the Mini-Imagenet and Tiered-Imagenet datasets.

Dual-Attention Guided Dropblock Module for Weakly Supervised Object Localization

Junhui Yin, Siqing Zhang, Dongliang Chang, Zhanyu Ma, Jun Guo

Responsive image

Auto-TLDR; Dual-Attention Guided Dropblock for Weakly Supervised Object Localization

Slides Poster Similar

Attention mechanisms is frequently used to learn the discriminative features for better feature representations. In this paper, we extend the attention mechanism to the task of weakly supervised object localization (WSOL) and propose the dual-attention guided dropblock module (DGDM), which aims at learning the informative and complementary visual patterns for WSOL. This module contains two key components, the channel attention guided dropout (CAGD) and the spatial attention guided dropblock (SAGD). To model channel interdependencies, the CAGD ranks the channel attentions and treats the top-k attentions with the largest magnitudes as the important ones. It also keeps some low-valued elements to increase their value if they become important during training. The SAGD can efficiently remove the most discriminative information by erasing the contiguous regions of feature maps rather than individual pixels. This guides the model to capture the less discriminative parts for classification. Furthermore, it can also distinguish the foreground objects from the background regions to alleviate the attention misdirection. Experimental results demonstrate that the proposed method achieves new state-of-the-art localization performance.

Prior Knowledge about Attributes: Learning a More Effective Potential Space for Zero-Shot Recognition

Chunlai Chai, Yukuan Lou

Responsive image

Auto-TLDR; Attribute Correlation Potential Space Generation for Zero-Shot Learning

Slides Poster Similar

Zero-shot learning (ZSL) aims to recognize unseen classes accurately by learning seen classes and known attributes, but correlations in attributes were ignored by previous study which lead to classification results confused. To solve this problem, we build an Attribute Correlation Potential Space Generation (ACPSG) model which uses a graph convolution network and attribute correlation to generate a more discriminating potential space. Combining potential discrimination space and user-defined attribute space, we can better classify unseen classes. Our approach outperforms some existing state-of-the-art methods on several benchmark datasets, whether it is conventional ZSL or generalized ZSL.

Rethinking Domain Generalization Baselines

Francesco Cappio Borlino, Antonio D'Innocente, Tatiana Tommasi

Responsive image

Auto-TLDR; Style Transfer Data Augmentation for Domain Generalization

Slides Poster Similar

Despite being very powerful in standard learning settings, deep learning models can be extremely brittle when deployed in scenarios different from those on which they were trained. Domain generalization methods investigate this problem and data augmentation strategies have shown to be helpful tools to increase data variability, supporting model robustness across domains. In our work we focus on style transfer data augmentation and we present how it can be implemented with a simple and inexpensive strategy to improve generalization. Moreover, we analyze the behavior of current state of the art domain generalization methods when integrated with this augmentation solution: our thorough experimental evaluation shows that their original effect almost always disappears with respect to the augmented baseline. This issue open new scenarios for domain generalization research, highlighting the need of novel methods properly able to take advantage of the introduced data variability.

Large-Scale Historical Watermark Recognition: Dataset and a New Consistency-Based Approach

Xi Shen, Ilaria Pastrolin, Oumayma Bounou, Spyros Gidaris, Marc Smith, Olivier Poncet, Mathieu Aubry

Responsive image

Auto-TLDR; Historical Watermark Recognition with Fine-Grained Cross-Domain One-Shot Instance Recognition

Slides Poster Similar

Historical watermark recognition is a highly practical, yet unsolved challenge for archivists and historians. With a large number of well-defined classes, cluttered and noisy samples, different types of representations, both subtle differences between classes and high intra-class variation, historical watermarks are also challenging for pattern recognition. In this paper, overcoming the difficulty of data collection, we present a large public dataset with more than 6k new photographs, allowing for the first time to tackle at scale the scenarios of practical interest for scholars: one-shot instance recognition and cross-domain one-shot instance recognition amongst more than 16k fine-grained classes. We demonstrate that this new dataset is large enough to train modern deep learning approaches, and show that standard methods can be improved considerably by using mid-level deep features. More precisely, we design both a matching score and a feature fine-tuning strategy based on filtering local matches using spatial consistency. This consistency-based approach provides important performance boost compared to strong baselines. Our model achieves 55\% as top-1 accuracy on our very challenging 16,753-class one-shot cross-domain recognition task, each class described by a single drawing from the classic Briquet catalog. In addition to watermark classification, we show our approach provides promising results on fine-grained sketch-based image retrieval.

Generative Latent Implicit Conditional Optimization When Learning from Small Sample

Idan Azuri, Daphna Weinshall

Responsive image

Auto-TLDR; GLICO: Generative Latent Implicit Conditional Optimization for Small Sample Learning

Slides Poster Similar

We revisit the long-standing problem of learning from small sample. The generation of new samples from a small training set of labeled points has attracted increased attention in recent years. In this paper, we propose a novel such method called GLICO (Generative Latent Implicit Conditional Optimization). GLICO learns a mapping from the training examples to a latent space and a generator that generates images from vectors in the latent space. Unlike most recent work, which rely on access to large amounts of unlabeled data, GLICO does not require access to any additional data other than the small set of labeled points. In fact, GLICO learns to synthesize completely new samples for every class using as little as 5 or 10 examples per class, with as few as 10 such classes and no data from unknown classes. GLICO is then used to augment the small training set while training a classifier on the small sample. To this end, our proposed method samples the learned latent space using spherical interpolation (slerp) and generates new examples using the trained generator. Empirical results show that the new sampled set is diverse enough, leading to improvement in image classification in comparison with the state of the art when trained on small samples obtained from CIFAR-10, CIFAR-100, and CUB-200.

Open Set Domain Recognition Via Attention-Based GCN and Semantic Matching Optimization

Xinxing He, Yuan Yuan, Zhiyu Jiang

Responsive image

Auto-TLDR; Attention-based GCN and Semantic Matching Optimization for Open Set Domain Recognition

Slides Poster Similar

Open set domain recognition has got the attention in recent years. The task aims to specifically classify each sample in the practical unlabeled target domain, which consists of all known classes in the manually labeled source domain and target-specific unknown categories. The absence of annotated training data or auxiliary attribute information for unknown categories makes this task especially difficult. Moreover, exiting domain discrepancy in label space and data distribution further distracts the knowledge transferred from known classes to unknown classes. To address these issues, this work presents an end-to-end model based on attention-based GCN and semantic matching optimization, which first employs the attention mechanism to enable the central node to learn more discriminating representations from its neighbors in the knowledge graph. Moreover, a coarse-to-fine semantic matching optimization approach is proposed to progressively bridge the domain gap. Experimental results validate that the proposed model not only has superiority on recognizing the images of known and unknown classes, but also can adapt to various openness of the target domain.

VSB^2-Net: Visual-Semantic Bi-Branch Network for Zero-Shot Hashing

Xin Li, Xiangfeng Wang, Bo Jin, Wenjie Zhang, Jun Wang, Hongyuan Zha

Responsive image

Auto-TLDR; VSB^2-Net: inductive zero-shot hashing for image retrieval

Slides Poster Similar

Zero-shot hashing aims at learning hashing model from seen classes and the obtained model is capable of generalizing to unseen classes for image retrieval. Inspired by zero-shot learning, existing zero-shot hashing methods usually transfer the supervised knowledge from seen to unseen classes, by embedding the hamming space to a shared semantic space. However, this makes instances difficult to distinguish due to limited hashing bit numbers, especially for semantically similar unseen classes. We propose a novel inductive zero-shot hashing framework, i.e., VSB^2-Net, where both semantic space and visual feature space are embedded to the same hamming space instead. The reconstructive semantic relationships are established in the hamming space, preserving local similarity relationships and explicitly enlarging the discrepancy between semantic hamming vectors. A two-task architecture, comprising of classification module and visual feature reconstruction module, is employed to enhance the generalization and transfer abilities. Extensive evaluation results on several benchmark datasets demonstratethe superiority of our proposed method compared to several state-of-the-art baselines.

Zoom-CAM: Generating Fine-Grained Pixel Annotations from Image Labels

Xiangwei Shi, Seyran Khademi, Yunqiang Li, Jan Van Gemert

Responsive image

Auto-TLDR; Zoom-CAM for Weakly Supervised Object Localization and Segmentation

Slides Poster Similar

Current weakly supervised object localization and segmentation rely on class-discriminative visualization techniques for convolutional neural networks (CNN) to generate pseudo-labels for pixel-level training. However, visualization methods, including CAM and Grad-CAM, focus on most discriminative object parts summarized in the last convolutional layer, missing the complete pixel mapping in intermediate layers. We propose Zoom-CAM: going beyond the last lowest resolution layer by integrating the importance maps over all activations in intermediate layers. Zoom-CAM captures fine-grained small-scale objects for various discriminative class instances, which are commonly missed by the baseline visualization methods. We focus on generating pixel-level pseudo-labels from class labels. The quality of our pseudo-labels evaluated on the ImageNet localization task exhibits more than 2.8% improvement on top-1 error. For weakly supervised semantic segmentation our generated pseudo-labels improve a state of the art model by 1.1%.

Multi-Order Feature Statistical Model for Fine-Grained Visual Categorization

Qingtao Wang, Ke Zhang, Shaoli Huang, Lianbo Zhang, Jin Fan

Responsive image

Auto-TLDR; Multi-Order Feature Statistical Method for Fine-Grained Visual Categorization

Slides Poster Similar

Fine-grained visual categorization aims to learn a robust image representation modeling subtle differences from similar categories. Existing methods in this field tackle the problem by designing complex frameworks, which produce high-level features by performing first-order or second-order pooling. Despite the impressive performance achieved by these strategies, the single-order networks only carry linear or non-linear information of the last convolutional layer, neglecting the fact that feature from different orders are mutually complementary. In this paper, we propose a Multi-Order Feature Statistical Method (MOFS), which learns fine-grained features characterizing multiple orders. Specifically, the MOFS consists of two sub-modules: (i) a first-order module modeling both mid-level and high-level features. (ii) a covariance feature statistical module capturing high-order features. By deploying these two sub-modules on the top of existing backbone networks, MOFS simultaneously captures multi-level of discrimative patters including local, global and co-related patters. We evaluate the proposed method on three challenging benchmarks, namely CUB-200-2011, Stanford Cars, and FGVC-Aircraft. Compared with state-of-the-art methods, experiments results exhibit superior performance in recognizing fine-grained objects

Joint Supervised and Self-Supervised Learning for 3D Real World Challenges

Antonio Alliegro, Davide Boscaini, Tatiana Tommasi

Responsive image

Auto-TLDR; Self-supervision for 3D Shape Classification and Segmentation in Point Clouds

Slides Similar

Point cloud processing and 3D shape understanding are very challenging tasks for which deep learning techniques have demonstrated great potentials. Still further progresses are essential to allow artificial intelligent agents to interact with the real world. In many practical conditions the amount of annotated data may be limited and integrating new sources of knowledge becomes crucial to support autonomous learning. Here we consider several scenarios involving synthetic and real world point clouds where supervised learning fails due to data scarcity and large domain gaps. We propose to enrich standard feature representations by leveraging self-supervision through a multi-task model that can solve a 3D puzzle while learning the main task of shape classification or part segmentation. An extensive analysis investigating few-shot, transfer learning and cross-domain settings shows the effectiveness of our approach with state-of-the-art results for 3D shape classification and part segmentation.

Incorporating Depth Information into Few-Shot Semantic Segmentation

Yifei Zhang, Desire Sidibe, Olivier Morel, Fabrice Meriaudeau

Responsive image

Auto-TLDR; RDNet: A Deep Neural Network for Few-shot Segmentation Using Depth Information

Slides Poster Similar

Few-shot segmentation presents a significant challenge for semantic scene understanding under limited supervision. Namely, this task targets at generalizing the segmentation ability of the model to new categories given a few samples. In order to obtain complete scene information, we extend the RGB-centric methods to take advantage of complementary depth information. In this paper, we propose a two-stream deep neural network based on metric learning. Our method, known as RDNet, learns class-specific prototype representations within RGB and depth embedding spaces, respectively. The learned prototypes provide effective semantic guidance on the corresponding RGB and depth query image, leading to more accurate performance. Moreover, we build a novel outdoor scene dataset, known as Cityscapes-3i, using labeled RGB images and depth images from the Cityscapes dataset. We also perform ablation studies to explore the effective use of depth information in few-shot segmentation tasks. Experiments on Cityscapes-3i show that our method achieves promising results with visual and complementary geometric cues from only a few labeled examples.

Self-Supervised Learning with Graph Neural Networks for Region of Interest Retrieval in Histopathology

Yigit Ozen, Selim Aksoy, Kemal Kosemehmetoglu, Sevgen Onder, Aysegul Uner

Responsive image

Auto-TLDR; Self-supervised Contrastive Learning for Deep Representation Learning of Histopathology Images

Slides Poster Similar

Deep learning has achieved successful performance in representation learning and content-based retrieval of histopathology images. The commonly used setting in deep learning-based approaches is supervised training of deep neural networks for classification, and using the trained model to extract representations that are used for computing and ranking the distances between images. However, there are two remaining major challenges. First, supervised training of deep neural networks requires large amount of manually labeled data which is often limited in the medical field. Transfer learning has been used to overcome this challenge, but its success remained limited. Second, the clinical practice in histopathology necessitates working with regions of interest (ROI) of multiple diagnostic classes with arbitrary shapes and sizes. The typical solution to this problem is to aggregate the representations of fixed-sized patches cropped from these regions to obtain region-level representations. However, naive methods cannot sufficiently exploit the rich contextual information in the complex tissue structures. To tackle these two challenges, we propose a generic method that utilizes graph neural networks (GNN), combined with a self-supervised training method using a contrastive loss. GNN enables representing arbitrarily-shaped ROIs as graphs and encoding contextual information. Self-supervised contrastive learning improves quality of learned representations without requiring labeled data. The experiments using a challenging breast histopathology data set show that the proposed method achieves better performance than the state-of-the-art.

Building Computationally Efficient and Well-Generalizing Person Re-Identification Models with Metric Learning

Vladislav Sovrasov, Dmitry Sidnev

Responsive image

Auto-TLDR; Cross-Domain Generalization in Person Re-identification using Omni-Scale Network

Slides Similar

This work considers the problem of domain shift in person re-identification.Being trained on one dataset, a re-identification model usually performs much worse on unseen data. Partially this gap is caused by the relatively small scale of person re-identification datasets (compared to face recognition ones, for instance), but it is also related to training objectives. We propose to use the metric learning objective, namely AM-Softmax loss, and some additional training practices to build well-generalizing, yet, computationally efficient models. We use recently proposed Omni-Scale Network (OSNet) architecture combined with several training tricks and architecture adjustments to obtain state-of-the art results in cross-domain generalization problem on a large-scale MSMT17 dataset in three setups: MSMT17-all->DukeMTMC, MSMT17-train->Market1501 and MSMT17-all->Market1501.

Domain Generalized Person Re-Identification Via Cross-Domain Episodic Learning

Ci-Siang Lin, Yuan Chia Cheng, Yu-Chiang Frank Wang

Responsive image

Auto-TLDR; Domain-Invariant Person Re-identification with Episodic Learning

Slides Poster Similar

Aiming at recognizing images of the same person across distinct camera views, person re-identification (re-ID) has been among active research topics in computer vision. Most existing re-ID works require collection of a large amount of labeled image data from the scenes of interest. When the data to be recognized are different from the source-domain training ones, a number of domain adaptation approaches have been proposed. Nevertheless, one still needs to collect labeled or unlabelled target-domain data during training. In this paper, we tackle an even more challenging and practical setting, domain generalized (DG) person re-ID. That is, while a number of labeled source-domain datasets are available, we do not have access to any target-domain training data. In order to learn domain-invariant features without knowing the target domain of interest, we present an episodic learning scheme which advances meta learning strategies to exploit the observed source-domain labeled data. The learned features would exhibit sufficient domain-invariant properties while not overfitting the source-domain data or ID labels. Our experiments on four benchmark datasets confirm the superiority of our method over the state-of-the-arts.

Pose-Robust Face Recognition by Deep Meta Capsule Network-Based Equivariant Embedding

Fangyu Wu, Jeremy Simon Smith, Wenjin Lu, Bailing Zhang

Responsive image

Auto-TLDR; Deep Meta Capsule Network-based Equivariant Embedding Model for Pose-Robust Face Recognition

Similar

Despite the exceptional success in face recognition related technologies, handling large pose variations still remains a key challenge. Current techniques for pose-robust face recognition either, directly extract pose-invariant features, or first synthesize a face that matches the target pose before feature extraction. It is more desirable to learn face representations equivariant to pose variations. To this end, this paper proposes a deep meta Capsule network-based Equivariant Embedding Model (DM-CEEM) with three distinct novelties. First, the proposed RB-CapsNet allows DM-CEEM to learn an equivariant embedding for pose variations and achieve the desired transformation for input face images. Second, we introduce a new version of a Capsule network called RB-CapsNet to extend CapsNet to perform a profile-to-frontal face transformation in deep feature space. Third, we train the DM-CEEM in a meta way by treating a single overall classification target as multiple sub-tasks that satisfy certain unknown probabilities. In each sub-task, we sample the support and query sets randomly. The experimental results on both controlled and in-the-wild databases demonstrate the superiority of DM-CEEM over state-of-the-art.

Understanding Integrated Gradients with SmoothTaylor for Deep Neural Network Attribution

Gary Shing Wee Goh, Sebastian Lapuschkin, Leander Weber, Wojciech Samek, Alexander Binder

Responsive image

Auto-TLDR; SmoothGrad: bridging Integrated Gradients and SmoothGrad from the Taylor's theorem perspective

Slides Similar

Integrated Gradients as an attribution method for deep neural network models offers simple implementability. However, it suffers from noisiness of explanations which affects the ease of interpretability. The SmoothGrad technique is proposed to solve the noisiness issue and smoothen the attribution maps of any gradient-based attribution method. In this paper, we present SmoothTaylor as a novel theoretical concept bridging Integrated Gradients and SmoothGrad, from the Taylor's theorem perspective. We apply the methods to the image classification problem, using the ILSVRC2012 ImageNet object recognition dataset, and a couple of pretrained image models to generate attribution maps. These attribution maps are empirically evaluated using quantitative measures for sensitivity and noise level. We further propose adaptive noising to optimize for the noise scale hyperparameter value. From our experiments, we find that the SmoothTaylor approach together with adaptive noising is able to generate better quality saliency maps with lesser noise and higher sensitivity to the relevant points in the input space as compared to Integrated Gradients.

Attention Pyramid Module for Scene Recognition

Zhinan Qiao, Xiaohui Yuan, Chengyuan Zhuang, Abolfazl Meyarian

Responsive image

Auto-TLDR; Attention Pyramid Module for Multi-Scale Scene Recognition

Slides Poster Similar

The unrestricted open vocabulary and diverse substances of scenery images bring significant challenges to scene recognition. However, most deep learning architectures and attention methods are developed on general-purpose datasets and omit the characteristics of scene data. In this paper, we exploit the attention pyramid module (APM) to tackle the predicament of scene recognition. Our method streamlines the multi-scale scene recognition pipeline, learns comprehensive scene features at various scales and locations, addresses the interdependency among scales, and further assists feature re-calibration as well as aggregation process. APM is extremely light-weighted and can be easily plugged into existing network architectures in a parameter-efficient manner. By simply integrating APM into ResNet-50, we obtain a 3.54\% boost in terms of top-1 accuracy on the benchmark scene dataset. Comprehensive experiments show that APM achieves better performance comparing with state-of-the-art attention methods using significant less computation budget. Code and pre-trained models will be made publicly available.

Is the Meta-Learning Idea Able to Improve the Generalization of Deep Neural Networks on the Standard Supervised Learning?

Xiang Deng, Zhongfei Zhang

Responsive image

Auto-TLDR; Meta-learning Based Training of Deep Neural Networks for Few-Shot Learning

Slides Poster Similar

Substantial efforts have been made on improving the generalization abilities of deep neural networks (DNNs) in order to obtain better performances without introducing more parameters. On the other hand, meta-learning approaches exhibit powerful generalization on new tasks in few-shot learning. Intuitively, few-shot learning is more challenging than the standard supervised learning as each target class only has a very few or no training samples. The natural question that arises is whether the meta-learning idea can be used for improving the generalization of DNNs on the standard supervised learning. In this paper, we propose a novel meta-learning based training procedure (MLTP) for DNNs and demonstrate that the meta-learning idea can indeed improve the generalization abilities of DNNs. MLTP simulates the meta-training process by considering a batch of training samples as a task. The key idea is that the gradient descent step for improving the current task performance should also improve a new task performance, which is ignored by the current standard procedure for training neural networks. MLTP also benefits from all the existing training techniques such as dropout, weight decay, and batch normalization. We evaluate MLTP by training a variety of small and large neural networks on three benchmark datasets, i.e., CIFAR-10, CIFAR-100, and Tiny ImageNet. The experimental results show a consistently improved generalization performance on all the DNNs with different sizes, which verifies the promise of MLTP and demonstrates that the meta-learning idea is indeed able to improve the generalization of DNNs on the standard supervised learning.

Generalized Local Attention Pooling for Deep Metric Learning

Carlos Roig Mari, David Varas, Issey Masuda, Juan Carlos Riveiro, Elisenda Bou-Balust

Responsive image

Auto-TLDR; Generalized Local Attention Pooling for Deep Metric Learning

Slides Poster Similar

Deep metric learning has been key to recent advances in face verification and image retrieval amongst others. These systems consist on a feature extraction block (extracts feature maps from images) followed by a spatial dimensionality reduction block (generates compact image representations from the feature maps) and an embedding generation module (projects the image representation to the embedding space). While research on deep metric learning has focused on improving the losses for the embedding generation module, the dimensionality reduction block has been overlooked. In this work, we propose a novel method to generate compact image representations which uses local spatial information through an attention mechanism, named Generalized Local Attention Pooling (GLAP). This method, instead of being placed at the end layer of the backbone, is connected at an intermediate level, resulting in lower memory requirements. We assess the performance of the aforementioned method by comparing it with multiple dimensionality reduction techniques, demonstrating the importance of using attention weights to generate robust compact image representations. Moreover, we compare the performance of multiple state-of-the-art losses using the standard deep metric learning system against the same experiment with our GLAP. Experiments showcase that the proposed Generalized Local Attention Pooling mechanism outperforms other pooling methods when compared with current state-of-the-art losses for deep metric learning.

Zero-Shot Text Classification with Semantically Extended Graph Convolutional Network

Tengfei Liu, Yongli Hu, Junbin Gao, Yanfeng Sun, Baocai Yin

Responsive image

Auto-TLDR; Semantically Extended Graph Convolutional Network for Zero-shot Text Classification

Slides Poster Similar

As a challenging task of Natural Language Processing(NLP), zero-shot text classification has attracted more and more attention recently. It aims to detect classes that the model has never seen in the training set. For this purpose, a feasible way is to construct connection between the seen and unseen classes by semantic extension and classify the unseen classes by information propagation over the connection. Although many related zero-shot text classification methods have been exploited, how to realize semantic extension properly and propagate information effectively is far from solved. In this paper, we propose a novel zero-shot text classification method called Semantically Extended Graph Convolutional Network (SEGCN). In the proposed method, the semantic category knowledge from ConceptNet is utilized to semantic extension for linking seen classes to unseen classes and constructing a graph of all classes. Then, we build upon Graph Convolutional Network (GCN) for predicting the textual classifier for each category, which transfers the category knowledge by the convolution operators on the constructed graph and is trained in a semi-supervised manner using the samples of the seen classes. The experimental results on Dbpedia and 20newsgroup datasets show that our method outperforms the state of the art zero-shot text classification methods.

ARCADe: A Rapid Continual Anomaly Detector

Ahmed Frikha, Denis Krompass, Volker Tresp

Responsive image

Auto-TLDR; ARCADe: A Meta-Learning Approach for Continuous Anomaly Detection

Slides Poster Similar

Although continual learning and anomaly detection have separately been well-studied in previous works, their intersection remains rather unexplored. The present work addresses a learning scenario where a model has to incrementally learn a sequence of anomaly detection tasks, i.e. tasks from which only examples from the normal (majority) class are available for training. We define this novel learning problem of continual anomaly detection (CAD) and formulate it as a meta-learning problem. Moreover, we propose \emph{A Rapid Continual Anomaly Detector (ARCADe)}, an approach to train neural networks to be robust against the major challenges of this new learning problem, namely catastrophic forgetting and overfitting to the majority class. The results of our experiments on three datasets show that, in the CAD problem setting, ARCADe substantially outperforms baselines from the continual learning and anomaly detection literature. Finally, we provide deeper insights into the learning strategy yielded by the proposed meta-learning algorithm.

Region and Relations Based Multi Attention Network for Graph Classification

Manasvi Aggarwal, M. Narasimha Murty

Responsive image

Auto-TLDR; R2POOL: A Graph Pooling Layer for Non-euclidean Structures

Slides Poster Similar

Graphs are non-euclidean structures that can represent many relational data efficiently. Many studies have proposed the convolution and the pooling operators on the non-euclidean domain. The graph convolution operators have shown astounding performance on various tasks such as node representation and classification. For graph classification, different pooling techniques are introduced, but none of them has considered both neighborhood of the node and the long-range dependencies of the node. In this paper, we propose a novel graph pooling layer R2POOL, which balances the structure information around the node as well as the dependencies with far away nodes. Further, we propose a new training strategy to learn coarse to fine representations. We add supervision at only intermediate levels to generate predictions using only intermediate-level features. For this, we propose the concept of an alignment score. Moreover, each layer's prediction is controlled by our proposed branch training strategy. This complete training helps in learning dominant class features at each layer for representing graphs. We call the combined model by R2MAN. Experiments show that R2MAN the potential to improve the performance of graph classification on various datasets.

Probability Guided Maxout

Claudio Ferrari, Stefano Berretti, Alberto Del Bimbo

Responsive image

Auto-TLDR; Probability Guided Maxout for CNN Training

Slides Poster Similar

In this paper, we propose an original CNN training strategy that brings together ideas from both dropout-like regularization methods and solutions that learn discriminative features. We propose a dropping criterion that, differently from dropout and its variants, is deterministic rather than random. It grounds on the empirical evidence that feature descriptors with larger $L2$-norm and highly-active nodes are strongly correlated to confident class predictions. Thus, our criterion guides towards dropping a percentage of the most active nodes of the descriptors, proportionally to the estimated class probability. We simultaneously train a per-sample scaling factor to balance the expected output across training and inference. This further allows us to keep high the descriptor's L2-norm, which we show enforces confident predictions. The combination of these two strategies resulted in our ``Probability Guided Maxout'' solution that acts as a training regularizer. We prove the above behaviors by reporting extensive image classification results on the CIFAR10, CIFAR100, and Caltech256 datasets.

Multi-Attribute Learning with Highly Imbalanced Data

Lady Viviana Beltran Beltran, Mickaël Coustaty, Nicholas Journet, Juan C. Caicedo, Antoine Doucet

Responsive image

Auto-TLDR; Data Imbalance in Multi-Attribute Deep Learning Models: Adaptation to face each one of the problems derived from imbalance

Slides Poster Similar

Data is one of the most important keys for success when studying a simple or a complex phenomenon. With the use of deep-learning exploding and its democratization, non-computer science experts may struggle to use highly complex deep learning architectures, even when straightforward models offer them suitable performances. In this article, we study the specific and common problem of data imbalance in real databases as most of the bad performance problems are due to the data itself. We review two points: first, when the data contains different levels of imbalance. Classical imbalanced learning strategies cannot be directly applied when using multi-attribute deep learning models, i.e., multi-task and multi-label architectures. Therefore, one of our contributions is our proposed adaptations to face each one of the problems derived from imbalance. Second, we demonstrate that with little to no imbalance, straightforward deep learning models work well. However, for non-experts, these models can be seen as black boxes, where all the effort is put in pre-processing the data. To simplify the problem, we performed the classification task ignoring information that is costly to extract, such as part localization which is widely used in the state of the art of attribute classification. We make use of a widely known attribute database, CUB-200-2011 - CUB as our main use case due to its deeply imbalanced nature, along with two better structured databases: celebA and Awa2. All of them contain multi-attribute annotations. The results of highly fine-grained attribute learning over CUB demonstrate that in the presence of imbalance, by using our proposed strategies is possible to have competitive results against the state of the art, while taking advantage of multi-attribute deep learning models. We also report results for two better-structured databases over which our models over-perform the state of the art.

Unsupervised Domain Adaptation for Person Re-Identification through Source-Guided Pseudo-Labeling

Fabian Dubourvieux, Romaric Audigier, Angélique Loesch, Ainouz-Zemouche Samia, Stéphane Canu

Responsive image

Auto-TLDR; Pseudo-labeling for Unsupervised Domain Adaptation for Person Re-Identification

Slides Poster Similar

Person Re-Identification (re-ID) aims at retrieving images of the same person taken by different cameras. A challenge for re-ID is the performance preservation when a model is used on data of interest (target data) which belong to a different domain from the training data domain (source data). Unsupervised Domain Adaptation (UDA) is an interesting research direction for this challenge as it avoids a costly annotation of the target data. Pseudo-labeling methods achieve the best results in UDA-based re-ID. They incrementally learn with identity pseudo-labels which are initialized by clustering features in the source re-ID encoder space. Surprisingly, labeled source data are discarded after this initialization step. However, we believe that pseudo-labeling could further leverage the labeled source data in order to improve the post-initialization training steps. In order to improve robustness against erroneous pseudo-labels, we advocate the exploitation of both labeled source data and pseudo-labeled target data during all training iterations. To support our guideline, we introduce a framework which relies on a two-branch architecture optimizing classification in source and target domains, respectively, in order to allow adaptability to the target domain while ensuring robustness to noisy pseudo-labels. Indeed, shared low and mid-level parameters benefit from the source classification signal while high-level parameters of the target branch learn domain-specific features. Our method is simple enough to be easily combined with existing pseudo-labeling UDA approaches. We show experimentally that it is efficient and improves performance when the base method has no mechanism to deal with pseudo-label noise. And it maintains performance when combined with base method that already manages pseudo-label noise. Our approach reaches state-of-the-art performance when evaluated on commonly used datasets, Market-1501 and DukeMTMC-reID, and outperforms the state of the art when targeting the bigger and more challenging dataset MSMT.

More Correlations Better Performance: Fully Associative Networks for Multi-Label Image Classification

Yaning Li, Liu Yang

Responsive image

Auto-TLDR; Fully Associative Network for Fully Exploiting Correlation Information in Multi-Label Classification

Slides Poster Similar

Recent researches demonstrate that correlation modeling plays a key role in high-performance multi-label classification methods. However, existing methods do not take full advantage of correlation information, especially correlations in feature and label spaces of each image, which limits the performance of correlation-based multi-label classification methods. With more correlations considered, in this study, a Fully Associative Network (FAN) is proposed for fully exploiting correlation information, which involves both visual feature and label correlations. Specifically, FAN introduces a robust covariance pooling to summarize convolution features as global image representation for capturing feature correlation in the multi-label task. Moreover, it constructs an effective label correlation matrix based on a re-weighted scheme, which is fed into a graph convolution network for capturing label correlation. Then, correlation between covariance representations (i.e., feature correlation ) and the outputs of GCN (i.e., label correlation) are modeled for final prediction. Experimental results on two datasets illustrate the effectiveness and efficiency of our proposed FAN compared with state-of-the-art methods.

A Novel Attention-Based Aggregation Function to Combine Vision and Language

Matteo Stefanini, Marcella Cornia, Lorenzo Baraldi, Rita Cucchiara

Responsive image

Auto-TLDR; Fully-Attentive Reduction for Vision and Language

Slides Poster Similar

The joint understanding of vision and language has been recently gaining a lot of attention in both the Computer Vision and Natural Language Processing communities, with the emergence of tasks such as image captioning, image-text matching, and visual question answering. As both images and text can be encoded as sets or sequences of elements - like regions and words - proper reduction functions are needed to transform a set of encoded elements into a single response, like a classification or similarity score. In this paper, we propose a novel fully-attentive reduction method for vision and language. Specifically, our approach computes a set of scores for each element of each modality employing a novel variant of cross-attention, and performs a learnable and cross-modal reduction, which can be used for both classification and ranking. We test our approach on image-text matching and visual question answering, building fair comparisons with other reduction choices, on both COCO and VQA 2.0 datasets. Experimentally, we demonstrate that our approach leads to a performance increase on both tasks. Further, we conduct ablation studies to validate the role of each component of the approach.

Combining Similarity and Adversarial Learning to Generate Visual Explanation: Application to Medical Image Classification

Martin Charachon, Roberto Roberto Ardon, Celine Hudelot, Paul-Henry Cournède, Camille Ruppli

Responsive image

Auto-TLDR; Explaining Black-Box Machine Learning Models with Visual Explanation

Slides Poster Similar

Recently, due to their success and increasing applications, explaining the decision of black-box machine learning models has become a critical task. It is particularly the case in sensitive domains such as medical image interpretation. Various explanation approaches have been proposed in the literature, among which perturbation based approaches are very promising. Within this class of methods, we leverage a learning framework to produce our visual explanations method. From a given classifier, we train two generators to produce from an input image the so called similar and adversarial images. The similar (resp. adversarial) image shall be classified as (resp. not as) the input image. We show that visual explanation, outperforming state of the art methods, can be derived from these. Our method is model-agnostic and, at test time, only requires a single forward pass to generate explanation. Therefore, the proposed approach is adapted for real-time systems such as medical image analysis. Finally, we show that random geometric augmentations applied on the original image acts as a regularization that improves all state of the art explanation methods. We validate our approach on a large chest X-ray database.

Beyond the Deep Metric Learning: Enhance the Cross-Modal Matching with Adversarial Discriminative Domain Regularization

Li Ren, Kai Li, Liqiang Wang, Kien Hua

Responsive image

Auto-TLDR; Adversarial Discriminative Domain Regularization for Efficient Cross-Modal Matching

Slides Poster Similar

Matching information across image and text modalities is a fundamental challenge for many applications that involve both vision and natural language processing. The objective is to find efficient similarity metrics to compare the similarity between visual and textual information. Existing approaches mainly match the local visual objects and the sentence words in a shared space with attention mechanisms. The matching performance is still limited because the similarity computation is based on simple comparisons of the matching features, ignoring the characteristics of their distribution in the data. In this paper, we address this limitation with an efficient learning objective that considers the discriminative feature distributions between the visual objects and sentence words. Specifically, we propose a novel Adversarial Discriminative Domain Regularization (ADDR) learning framework, beyond the paradigm metric learning objective, to construct a set of discriminative data domains within each image-text pairs. Our approach can generally improve the learning efficiency and the performance of existing metrics learning frameworks by regulating the distribution of the hidden space between the matching pairs. The experimental results show that this new approach significantly improves the overall performance of several popular cross-modal matching techniques (SCAN, VSRN, BFAN) on the MS-COCO and Flickr30K benchmarks.

Iterative Label Improvement: Robust Training by Confidence Based Filtering and Dataset Partitioning

Christian Haase-Schütz, Rainer Stal, Heinz Hertlein, Bernhard Sick

Responsive image

Auto-TLDR; Meta Training and Labelling for Unlabelled Data

Slides Poster Similar

State-of-the-art, high capacity deep neural networks not only require large amounts of labelled training data, they are also highly susceptible to labelling errors in this data, typically resulting in large efforts and costs and therefore limiting the applicability of deep learning. To alleviate this issue, we propose a novel meta training and labelling scheme that is able to use inexpensive unlabelled data by taking advantage of the generalization power of deep neural networks. We show experimentally that by solely relying on one network architecture and our proposed scheme of combining self-training with pseudolabels, both label quality and resulting model accuracy, can be improved significantly. Our method achieves state-of-the-art results, while being architecture agnostic and therefore broadly applicable. Compared to other methods dealing with erroneous labels, our approach does neither require another network to be trained, nor does it necessarily need an additional, highly accurate reference label set. Instead of removing samples from a labelled set, our technique uses additional sensor data without the need for manual labelling. Furthermore, our approach can be used for semi-supervised learning.

Color, Edge, and Pixel-Wise Explanation of Predictions Based onInterpretable Neural Network Model

Jay Hoon Jung, Youngmin Kwon

Responsive image

Auto-TLDR; Explainable Deep Neural Network with Edge Detecting Filters

Poster Similar

We design an interpretable network model by introducing explainable components into a Deep Neural Network (DNN). We substituted the first kernels of a Convolutional Neural Network (CNN) and a ResNet-50 with the well-known edge detecting filters such as Sobel, Prewitt, and other filters. Each filters' relative importance scores are measured with a variant of Layer-wise Relevance Propagation (LRP) method proposed by Bach et al. Since the effects of the edge detecting filters are well understood, our model provides three different scores to explain individual predictions: the scores with respect to (1) colors, (2) edge filters, and (3) pixels of the image. Our method provides more tools to analyze the predictions by highlighting the location of important edges and colors in the images. Furthermore, the general features of a category can be shown in our scores as well as individual predictions. At the same time, the model does not degrade performances on MNIST, Fruit360 and ImageNet datasets.

Contextual Classification Using Self-Supervised Auxiliary Models for Deep Neural Networks

Sebastian Palacio, Philipp Engler, Jörn Hees, Andreas Dengel

Responsive image

Auto-TLDR; Self-Supervised Autogenous Learning for Deep Neural Networks

Slides Poster Similar

Classification problems solved with deep neural networks (DNNs) typically rely on a closed world paradigm, and optimize over a single objective (e.g., minimization of the cross- entropy loss). This setup dismisses all kinds of supporting signals that can be used to reinforce the existence or absence of particular patterns. The increasing need for models that are interpretable by design makes the inclusion of said contextual signals a crucial necessity. To this end, we introduce the notion of Self-Supervised Autogenous Learning (SSAL). A SSAL objective is realized through one or more additional targets that are derived from the original supervised classification task, following architectural principles found in multi-task learning. SSAL branches impose low-level priors into the optimization process (e.g., grouping). The ability of using SSAL branches during inference, allow models to converge faster, focusing on a richer set of class-relevant features. We equip state-of-the-art DNNs with SSAL objectives and report consistent improvements for all of them on CIFAR100 and Imagenet. We show that SSAL models outperform similar state-of-the-art methods focused on contextual loss functions, auxiliary branches and hierarchical priors.

Improving Explainability of Integrated Gradients with Guided Non-Linearity

Hyuk Jin Kwon, Hyung Il Koo, Nam Ik Cho

Responsive image

Auto-TLDR; Guided Non-linearity for Attribution in Convolutional Neural Networks

Slides Poster Similar

Along with the performance improvements of neural network models, developing methods that enable the explanation of their behavior is a significant research topic. For convolutional neural networks, the explainability is usually achieved with attribution (heatmap) that visualizes pixel-level importance or contribution of input to its corresponding result. This attribution should reflect the relation (dependency) between inputs and outputs, which has been studied with a variety of methods, e.g., derivative of an output with respect to an input pixel value, a weighted sum of gradients, amount of output changes to input perturbations, and so on. In this paper, we present a new method that improves the measure of attribution, and incorporates it into the integrated gradients method. To be precise, rather than using the conventional chain-rule, we propose a method called guided non-linearity that propagates gradients more effectively through non-linear units (e.g., ReLU and max-pool) so that only positive gradients backpropagate through non-linear units. Our method is inspired by the mechanism of action potential generation in postsynaptic neurons, where the firing of action potentials depends on the sum of excitatory (EPSP) and inhibitory postsynaptic potentials (IPSP). We believe that paths consisting of EPSP-giving-neurons faithfully reflect the contribution of inputs to the output, and we make gradients flow only along those paths (i.e., paths of positive chain reactions). Experiments with 5 deep neural networks have shown that the proposed method outperforms others in terms of the deletion metrics, and yields fine-grained and more human-interpretable attribution.

CANU-ReID: A Conditional Adversarial Network for Unsupervised Person Re-IDentification

Guillaume Delorme, Yihong Xu, Stéphane Lathuiliere, Radu Horaud, Xavier Alameda-Pineda

Responsive image

Auto-TLDR; Unsupervised Person Re-Identification with Clustering and Adversarial Learning

Slides Similar

Unsupervised person re-ID is the task of identifying people on a target data set for which the ID labels are unavailable during training. In this paper, we propose to unify two trends in unsupervised person re-ID: clustering & fine-tuning and adversarial learning. On one side, clustering groups training images into pseudo-ID labels, and uses them to fine-tune the feature extractor. On the other side, adversarial learning is used, inspired by domain adaptation, to match distributions from different domains. Since target data is distributed across different camera viewpoints, we propose to model each camera as an independent domain, and aim to learn domain-independent features. Straightforward adversarial learning yields negative transfer, we thus introduce a conditioning vector to mitigate this undesirable effect. In our framework, the centroid of the cluster to which the visual sample belongs is used as conditioning vector of our conditional adversarial network, where the vector is permutation invariant (clusters ordering does not matter) and its size is independent of the number of clusters. To our knowledge, we are the first to propose the use of conditional adversarial networks for unsupervised person re-ID. We evaluate the proposed architecture on top of two state-of-the-art clustering-based unsupervised person re-identification (re-ID) methods on four different experimental settings with three different data sets and set the new state-of-the-art performance on all four of them. Our code and model will be made publicly available at https://team.inria.fr/perception/canu-reid/.