Ci-Siang Lin

Papers from this author

Domain Generalized Person Re-Identification Via Cross-Domain Episodic Learning

Ci-Siang Lin, Yuan Chia Cheng, Yu-Chiang Frank Wang

Responsive image

Auto-TLDR; Domain-Invariant Person Re-identification with Episodic Learning

Slides Poster Similar

Aiming at recognizing images of the same person across distinct camera views, person re-identification (re-ID) has been among active research topics in computer vision. Most existing re-ID works require collection of a large amount of labeled image data from the scenes of interest. When the data to be recognized are different from the source-domain training ones, a number of domain adaptation approaches have been proposed. Nevertheless, one still needs to collect labeled or unlabelled target-domain data during training. In this paper, we tackle an even more challenging and practical setting, domain generalized (DG) person re-ID. That is, while a number of labeled source-domain datasets are available, we do not have access to any target-domain training data. In order to learn domain-invariant features without knowing the target domain of interest, we present an episodic learning scheme which advances meta learning strategies to exploit the observed source-domain labeled data. The learned features would exhibit sufficient domain-invariant properties while not overfitting the source-domain data or ID labels. Our experiments on four benchmark datasets confirm the superiority of our method over the state-of-the-arts.

Learning Interpretable Representation for 3D Point Clouds

Feng-Guang Su, Ci-Siang Lin, Yu-Chiang Frank Wang

Responsive image

Auto-TLDR; Disentangling Body-type and Pose Information from 3D Point Clouds Using Adversarial Learning

Slides Poster Similar

Point clouds have emerged as a popular representation of 3D visual data. With a set of unordered 3D points, one typically needs to transform them into latent representation before further classification and segmentation tasks. However, one cannot easily interpret such encoded latent representation. To address this issue, we propose a unique deep learning framework for disentangling body-type and pose information from 3D point clouds. Extending from autoenoder, we advance adversarial learning a selected feature type, while classification and data recovery can be additionally observed. Our experiments confirm that our model can be successfully applied to perform a wide range of 3D applications like shape synthesis, action translation, shape/action interpolation, and synchronization.

Semantics-Guided Representation Learning with Applications to Visual Synthesis

Jia-Wei Yan, Ci-Siang Lin, Fu-En Yang, Yu-Jhe Li, Yu-Chiang Frank Wang

Responsive image

Auto-TLDR; Learning Interpretable and Interpolatable Latent Representations for Visual Synthesis

Slides Poster Similar

Learning interpretable and interpolatable latent representations has been an emerging research direction, allowing researchers to understand and utilize the derived latent space for further applications such as visual synthesis or recognition. While most existing approaches derive an interpolatable latent space and induces smooth transition in image appearance, it is still not clear how to observe desirable representations which would contain semantic information of interest. In this paper, we aim to learn meaningful representations and simultaneously perform semantic-oriented and visually-smooth interpolation. To this end, we propose an angular triplet-neighbor loss (ATNL) that enables learning a latent representation whose distribution matches the semantic information of interest. With the latent space guided by ATNL, we further utilize spherical semantic interpolation for generating semantic warping of images, allowing synthesis of desirable visual data. Experiments on MNIST and CMU Multi-PIE datasets qualitatively and quantitatively verify the effectiveness of our method.