Biplab Banerjee

Papers from this author

A Novel Actor Dual-Critic Model for Remote Sensing Image Captioning

Ruchika Chavhan, Biplab Banerjee, Xiao Xiang Zhu, Subhasis Chaudhuri

Responsive image

Auto-TLDR; Actor Dual-Critic Training for Remote Sensing Image Captioning Using Deep Reinforcement Learning

Slides Poster Similar

We deal with the problem of generating textual captions from optical remote sensing (RS) images using the notion of deep reinforcement learning. Due to the high inter-class similarity in reference sentences describing remote sensing data, jointly encoding the sentences and images encourages prediction of captions that are semantically more precise than the ground truth in many cases. To this end, we introduce an Actor Dual-Critic training strategy where a second critic model is deployed in the form of an encoder-decoder RNN to encode the latent information corresponding to the original and generated captions. While all actor-critic methods use an actor to predict sentences for an image and a critic to provide rewards, our proposed encoder-decoder RNN guarantees high-level comprehension of images by sentence-to-image translation. We observe that the proposed model generates sentences on the test data highly similar to the ground truth and is successful in generating even better captions in many critical cases. Extensive experiments on the benchmark Remote Sensing Image Captioning Dataset (RSICD) and the UCM-captions dataset confirm the superiority of the proposed approach in comparison to the previous state-of-the-art where we obtain a gain of sharp increments in both the ROUGE-L and CIDEr measures.

Distilling Spikes: Knowledge Distillation in Spiking Neural Networks

Ravi Kumar Kushawaha, Saurabh Kumar, Biplab Banerjee, Rajbabu Velmurugan

Responsive image

Auto-TLDR; Knowledge Distillation in Spiking Neural Networks for Image Classification

Slides Poster Similar

Spiking Neural Networks (SNN) are energy-efficient computing architectures that exchange spikes for processing information, unlike classical Artificial Neural Networks (ANN). Due to this, SNNs are better suited for real-life deployments. However, similar to ANNs, SNNs also benefit from deeper architectures to obtain improved performance. Furthermore, like the deep ANNs, the memory, compute and power requirements of SNNs also increase with model size, and model compression becomes a necessity. Knowledge distillation is a model com- pression technique that enables transferring the learning of a large machine learning model to a smaller model with minimal loss in performance. In this paper, we propose techniques for knowledge distillation in spiking neural networks for the task of image classification. We present ways to distill spikes from a larger SNN, also called the teacher network, to a smaller one, also called the student network, while minimally impacting the classification accuracy. We demonstrate the effectiveness of the proposed method with detailed experiments on three standard datasets while proposing novel distillation methodologies and loss functions. We also present a multi-stage knowledge distillation technique for SNNs using an intermediate network to obtain higher performance from the student network. Our approach is expected to open up new avenues for deploying high performing large SNN models on resource-constrained hardware platforms.

PoseCVAE: Anomalous Human Activity Detection

Yashswi Jain, Ashvini Kumar Sharma, Rajbabu Velmurugan, Biplab Banerjee

Responsive image

Auto-TLDR; PoseCVAE: Anomalous Human Activity Detection Using Generative Modeling

Slides Poster Similar

Anomalous human activity detection is the task of identifying human activities that differ from the usual. Existing techniques, in general, try to deploy some samples from an open-set (anomalous activities can not be represented as a closed set) to define the discriminator. However, it is non-trivial to obtain novel activity instances. To this end, we propose PoseCVAE, a novel anomalous human activity detection strategy using the notion of generative modeling. We adopt a hybrid training strategy comprising of self-supervised and unsupervised learning. The self-supervised learning helps the encoder and decoder to learn better latent space representation of human pose trajectories. We train our framework to predict future pose trajectory given a normal track of past poses, i.e., the goal is to learn a conditional posterior distribution that represents normal training data. To achieve this we use a novel adaptation of a conditional variational autoencoder (CVAE) and refer it as PoseCVAE. Future pose prediction will be erroneous if the given poses are sampled from a distribution different from the learnt posterior, which is indeed the case with abnormal activities. To further separate the abnormal class, we imitate abnormal poses in the encoded space by sampling from a distinct mixture of gaussians (MoG). We use a binary cross-entropy (BCE) loss as a novel addition to the standard CVAE loss function to achieve this. We test our framework on two publicly available datasets and achieve comparable performance to existing unsupervised methods that exploit pose information.