Rajbabu Velmurugan

Papers from this author

Directed Variational Cross-encoder Network for Few-Shot Multi-image Co-segmentation

Sayan Banerjee, Divakar Bhat S, Subhasis Chaudhuri, Rajbabu Velmurugan

Responsive image

Auto-TLDR; Directed Variational Inference Cross Encoder for Class Agnostic Co-Segmentation of Multiple Images

Slides Poster Similar

In this paper, we propose a novel framework for class agnostic co-segmentation of multiple images using comparatively smaller datasets. We have developed a novel encoder-decoder network termed as DVICE (Directed Variational Inference Cross Encoder), which learns a continuous embedding space to ensure better similarity learning. We employ a combination of the proposed variational encoder-decoder and a novel few-shot learning approach to tackle the small sample size problem in co-segmentation. Furthermore, the proposed framework does not use any semantic class labels and is entirely class agnostic. Through exhaustive experimentation using a small volume of data over multiple datasets, we have demonstrated that our approach outperforms all existing state-of-the-art techniques.

Distilling Spikes: Knowledge Distillation in Spiking Neural Networks

Ravi Kumar Kushawaha, Saurabh Kumar, Biplab Banerjee, Rajbabu Velmurugan

Responsive image

Auto-TLDR; Knowledge Distillation in Spiking Neural Networks for Image Classification

Slides Poster Similar

Spiking Neural Networks (SNN) are energy-efficient computing architectures that exchange spikes for processing information, unlike classical Artificial Neural Networks (ANN). Due to this, SNNs are better suited for real-life deployments. However, similar to ANNs, SNNs also benefit from deeper architectures to obtain improved performance. Furthermore, like the deep ANNs, the memory, compute and power requirements of SNNs also increase with model size, and model compression becomes a necessity. Knowledge distillation is a model com- pression technique that enables transferring the learning of a large machine learning model to a smaller model with minimal loss in performance. In this paper, we propose techniques for knowledge distillation in spiking neural networks for the task of image classification. We present ways to distill spikes from a larger SNN, also called the teacher network, to a smaller one, also called the student network, while minimally impacting the classification accuracy. We demonstrate the effectiveness of the proposed method with detailed experiments on three standard datasets while proposing novel distillation methodologies and loss functions. We also present a multi-stage knowledge distillation technique for SNNs using an intermediate network to obtain higher performance from the student network. Our approach is expected to open up new avenues for deploying high performing large SNN models on resource-constrained hardware platforms.

PoseCVAE: Anomalous Human Activity Detection

Yashswi Jain, Ashvini Kumar Sharma, Rajbabu Velmurugan, Biplab Banerjee

Responsive image

Auto-TLDR; PoseCVAE: Anomalous Human Activity Detection Using Generative Modeling

Slides Poster Similar

Anomalous human activity detection is the task of identifying human activities that differ from the usual. Existing techniques, in general, try to deploy some samples from an open-set (anomalous activities can not be represented as a closed set) to define the discriminator. However, it is non-trivial to obtain novel activity instances. To this end, we propose PoseCVAE, a novel anomalous human activity detection strategy using the notion of generative modeling. We adopt a hybrid training strategy comprising of self-supervised and unsupervised learning. The self-supervised learning helps the encoder and decoder to learn better latent space representation of human pose trajectories. We train our framework to predict future pose trajectory given a normal track of past poses, i.e., the goal is to learn a conditional posterior distribution that represents normal training data. To achieve this we use a novel adaptation of a conditional variational autoencoder (CVAE) and refer it as PoseCVAE. Future pose prediction will be erroneous if the given poses are sampled from a distribution different from the learnt posterior, which is indeed the case with abnormal activities. To further separate the abnormal class, we imitate abnormal poses in the encoded space by sampling from a distinct mixture of gaussians (MoG). We use a binary cross-entropy (BCE) loss as a novel addition to the standard CVAE loss function to achieve this. We test our framework on two publicly available datasets and achieve comparable performance to existing unsupervised methods that exploit pose information.