Multiscale Attention-Based Prototypical Network for Few-Shot Semantic Segmentation

Yifei Zhang, Desire Sidibe, Olivier Morel, Fabrice Meriaudeau

Responsive image

Auto-TLDR; Few-shot Semantic Segmentation with Multiscale Feature Attention

Slides

Deep learning-based image understanding techniques require a large number of labeled images for training. Few-shot semantic segmentation, on the contrary, aims at generalizing the segmentation ability of the model to new categories given only a few labeled samples. To tackle this problem, we propose a novel prototypical network (MAPnet) with multiscale feature attention. To fully exploit the representative features of target classes, we firstly extract rich contextual information of labeled support images via a multiscale feature enhancement module. The learned prototypes from support features provide further semantic guidance on the query image. Then we adaptively integrate multiple similarity-guided probability maps by attention mechanism, yielding an optimal pixel-wise prediction. Furthermore, the proposed method was validated on the PASCAL-5i dataset in terms of 1-way N-shot evaluation. We also test the model with weak annotations, including scribble and bounding box annotations. Both the qualitative and quantitative results demonstrate the advantages of our approach over other state-of-the-art methods.

Similar papers

Incorporating Depth Information into Few-Shot Semantic Segmentation

Yifei Zhang, Desire Sidibe, Olivier Morel, Fabrice Meriaudeau

Responsive image

Auto-TLDR; RDNet: A Deep Neural Network for Few-shot Segmentation Using Depth Information

Slides Poster Similar

Few-shot segmentation presents a significant challenge for semantic scene understanding under limited supervision. Namely, this task targets at generalizing the segmentation ability of the model to new categories given a few samples. In order to obtain complete scene information, we extend the RGB-centric methods to take advantage of complementary depth information. In this paper, we propose a two-stream deep neural network based on metric learning. Our method, known as RDNet, learns class-specific prototype representations within RGB and depth embedding spaces, respectively. The learned prototypes provide effective semantic guidance on the corresponding RGB and depth query image, leading to more accurate performance. Moreover, we build a novel outdoor scene dataset, known as Cityscapes-3i, using labeled RGB images and depth images from the Cityscapes dataset. We also perform ablation studies to explore the effective use of depth information in few-shot segmentation tasks. Experiments on Cityscapes-3i show that our method achieves promising results with visual and complementary geometric cues from only a few labeled examples.

Multi-Direction Convolution for Semantic Segmentation

Dehui Li, Zhiguo Cao, Ke Xian, Xinyuan Qi, Chao Zhang, Hao Lu

Responsive image

Auto-TLDR; Multi-Direction Convolution for Contextual Segmentation

Slides Similar

Context is known to be one of crucial factors effecting the performance improvement of semantic segmentation. However, state-of-the-art segmentation models built upon fully convolutional networks are inherently weak in encoding contextual information because of stacked local operations such as convolution and pooling. Failing to capture context leads to inferior segmentation performance. Despite many context modules have been proposed to relieve this problem, they still operate in a local manner or use the same contextual information in different positions (due to upsampling). In this paper, we introduce the idea of Multi-Direction Convolution (MDC)—a novel operator capable of encoding rich contextual information. This operator is inspired by an observation that the standard convolution only slides along the spatial dimension (x, y direction) where the channel dimension (z direction) is fixed, which renders slow growth of the receptive field (RF). If considering the channel-fixed convolution to be one-direction, MDC is multi-direction in the sense that MDC slides along both spatial and channel dimensions, i.e., it slides along x, y when z is fixed, along x, z when y is fixed, and along y, z when x is fixed. In this way, MDC is able to encode rich contextual information with the fast increase of the RF. Compared to existing context modules, the encoded context is position-sensitive because no upsampling is required. MDC is also efficient and easy to implement. It can be implemented with few standard convolution layers with permutation. We show through extensive experiments that MDC effectively and selectively enlarges the RF and outperforms existing contextual modules on two standard benchmarks, including Cityscapes and PASCAL VOC2012.

Boundary-Aware Graph Convolution for Semantic Segmentation

Hanzhe Hu, Jinshi Cui, Jinshi Hongbin Zha

Responsive image

Auto-TLDR; Boundary-Aware Graph Convolution for Semantic Segmentation

Slides Poster Similar

Recent works have made great progress in semantic segmentation by exploiting contextual information in a local or global manner with dilated convolutions, pyramid pooling or self-attention mechanism. However, few works have focused on harvesting boundary information to improve the segmentation performance. In order to enhance the feature similarity within the object and keep discrimination from other objects, we propose a boundary-aware graph convolution (BGC) module to propagate features within the object. The graph reasoning is performed among pixels of the same object apart from the boundary pixels. Based on the proposed BGC module, we further introduce the Boundary-aware Graph Convolution Network(BGCNet), which consists of two main components including a basic segmentation network and the BGC module, forming a coarse-to-fine paradigm. Specifically, the BGC module takes the coarse segmentation feature map as node features and boundary prediction to guide graph construction. After graph convolution, the reasoned feature and the input feature are fused together to get the refined feature, producing the refined segmentation result. We conduct extensive experiments on three popular semantic segmentation benchmarks including Cityscapes, PASCAL VOC 2012 and COCO Stuff, and achieve state-of-the-art performance on all three benchmarks.

Global-Local Attention Network for Semantic Segmentation in Aerial Images

Minglong Li, Lianlei Shan, Weiqiang Wang

Responsive image

Auto-TLDR; GLANet: Global-Local Attention Network for Semantic Segmentation

Slides Poster Similar

Errors in semantic segmentation task could be classified into two types: large area misclassification and local inaccurate boundaries. Previously attention based methods capture rich global contextual information, this is beneficial to diminish the first type of error, but local imprecision still exists. In this paper we propose Global-Local Attention Network (GLANet) with a simultaneous consideration of global context and local details. Specifically, our GLANet is composed of two branches namely global attention branch and local attention branch, and three different modules are embedded in the two branches for the purpose of modeling semantic interdependencies in spatial, channel and boundary dimensions respectively. We sum the outputs of the two branches to further improve feature representation, leading to more precise segmentation results. The proposed method achieves very competitive segmentation accuracy on two public aerial image datasets, bringing significant improvements over baseline.

Enhanced Feature Pyramid Network for Semantic Segmentation

Mucong Ye, Ouyang Jinpeng, Ge Chen, Jing Zhang, Xiaogang Yu

Responsive image

Auto-TLDR; EFPN: Enhanced Feature Pyramid Network for Semantic Segmentation

Slides Poster Similar

Multi-scale feature fusion has been an effective way for improving the performance of semantic segmentation. However, current methods generally fail to consider the semantic gaps between the shallow (low-level) and deep (high-level) features and thus the fusion methods may not be optimal. In this paper, to address the issues of the semantic gap between the feature from different layers, we propose a unified framework based on the U-shape encoder-decoder architecture, named Enhanced Feature Pyramid Network (EFPN). Specifically, the semantic enhancement module (SEM), boundary extraction module (BEM), and context aggregation model (CAM) are incorporated into the decoder network to improve the robustness of the multi-level features aggregation. In addition, a global fusion model (GFM) in encoder branch is proposed to capture more semantic information in the deep layers and effectively transmit the high-level semantic features to each layer. Extensive experiments are conducted and the results show that the proposed framework achieves the state-of-the-art results on three public datasets, namely PASCAL VOC 2012, Cityscapes, and PASCAL Context. Furthermore, we also demonstrate that the proposed method is effective for other visual tasks that require frequent fusing features and upsampling.

Semantic Segmentation Refinement Using Entropy and Boundary-guided Monte Carlo Sampling and Directed Regional Search

Zitang Sun, Sei-Ichiro Kamata, Ruojing Wang, Weili Chen

Responsive image

Auto-TLDR; Directed Region Search and Refinement for Semantic Segmentation

Slides Poster Similar

Semantic segmentation requires both large receptive field and accurate spatial information. Despite existing methods based on fully convolutional network have greatly improved the accuracy, the prediction results still do not show satisfactory on small objects and boundary regions. We propose a refinement algorithm to improve the result generated by front network. Our method takes a modified U-shape network to generate both of segmentation mask and semantic boundary, which are used as inputs of refinement algorithm. We creatively introduce information entropy to represent the confidence of the neural network's prediction corresponding to each pixel. The information entropy combined with the semantic boundary can capture those unpredictable pixels with low-confidence through Monte Carlo sampling. Each selected pixel will be used as initial seeds for directed region search and refinement. Our purpose is to search the neighbor high-confidence regions according to the initial seeds. The re-labeling approach is based on high-confidence results. Particularly, different from general region growing methods, our method adopts a directed region search strategy based on gradient descent to find the high-confidence region effectively. Our method improves the performance both on Cityscapes and PASCAL VOC datasets. In the evaluation of segmentation accuracy of some small objects, our method surpasses most of state of the art methods.

TAAN: Task-Aware Attention Network for Few-Shot Classification

Zhe Wang, Li Liu, Fanzhang Li

Responsive image

Auto-TLDR; TAAN: Task-Aware Attention Network for Few-Shot Classification

Slides Poster Similar

Few-shot classification aims to recognize unlabeled samples from unseen classes given only a few labeled samples.Current approaches of few-shot learning usually employ a metriclearning framework to learn a feature similarity comparison between a query (test) example and the few support (training) examples. However, these approaches all extract features from samples independently without looking at the entire task as a whole, and so fail to provide an enough discrimination to features. Moreover, the existing approaches lack the ability to select the most relevant features for the task at hand. In this work, we propose a novel algorithm called Task-Aware Attention Network (TAAN) to address the above problems in few-shot classification. By inserting a Task-Relevant Channel Attention Module into metric-based few-shot learners, TAAN generates channel attentions for each sample by aggregating the context of the entire support set and identifies the most relevant features for similarity comparison. The experiment demonstrates that TAAN is competitive in overall performance comparing to the recent state-of-the-art systems and improves the performance considerably over baseline systems on both mini-ImageNet and tiered-ImageNet benchmarks.

Fast and Accurate Real-Time Semantic Segmentation with Dilated Asymmetric Convolutions

Leonel Rosas-Arias, Gibran Benitez-Garcia, Jose Portillo-Portillo, Gabriel Sanchez-Perez, Keiji Yanai

Responsive image

Auto-TLDR; FASSD-Net: Dilated Asymmetric Pyramidal Fusion for Real-Time Semantic Segmentation

Slides Poster Similar

Recent works have shown promising results applied to real-time semantic segmentation tasks. To maintain fast inference speed, most of the existing networks make use of light decoders, or they simply do not use them at all. This strategy helps to maintain a fast inference speed; however, their accuracy performance is significantly lower in comparison to non-real-time semantic segmentation networks. In this paper, we introduce two key modules aimed to design a high-performance decoder for real-time semantic segmentation for reducing the accuracy gap between real-time and non-real-time segmentation networks. Our first module, Dilated Asymmetric Pyramidal Fusion (DAPF), is designed to substantially increase the receptive field on the top of the last stage of the encoder, obtaining richer contextual features. Our second module, Multi-resolution Dilated Asymmetric (MDA) module, fuses and refines detail and contextual information from multi-scale feature maps coming from early and deeper stages of the network. Both modules exploit contextual information without excessively increasing the computational complexity by using asymmetric convolutions. Our proposed network entitled “FASSD-Net” reaches 78.8% of mIoU accuracy on the Cityscapes validation dataset at 41.1 FPS on full resolution images (1024x2048). Besides, with a light version of our network, we reach 74.1% of mIoU at 133.1 FPS (full resolution) on a single NVIDIA GTX 1080Ti card with no additional acceleration techniques. The source code and pre-trained models are available at https://github.com/GibranBenitez/FASSD-Net.

Local Propagation for Few-Shot Learning

Yann Lifchitz, Yannis Avrithis, Sylvaine Picard

Responsive image

Auto-TLDR; Local Propagation for Few-Shot Inference

Slides Poster Similar

The challenge in few-shot learning is that available data is not enough to capture the underlying distribution. To mitigate this, two emerging directions are (a) using local image representations, essentially multiplying the amount of data by a constant factor, and (b) using more unlabeled data, for instance by transductive inference, jointly on a number of queries. In this work, we bring these two ideas together, introducing local propagation. We treat local image features as independent examples, we build a graph on them and we use it to propagate both the features themselves and the labels, known and unknown. Interestingly, since there is a number of features per image, even a single query gives rise to transductive inference. As a result, we provide a universally safe choice for few-shot inference under both non-transductive and transductive settings, improving accuracy over corresponding methods. This is in contrast to existing solutions, where one needs to choose the method depending on the quantity of available data.

Directed Variational Cross-encoder Network for Few-Shot Multi-image Co-segmentation

Sayan Banerjee, Divakar Bhat S, Subhasis Chaudhuri, Rajbabu Velmurugan

Responsive image

Auto-TLDR; Directed Variational Inference Cross Encoder for Class Agnostic Co-Segmentation of Multiple Images

Slides Poster Similar

In this paper, we propose a novel framework for class agnostic co-segmentation of multiple images using comparatively smaller datasets. We have developed a novel encoder-decoder network termed as DVICE (Directed Variational Inference Cross Encoder), which learns a continuous embedding space to ensure better similarity learning. We employ a combination of the proposed variational encoder-decoder and a novel few-shot learning approach to tackle the small sample size problem in co-segmentation. Furthermore, the proposed framework does not use any semantic class labels and is entirely class agnostic. Through exhaustive experimentation using a small volume of data over multiple datasets, we have demonstrated that our approach outperforms all existing state-of-the-art techniques.

Triplet-Path Dilated Network for Detection and Segmentation of General Pathological Images

Jiaqi Luo, Zhicheng Zhao, Fei Su, Limei Guo

Responsive image

Auto-TLDR; Triplet-path Network for One-Stage Object Detection and Segmentation in Pathological Images

Slides Similar

Deep learning has been widely applied in the field of medical image processing. However, compared with flourishing visual tasks in natural images, the progress achieved in pathological images is not remarkable, and detection and segmentation, which are among basic tasks of computer vision, are regarded as two independent tasks. In this paper, we make full use of existing datasets and construct a triplet-path network using dilated convolutions to cooperatively accomplish one-stage object detection and nuclei segmentation for general pathological images. First, in order to meet the requirement of detection and segmentation, a novel structure called triplet feature generation (TFG) is designed to extract high-resolution and multiscale features, where features from different layers can be properly integrated. Second, considering that pathological datasets are usually small, a location-aware and partially truncated loss function is proposed to improve the classification accuracy of datasets with few images and widely varying targets. We compare the performance of both object detection and instance segmentation with state-of-the-art methods. Experimental results demonstrate the effectiveness and efficiency of the proposed network on two datasets collected from multiple organs.

DARN: Deep Attentive Refinement Network for Liver Tumor Segmentation from 3D CT Volume

Yao Zhang, Jiang Tian, Cheng Zhong, Yang Zhang, Zhongchao Shi, Zhiqiang He

Responsive image

Auto-TLDR; Deep Attentive Refinement Network for Liver Tumor Segmentation from 3D Computed Tomography Using Multi-Level Features

Slides Poster Similar

Automatic liver tumor segmentation from 3D Computed Tomography (CT) is a necessary prerequisite in the interventions of hepatic abnormalities and surgery planning. However, accurate liver tumor segmentation remains challenging due to the large variability of tumor sizes and inhomogeneous texture. Recent advances based on Fully Convolutional Network (FCN) in liver tumor segmentation draw on success of learning discriminative multi-level features. In this paper, we propose a Deep Attentive Refinement Network (DARN) for improved liver tumor segmentation from CT volumes by fully exploiting both low and high level features embedded in different layers of FCN. Different from existing works, we exploit attention mechanism to leverage the relation of different levels of features encoded in different layers of FCN. Specifically, we introduce a Semantic Attention Refinement (SemRef) module to selectively emphasize global semantic information in low level features with the guidance of high level ones, and a Spatial Attention Refinement (SpaRef) module to adaptively enhance spatial details in high level features with the guidance of low level ones. We evaluate our network on the public MICCAI 2017 Liver Tumor Segmentation Challenge dataset (LiTS dataset) and it achieves state-of-the-art performance. The proposed refinement modules are an effective strategy to exploit multi-level features and has great potential to generalize to other medical image segmentation tasks.

Explanation-Guided Training for Cross-Domain Few-Shot Classification

Jiamei Sun, Sebastian Lapuschkin, Wojciech Samek, Yunqing Zhao, Ngai-Man Cheung, Alexander Binder

Responsive image

Auto-TLDR; Explaination-Guided Training for Cross-Domain Few-Shot Classification

Slides Poster Similar

Cross-domain few-shot classification task (CD-FSC) combines few-shot classification with the requirement to generalize across domains represented by datasets. This setup faces challenges originating from the limited labeled data in each class and, additionally, from the domain shift between training and test sets. In this paper, we introduce a novel training approach for existing FSC models. It leverages on the explanation scores, obtained from existing explanation methods when applied to the predictions of FSC models, computed for intermediate feature maps of the models. Firstly, we tailor the layer-wise relevance propagation (LRP) method to explain the prediction outcomes of FSC models. Secondly, we develop a model-agnostic explanation-guided training strategy that dynamically finds and emphasizes the features which are important for the predictions. Our contribution does not target a novel explanation method but lies in a novel application of explanations for the training phase. We show that explanation-guided training effectively improves the model generalization. We observe improved accuracy for three different FSC models: RelationNet, cross attention network, and a graph neural network-based formulation, on five few-shot learning datasets: miniImagenet, CUB, Cars, Places, and Plantae.

Few-Shot Few-Shot Learning and the Role of Spatial Attention

Yann Lifchitz, Yannis Avrithis, Sylvaine Picard

Responsive image

Auto-TLDR; Few-shot Learning with Pre-trained Classifier on Large-Scale Datasets

Slides Poster Similar

Few-shot learning is often motivated by the ability of humans to learn new tasks from few examples. However, standard few-shot classification benchmarks assume that the representation is learned on a limited amount of base class data, ignoring the amount of prior knowledge that a human may have accumulated before learning new tasks. At the same time, even if a powerful representation is available, it may happen in some domain that base class data are limited or non-existent. This motivates us to study a problem where the representation is obtained from a classifier pre-trained on a large-scale dataset of a different domain, assuming no access to its training process, while the base class data are limited to few examples per class and their role is to adapt the representation to the domain at hand rather than learn from scratch. We adapt the representation in two stages, namely on the few base class data if available and on the even fewer data of new tasks. In doing so, we obtain from the pre-trained classifier a spatial attention map that allows focusing on objects and suppressing background clutter. This is important in the new problem, because when base class data are few, the network cannot learn where to focus implicitly. We also show that a pre-trained network may be easily adapted to novel classes, without meta-learning.

PSDNet: A Balanced Architecture of Accuracy and Parameters for Semantic Segmentation

Yue Liu, Zhichao Lian

Responsive image

Auto-TLDR; Pyramid Pooling Module with SE1Cblock and D2SUpsample Network (PSDNet)

Slides Poster Similar

Abstract—In this paper, we present our Pyramid Pooling Module (PPM) with SE1Cblock and D2SUpsample Network (PSDNet), a novel architecture for accurate semantic segmentation. Started from the known work called Pyramid Scene Parsing Network (PSPNet), PSDNet takes advantage of pyramid pooling structure with channel attention module and feature transform module in Pyramid Pooling Module (PPM). The enhanced PPM with these two components can strengthen context information flowing in the network instead of damaging it. The channel attention module we mentioned is an improved “Squeeze and Excitation with 1D Convolution” (SE1C) block which can explicitly model interrelationship between channels with fewer number of parameters. We propose a feature transform module named “Depth to Space Upsampling” (D2SUpsample) in the PPM which keeps integrity of features by transforming features while interpolating features, at the same time reducing parameters. In addition, we introduce a joint strategy in SE1Cblock which combines two variants of global pooling without increasing parameters. Compared with PSPNet, our work achieves higher accuracy on public datasets with 73.97% mIoU and 82.89% mAcc accuracy on Cityscapes Dataset based on ResNet50 backbone.

GSTO: Gated Scale-Transfer Operation for Multi-Scale Feature Learning in Semantic Segmentation

Zhuoying Wang, Yongtao Wang, Zhi Tang, Yangyan Li, Ying Chen, Haibin Ling, Weisi Lin

Responsive image

Auto-TLDR; Gated Scale-Transfer Operation for Semantic Segmentation

Slides Poster Similar

Existing CNN-based methods for semantic segmentation heavily depend on multi-scale features to meet the requirements of both semantic comprehension and detail preservation. State-of-the-art segmentation networks widely exploit conventional scale-transfer operations, i.e., up-sampling and down-sampling to learn multi-scale features. In this work, we find that these operations lead to scale-confused features and suboptimal performance because they are spatial-invariant and directly transit all feature information cross scales without spatial selection. To address this issue, we propose the Gated Scale-Transfer Operation (GSTO) to properly transit spatial-filtered features to another scale. Specifically, GSTO can work either with or without extra supervision. Unsupervised GSTO is learned from the feature itself while the supervised one is guided by the supervised probability matrix. Both forms of GSTO are lightweight and plug-and-play, which can be flexibly integrated into networks or modules for learning better multi-scale features. In particular, by plugging GSTO into HRNet, we get a more powerful backbone (namely GSTO-HRNet) for pixel labeling, and it achieves new state-of-the-art results on multiple benchmarks for semantic segmentation including Cityscapes, LIP and Pascal Context, with negligible extra computational cost. Moreover, experiment results demonstrate that GSTO can also significantly boost the performance of multi-scale feature aggregation modules like PPM and ASPP.

Augmented Bi-Path Network for Few-Shot Learning

Baoming Yan, Chen Zhou, Bo Zhao, Kan Guo, Yang Jiang, Xiaobo Li, Zhang Ming, Yizhou Wang

Responsive image

Auto-TLDR; Augmented Bi-path Network for Few-shot Learning

Slides Poster Similar

Few-shot Learning (FSL) which aims to learn from few labeled training data is becoming a popular research topic, due to the expensive labeling cost in many real-world applications. One kind of successful FSL method learns to compare the testing (query) image and training (support) image by simply concatenating the features of two images and feeding it into the neural network. However, with few labeled data in each class, the neural network has difficulty in learning or comparing the local features of two images. Such simple image-level comparison may cause serious mis-classification. To solve this problem, we propose Augmented Bi-path Network (ABNet) for learning to compare both global and local features on multi-scales. Specifically, the salient patches are extracted and embedded as the local features for every image. Then, the model learns to augment the features for better robustness. Finally, the model learns to compare global and local features separately, \emph{i.e.}, in two paths, before merging the similarities. Extensive experiments show that the proposed ABNet outperforms the state-of-the-art methods. Both quantitative and visual ablation studies are provided to verify that the proposed modules lead to more precise comparison results.

Video Semantic Segmentation Using Deep Multi-View Representation Learning

Akrem Sellami, Salvatore Tabbone

Responsive image

Auto-TLDR; Deep Multi-view Representation Learning for Video Object Segmentation

Slides Poster Similar

In this paper, we propose a deep learning model based on deep multi-view representation learning, to address the video object segmentation task. The proposed model emphasizes the importance of the inherent correlation between video frames and incorporates a multi-view representation learning based on deep canonically correlated autoencoders. The multi-view representation learning in our model provides an efficient mechanism for capturing inherent correlations by jointly extracting useful features and learning better representation into a joint feature space, i.e., shared representation. To increase the training data and the learning capacity, we train the proposed model with pairs of video frames, i.e., $F_{a}$ and $F_{b}$. During the segmentation phase, the deep canonically correlated autoencoders model encodes useful features by processing multiple reference frames together, which is used to detect the frequently reappearing. Our model enhances the state-of-the-art deep learning-based methods that mainly focus on learning discriminative foreground representations over appearance and motion. Experimental results over two large benchmarks demonstrate the ability of the proposed method to outperform competitive approaches and to reach good performances, in terms of semantic segmentation.

MetaMix: Improved Meta-Learning with Interpolation-based Consistency Regularization

Yangbin Chen, Yun Ma, Tom Ko, Jianping Wang, Qing Li

Responsive image

Auto-TLDR; MetaMix: A Meta-Agnostic Meta-Learning Algorithm for Few-Shot Classification

Slides Poster Similar

Model-Agnostic Meta-Learning (MAML) and its variants are popular few-shot classification methods. They train an initializer across a variety of sampled learning tasks (also known as episodes) such that the initialized model can adapt quickly to new tasks. However, within each episode, current MAML-based algorithms have limitations in forming generalizable decision boundaries using only a few training examples. In this paper, we propose an approach called MetaMix. It generates virtual examples within each episode to regularize the backbone models. MetaMix can be applied in any of the MAML-based algorithms and learn the decision boundaries which are more generalizable to new tasks. Experiments on the mini-ImageNet, CUB, and FC100 datasets show that MetaMix improves the performance of MAML-based algorithms and achieves the state-of-the-art result when applied in Meta-Transfer Learning.

Encoder-Decoder Based Convolutional Neural Networks with Multi-Scale-Aware Modules for Crowd Counting

Pongpisit Thanasutives, Ken-Ichi Fukui, Masayuki Numao, Boonserm Kijsirikul

Responsive image

Auto-TLDR; M-SFANet and M-SegNet for Crowd Counting Using Multi-Scale Fusion Networks

Slides Poster Similar

In this paper, we proposed two modified neural networks based on dual path multi-scale fusion networks (SFANet) and SegNet for accurate and efficient crowd counting. Inspired by SFANet, the first model, which is named M-SFANet, is attached with atrous spatial pyramid pooling (ASPP) and context-aware module (CAN). The encoder of M-SFANet is enhanced with ASPP containing parallel atrous convolutional layers with different sampling rates and hence able to extract multi-scale features of the target object and incorporate larger context. To further deal with scale variation throughout an input image, we leverage the CAN module which adaptively encodes the scales of the contextual information. The combination yields an effective model for counting in both dense and sparse crowd scenes. Based on the SFANet decoder structure, M-SFANet's decoder has dual paths, for density map and attention map generation. The second model is called M-SegNet, which is produced by replacing the bilinear upsampling in SFANet with max unpooling that is used in SegNet. This change provides a faster model while providing competitive counting performance. Designed for high-speed surveillance applications, M-SegNet has no additional multi-scale-aware module in order to not increase the complexity. Both models are encoder-decoder based architectures and are end-to-end trainable. We conduct extensive experiments on five crowd counting datasets and one vehicle counting dataset to show that these modifications yield algorithms that could improve state-of-the-art crowd counting methods.

Enhancing Semantic Segmentation of Aerial Images with Inhibitory Neurons

Ihsan Ullah, Sean Reilly, Michael Madden

Responsive image

Auto-TLDR; Lateral Inhibition in Deep Neural Networks for Object Recognition and Semantic Segmentation

Slides Poster Similar

In a Convolutional Neural Network, each neuron in the output feature map takes input from the neurons in its receptive field. This receptive field concept plays a vital role in today's deep neural networks. However, inspired by neuro-biological research, it has been proposed to add inhibitory neurons outside the receptive field, which may enhance the performance of neural network models. In this paper, we begin with deep network architectures such as VGG and ResNet, and propose an approach to add lateral inhibition in each output neuron to reduce its impact on its neighbours, both in fine-tuning pre-trained models and training from scratch. Our experiments show that notable improvements upon prior baseline deep models can be achieved. A key feature of our approach is that it is easy to add to baseline models; it can be adopted in any model containing convolution layers, and we demonstrate its value in applications including object recognition and semantic segmentation of aerial images, where we show state-of-the-art result on the Aeroscape dataset. On semantic segmentation tasks, our enhancement shows 17.43% higher mIoU than a single baseline model on a single source (the Aeroscape dataset), 13.43% higher performance than an ensemble model on the same single source, and 7.03% higher than an ensemble model on multiple sources (segmentation datasets). Our experiments illustrate the potential impact of using inhibitory neurons in deep learning models, and they also show better results than the baseline models that have standard convolutional layer.

Automatic Semantic Segmentation of Structural Elements related to the Spinal Cord in the Lumbar Region by Using Convolutional Neural Networks

Jhon Jairo Sáenz Gamboa, Maria De La Iglesia-Vaya, Jon Ander Gómez

Responsive image

Auto-TLDR; Semantic Segmentation of Lumbar Spine Using Convolutional Neural Networks

Slides Poster Similar

This work addresses the problem of automatically segmenting the MR images corresponding to the lumbar spine. The purpose is to detect and delimit the different structural elements like vertebrae, intervertebral discs, nerves, blood vessels, etc. This task is known as semantic segmentation. The approach proposed in this work is based on convolutional neural networks whose output is a mask where each pixel from the input image is classified into one of the possible classes. Classes were defined by radiologists and correspond to structural elements and tissues. The proposed network architectures are variants of the U-Net. Several complementary blocks were used to define the variants: spatial attention models, deep supervision and multi-kernels at input, this last block type is based on the idea of inception. Those architectures which got the best results are described in this paper, and their results are discussed. Two of the proposed architectures outperform the standard U-Net used as baseline.

Transitional Asymmetric Non-Local Neural Networks for Real-World Dirt Road Segmentation

Yooseung Wang, Jihun Park

Responsive image

Auto-TLDR; Transitional Asymmetric Non-Local Neural Networks for Semantic Segmentation on Dirt Roads

Slides Poster Similar

Understanding images by predicting pixel-level semantic classes is a fundamental task in computer vision and is one of the most important techniques for autonomous driving. Recent approaches based on deep convolutional neural networks have dramatically improved the speed and accuracy of semantic segmentation on paved road datasets, however, dirt roads have yet to be systematically studied. Dirt roads do not contain clear boundaries between drivable and non-drivable regions; and thus, this difficulty must be overcome for the realization of fully autonomous vehicles. The key idea of our approach is to apply lightweight non-local blocks to reinforce stage-wise long-range dependencies in encoder-decoder style backbone networks. Experiments on 4,687 images of a dirt road dataset show that our transitional asymmetric non-local neural networks present a higher accuracy with lower computational costs compared to state-of-the-art models.

Joint Semantic-Instance Segmentation of 3D Point Clouds: Instance Separation and Semantic Fusion

Min Zhong, Gang Zeng

Responsive image

Auto-TLDR; Joint Semantic Segmentation and Instance Separation of 3D Point Clouds

Slides Poster Similar

This paper introduces an approach for jointly addressing semantic segmentation (SS) and instance segmentation (IS) of 3D point clouds. Two novel modules are designed to model the interplay between SS and IS. Specifically, we develop an Instance Separation Module that supplements the position-invariance semantic feature with the instance-specific centroid position to help separate different instances. To fuse the semantic information within a single instance, an attention-based Semantic Fusion Module is proposed to encode attention maps in the instance embedding space, which are applied to fuse semantic information in the semantic feature space. The proposed method is thoroughly evaluated on the S3DIS dataset. Compared with the excellent method ASIS, our approach achieves significant improvements across all evaluation metrics in both IS and SS.

Real-Time Semantic Segmentation Via Region and Pixel Context Network

Yajun Li, Yazhou Liu, Quansen Sun

Responsive image

Auto-TLDR; A Dual Context Network for Real-Time Semantic Segmentation

Slides Poster Similar

Real-time semantic segmentation is a challenging task as both segmentation accuracy and inference speed need to be considered at the same time. In this paper, we present a Dual Context Network (DCNet) to address this challenge. It contains two independent sub-networks: Region Context Network and Pixel Context Network. Region Context Network is main network with low-resolution input and feature re-weighting module to achieve sufficient receptive field. Meanwhile, Pixel Context Network with location attention module to capture the location dependencies of each pixel for assisting the main network to recover spatial detail. A contextual feature fusion is introduced to combine output features of these two sub-networks. The experiments show that DCNet can achieve high-quality segmentation while keeping a high speed. Specifically, for Cityscapes test dataset, we achieve 76.1% Mean IOU with the speed of 82 FPS on a single GTX 2080Ti GPU when using ResNet50 as backbone, and 71.2% Mean IOU with the speed of 142 FPS when using ResNet18 as backbone.

Ordinal Depth Classification Using Region-Based Self-Attention

Minh Hieu Phan, Son Lam Phung, Abdesselam Bouzerdoum

Responsive image

Auto-TLDR; Region-based Self-Attention for Multi-scale Depth Estimation from a Single 2D Image

Slides Poster Similar

Depth estimation from a single 2D image has been widely applied in 3D understanding, 3D modelling and robotics. It is challenging as reliable cues (e.g. stereo correspondences and motions) are not available. Most of the modern approaches exploited multi-scale feature extraction to provide more powerful representations for deep networks. However, these studies have not focused on how to effectively fuse the learned multi-scale features. This paper proposes a novel region-based self-attention (rSA) module. The rSA recalibrates the multi-scale responses by explicitly modelling the interdependency between channels in separate image regions. We discretize continuous depths to solve an ordinal depth classification in which the relative order between categories is significant. We contribute a dataset of 4410 RGB-D images, captured in outdoor environments at the University of Wollongong's campus. In our experimental results, the proposed module improves the lightweight models on small-sized datasets by 22% - 40%

Mutually Guided Dual-Task Network for Scene Text Detection

Mengbiao Zhao, Wei Feng, Fei Yin, Xu-Yao Zhang, Cheng-Lin Liu

Responsive image

Auto-TLDR; A dual-task network for word-level and line-level text detection

Slides Similar

Scene text detection has been studied extensively. Existing methods detect either words or text lines and use either word-level or line-level annotated data for training. In this paper, we propose a dual-task network that can perform word-level and line-level text detection simultaneously and use training data of both levels of annotation to boost the performance. The dual-task network has two detection heads for word-level and line-level text detection, respectively. Then we propose a mutual guidance scheme for the joint training of the two tasks with two modules: line filtering module utilizes the output of the text line detector to filter out the non-text regions for the word detector, and word enhancing module provides prior positions of words for the text line detector depending on the output of the word detector. Experimental results of word-level and line-level text detection demonstrate the effectiveness of the proposed dual-task network and mutual guidance scheme, and the results of our method are competitive with state-of-the-art methods.

Point In: Counting Trees with Weakly Supervised Segmentation Network

Pinmo Tong, Shuhui Bu, Pengcheng Han

Responsive image

Auto-TLDR; Weakly Tree counting using Deep Segmentation Network with Localization and Mask Prediction

Slides Poster Similar

For tree counting tasks, since traditional image processing methods require expensive feature engineering and are not end-to-end frameworks, this will cause additional noise and cannot be optimized overall, so this method has not been widely used in recent trends of tree counting application. Recently, many deep learning based approaches are designed for this task because of the powerful feature extracting ability. The representative way is bounding box based supervised method, but time-consuming annotations are indispensable for them. Moreover, these methods are difficult to overcome the occlusion or overlap. To solve this problem, we propose a weakly tree counting network (WTCNet) based on deep segmentation network with only point supervision. It can simultaneously complete tree counting with localization and output mask of each tree at the same time. We first adopt a novel feature extractor network (FENet) to get features of input images, and then an effective strategy is introduced to deal with different mask predictions. In the end, we propose a basic localization guidance accompany with rectification guidance to train the network. We create two different datasets and select an existing challenging plant dataset to evaluate our method on three different tasks. Experimental results show the good performance improvement of our method compared with other existing methods. Further study shows that our method has great potential to reduce human labor and provide effective ground-truth masks and the results show the superiority of our method over the advanced methods.

SFPN: Semantic Feature Pyramid Network for Object Detection

Yi Gan, Wei Xu, Jianbo Su

Responsive image

Auto-TLDR; SFPN: Semantic Feature Pyramid Network to Address Information Dilution Issue in FPN

Slides Poster Similar

Feature Pyramid Network(FPN) employs a top-down path to enhance low level feature by utilizing high level feature.However, further improvement of detector is greatly hindered by the inner defect of FPN. The dilution issue in FPN is analyzed in this paper, and a new architecture named Semantic Feature Pyramid Network(SFPN) is introduced to address the information imbalance problem caused by information dilution. The proposed method consists of two simple and effective components: Semantic Pyramid Module(SPM) and Semantic Feature Fusion Module(SFFM). To compensate for the weaknesses of FPN, the semantic segmentation result is utilized as an extra information source in our architecture.By constructing a semantic pyramid based on the segmentation result and fusing it with FPN, feature maps at each level can obtain the necessary information without suffering from the dilution issue. The proposed architecture could be applied on many detectors, and non-negligible improvement could be achieved. Although this method is designed for object detection, other tasks such as instance segmentation can also largely benefit from it. The proposed method brings Faster R-CNN and Mask R-CNN with ResNet-50 as backbone both 1.8 AP improvements respectively. Furthermore, SFPN improves Cascade R-CNN with backbone ResNet-101 from 42.4 AP to 43.5 AP.

Siamese Dynamic Mask Estimation Network for Fast Video Object Segmentation

Dexiang Hong, Guorong Li, Kai Xu, Li Su, Qingming Huang

Responsive image

Auto-TLDR; Siamese Dynamic Mask Estimation for Video Object Segmentation

Slides Poster Similar

Video object segmentation(VOS) has been a fundamental topic in recent years, and many deep learning-based methods have achieved state-of-the-art performance on multiple benchmarks. However, most of these methods rely on pixel-level matching between the template and the searched frames on the whole image while the targets only occupy a small region. Calculating on the entire image brings lots of additional computation cost. Besides, the whole image may contain some distracting information resulting in many false-positive matching points. To address this issue, motivated by one-stage instance object segmentation methods, we propose an efficient siamese dynamic mask estimation network for fast video object segmentation. The VOS is decoupled into two tasks, i.e. mask feature learning and dynamic kernel prediction. The former is responsible for learning high-quality features to preserve structural geometric information, and the latter learns a dynamic kernel which is used to convolve with the mask feature to generate a mask output. We use Siamese neural network as a feature extractor and directly predict masks after correlation. In this way, we can avoid using pixel-level matching, making our framework more simple and efficient. Experiment results on DAVIS 2016 /2017 datasets show that our proposed methods can run at 35 frames per second on NVIDIA RTX TITAN while preserving competitive accuracy.

Revisiting Sequence-To-Sequence Video Object Segmentation with Multi-Task Loss and Skip-Memory

Fatemeh Azimi, Benjamin Bischke, Sebastian Palacio, Federico Raue, Jörn Hees, Andreas Dengel

Responsive image

Auto-TLDR; Sequence-to-Sequence Learning for Video Object Segmentation

Slides Poster Similar

Video Object Segmentation (VOS) is an active research area of the visual domain. One of its fundamental sub-tasks is semi-supervised / one-shot learning: given only the segmentation mask for the first frame, the task is to provide pixel-accurate masks for the object over the rest of the sequence. Despite much progress in the last years, we noticed that many of the existing approaches lose objects in longer sequences, especially when the object is small or briefly occluded. In this work, we build upon a sequence-to-sequence approach that employs an encoder-decoder architecture together with a memory module for exploiting the sequential data. We further improve this approach by proposing a model that manipulates multi-scale spatio-temporal information using memory-equipped skip connections. Furthermore, we incorporate an auxiliary task based on distance classification which greatly enhances the quality of edges in segmentation masks. We compare our approach to the state of the art and show considerable improvement in the contour accuracy metric and the overall segmentation accuracy.

Multi-Scale Residual Pyramid Attention Network for Monocular Depth Estimation

Jing Liu, Xiaona Zhang, Zhaoxin Li, Tianlu Mao

Responsive image

Auto-TLDR; Multi-scale Residual Pyramid Attention Network for Monocular Depth Estimation

Slides Poster Similar

Monocular depth estimation is a challenging problem in computer vision and is crucial for understanding 3D scene geometry. Recently, deep convolutional neural networks (DCNNs) based methods have improved the estimation accuracy significantly. However, existing methods fail to consider complex textures and geometries in scenes, thereby resulting in loss of local details, distorted object boundaries, and blurry reconstruction. In this paper, we proposed an end-to-end Multi-scale Residual Pyramid Attention Network (MRPAN) to mitigate these problems.First,we propose a Multi-scale Attention Context Aggregation (MACA) module, which consists of Spatial Attention Module (SAM) and Global Attention Module (GAM). By considering the position and scale correlation of pixels from spatial and global perspectives, the proposed module can adaptively learn the similarity between pixels so as to obtain more global context information of the image and recover the complex structure in the scene. Then we proposed an improved Residual Refinement Module (RRM) to further refine the scene structure, giving rise to deeper semantic information and retain more local details. Experimental results show that our method achieves more promisin performance in object boundaries and local details compared with other state-of-the-art methods.

Semantics to Space(S2S): Embedding Semantics into Spatial Space for Zero-Shot Verb-Object Query Inferencing

Sungmin Eum, Heesung Kwon

Responsive image

Auto-TLDR; Semantics-to-Space: Deep Zero-Shot Learning for Verb-Object Interaction with Vectors

Slides Poster Similar

We present a novel deep zero-shot learning (ZSL) model for inferencing human-object-interaction with verb-object (VO) query. While the previous two-stream ZSL approaches only use the semantic/textual information to be fed into the query stream, we seek to incorporate and embed the semantics into the visual representation stream as well. Our approach is powered by Semantics-to-Space (S2S) architecture where semantics derived from the residing objects are embedded into a spatial space of the visual stream. This architecture allows the co-capturing of the semantic attributes of the human and the objects along with their location/size/silhouette information. To validate, we have constructed a new dataset, Verb-Transferability 60 (VT60). VT60 provides 60 different VO pairs with overlapping verbs tailored for testing two-stream ZSL approaches with VO query. Experimental evaluations show that our approach not only outperforms the state-of-the-art, but also shows the capability of consistently improving performance regardless of which ZSL baseline architecture is used.

RescueNet: Joint Building Segmentation and Damage Assessment from Satellite Imagery

Rohit Gupta, Mubarak Shah

Responsive image

Auto-TLDR; RescueNet: End-to-End Building Segmentation and Damage Classification for Humanitarian Aid and Disaster Response

Slides Poster Similar

Accurate and fine-grained information about the extent of damage to buildings is essential for directing Humanitarian Aid and Disaster Response (HADR) operations in the immediate aftermath of any natural calamity. In recent years, satellite and UAV (drone) imagery has been used for this purpose, sometimes aided by computer vision algorithms. Existing Computer Vision approaches for building damage assessment typically rely on a two stage approach, consisting of building detection using an object detection model, followed by damage assessment through classification of the detected building tiles. These multi-stage methods are not end-to-end trainable, and suffer from poor overall results. We propose RescueNet, a unified model that can simultaneously segment buildings and assess the damage levels to individual buildings and can be trained end-to end. In order to to model the composite nature of this problem, we propose a novel localization aware loss function, which consists of a Binary Cross Entropy loss for building segmentation, and a foreground only selective Categorical Cross-Entropy loss for damage classification, and show significant improvement over the widely used Cross-Entropy loss. RescueNet is tested on the large scale and diverse xBD dataset and achieves significantly better building segmentation and damage classification performance than previous methods and achieves generalization across varied geographical regions and disaster types.

Attention Based Coupled Framework for Road and Pothole Segmentation

Shaik Masihullah, Ritu Garg, Prerana Mukherjee, Anupama Ray

Responsive image

Auto-TLDR; Few Shot Learning for Road and Pothole Segmentation on KITTI and IDD

Slides Poster Similar

In this paper, we propose a novel attention based coupled framework for road and pothole segmentation. In many developing countries as well as in rural areas, the drivable areas are neither well-defined, nor well-maintained. Under such circumstances, an Advance Driver Assistant System (ADAS) is needed to assess the drivable area and alert about the potholes ahead to ensure vehicle safety. Moreover, this information can also be used in structured environments for assessment and maintenance of road health. We demonstrate few shot learning approach for pothole detection to leverage accuracy even with fewer training samples. We report the exhaustive experimental results for road segmentation on KITTI and IDD datasets. We also present pothole segmentation on IDD.

Dynamic Guided Network for Monocular Depth Estimation

Xiaoxia Xing, Yinghao Cai, Yiping Yang, Dayong Wen

Responsive image

Auto-TLDR; DGNet: Dynamic Guidance Upsampling for Self-attention-Decoding for Monocular Depth Estimation

Slides Poster Similar

Self-attention or encoder-decoder structure has been widely used in deep neural networks for monocular depth estimation tasks. The former mechanism are capable to capture long-range information by computing the representation of each position by a weighted sum of the features at all positions, while the latter networks can capture structural details information by gradually recovering the spatial information. In this work, we combine the advantages of both methods. Specifically, our proposed model, DGNet, extends EMANet Network by adding an effective decoder module to refine the depth results. In the decoder stage, we further design dynamic guidance upsampling which uses local neighboring information of low-level features guide coarser depth to upsample. In this way, dynamic guidance upsampling generates content-dependent and spatially-variant kernels for depth upsampling which makes full use of spatial details information from low-level features. Experimental results demonstrate that our method obtains higher accuracy and generates the desired depth map.

A Fine-Grained Dataset and Its Efficient Semantic Segmentation for Unstructured Driving Scenarios

Kai Andreas Metzger, Peter Mortimer, Hans J "Joe" Wuensche

Responsive image

Auto-TLDR; TAS500: A Semantic Segmentation Dataset for Autonomous Driving in Unstructured Environments

Slides Poster Similar

Research in autonomous driving for unstructured environments suffers from a lack of semantically labeled datasets compared to its urban counterpart. Urban and unstructured outdoor environments are challenging due to the varying lighting and weather conditions during a day and across seasons. In this paper, we introduce TAS500, a novel semantic segmentation dataset for autonomous driving in unstructured environments. TAS500 offers fine-grained vegetation and terrain classes to learn drivable surfaces and natural obstacles in outdoor scenes effectively. We evaluate the performance of modern semantic segmentation models with an additional focus on their efficiency. Our experiments demonstrate the advantages of fine-grained semantic classes to improve the overall prediction accuracy, especially along the class boundaries. The dataset, code, and pretrained model are available online.

Few-Shot Learning Based on Metric Learning Using Class Augmentation

Susumu Matsumi, Keiichi Yamada

Responsive image

Auto-TLDR; Metric Learning for Few-shot Learning

Slides Poster Similar

Few-shot learning is a machine learning problem in which new categories are learned from only a few samples. One approach for few-shot learning is metric learning, which learns an embedding space in which learning is efficient for few-shot samples. In this paper, we focus on metric learning and demonstrate that the number of classes in the training data used for metric learning has a greater impact on the accuracy of few-shot learning than the number of samples per class. We propose a few-shot learning approach based on metric learning in which the number of classes in the training data for performing metric learning is increased. The number of classes is augmented by synthesizing samples of imaginary classes at a feature level from the original training data. The proposed method is evaluated on the miniImageNet dataset using the nearest neighbor method or a support vector machine as the classifier, and the effectiveness of the approach is demonstrated.

Forground-Guided Vehicle Perception Framework

Kun Tian, Tong Zhou, Shiming Xiang, Chunhong Pan

Responsive image

Auto-TLDR; A foreground segmentation branch for vehicle detection

Slides Poster Similar

As the basis of advanced visual tasks such as vehicle tracking and traffic flow analysis, vehicle detection needs to accurately predict the position and category of vehicle objects. In the past decade, deep learning based methods have made great progress. However, we also notice that some existing cases are not studied thoroughly. First, false positive on the background regions is one of the critical problems. Second, most of the previous approaches only optimize a single vehicle detection model, ignoring the relationship between different visual perception tasks. In response to the above two findings, we introduce a foreground segmentation branch for the first time, which can predict the pixel level of vehicles in advance. Furthermore, two attention modules are designed to guide the work of the detection branch. The proposed method can be easily grafted into the one-stage and two-stage detection framework. We evaluate the effectiveness of our model on LSVH, a dataset with large variations in vehicle scales, and achieve the state-of-the-art detection accuracy.

FatNet: A Feature-Attentive Network for 3D Point Cloud Processing

Chaitanya Kaul, Nick Pears, Suresh Manandhar

Responsive image

Auto-TLDR; Feature-Attentive Neural Networks for Point Cloud Classification and Segmentation

Slides Similar

The application of deep learning to 3D point clouds is challenging due to its lack of order. Inspired by the point embeddings of PointNet and the edge embeddings of DGCNNs, we propose three improvements to the task of point cloud analysis. First, we introduce a novel feature-attentive neural network layer, a FAT layer, that combines both global point-based features and local edge-based features in order to generate better embeddings. Second, we find that applying the same attention mechanism across two different forms of feature map aggregation, max pooling and average pooling, gives better performance than either alone. Third, we observe that residual feature reuse in this setting propagates information more effectively between the layers, and makes the network easier to train. Our architecture achieves state-of-the-art results on the task of point cloud classification, as demonstrated on the ModelNet40 dataset, and an extremely competitive performance on the ShapeNet part segmentation challenge.

CAggNet: Crossing Aggregation Network for Medical Image Segmentation

Xu Cao, Yanghao Lin

Responsive image

Auto-TLDR; Crossing Aggregation Network for Medical Image Segmentation

Slides Poster Similar

In this paper, we present Crossing Aggregation Network (CAggNet), a novel densely connected semantic segmentation method for medical image analysis. The crossing aggregation network absorbs the idea of deep layer aggregation and makes significant innovations in layer connection and semantic information fusion. In this architecture, the traditional skip-connection structure of general U-Net is replaced by aggregations of multi-level down-sampling and up-sampling layers. This enables the network to fuse information interactively flows at different levels of layers in semantic segmentation. It also introduces weighted aggregation module to aggregate multi-scale output information. We have evaluated and compared our CAggNet with several advanced U-Net based methods in two public medical image datasets, including the 2018 Data Science Bowl nuclei detection dataset and the 2015 MICCAI gland segmentation competition dataset. Experimental results indicate that CAggNet improves medical object recognition and achieves a more accurate and efficient segmentation compared to existing improved U-Net and UNet++ structure.

Meta Generalized Network for Few-Shot Classification

Wei Wu, Shanmin Pang, Zhiqiang Tian, Yaochen Li

Responsive image

Auto-TLDR; Meta Generalized Network for Few-Shot Classification

Similar

Few-shot classification aims to learn a well performance model with very limited labeled examples. There are mainly two directions for this aim, namely, meta- and metric-learning. Meta learning trains models in a particular way to fast adapt to new tasks, but it neglects variational features of images. Metric learning considers relationships among same or different classes, however on the downside, it usually fails to achieve competitive performance on unseen boundary examples. In this paper, we propose a Meta Generalized Network (MGNet) that aims to combine advantages of both meta- and metric-learning. There are two novel components in MGNet. Specifically, we first develop a meta backbone training method that both learns a flexible feature extractor and a classifier initializer efficiently, delightedly leading to fast adaption to unseen few-shot tasks without overfitting. Second, we design a trainable adaptive interval model to improve the cosine classifier, which increases the recognition accuracy of hard examples. We train the meta backbone in the training stage by all classes, and fine-tune the meta-backbone as well as train the adaptive classifier in the testing stage.

Efficient-Receptive Field Block with Group Spatial Attention Mechanism for Object Detection

Jiacheng Zhang, Zhicheng Zhao, Fei Su

Responsive image

Auto-TLDR; E-RFB: Efficient-Receptive Field Block for Deep Neural Network for Object Detection

Slides Poster Similar

Object detection has been paid rising attention in computer vision field. Convolutional Neural Networks (CNNs) extract high-level semantic features of images, which directly determine the performance of object detection. As a common solution, embedding integration modules into CNNs can enrich extracted features and thereby improve the performance. However, the instability and inconsistency of internal multiple branches exist in these modules. To address this problem, we propose a novel multibranch module called Efficient-Receptive Field Block (E-RFB), in which multiple levels of features are combined for network optimization. Specifically, by downsampling and increasing depth, the E-RFB provides sufficient RF. Second, in order to eliminate the inconsistency across different branches, a novel spatial attention mechanism, namely, Group Spatial Attention Module (GSAM) is proposed. The GSAM gradually narrows a feature map by channel grouping; thus it encodes the information between spatial and channel dimensions into the final attention heat map. Third, the proposed module can be easily joined in various CNNs to enhance feature representation as a plug-and-play component. With SSD-style detectors, our method halves the parameters of the original detection head and achieves high accuracy on the PASCAL VOC and MS COCO datasets. Moreover, the proposed method achieves superior performance compared with state-of-the-art methods based on similar framework.

Graph-Based Interpolation of Feature Vectors for Accurate Few-Shot Classification

Yuqing Hu, Vincent Gripon, Stéphane Pateux

Responsive image

Auto-TLDR; Transductive Learning for Few-Shot Classification using Graph Neural Networks

Slides Poster Similar

In few-shot classification, the aim is to learn models able to discriminate classes using only a small number of labeled examples. In this context, works have proposed to introduce Graph Neural Networks (GNNs) aiming at exploiting the information contained in other samples treated concurrently, what is commonly referred to as the transductive setting in the literature. These GNNs are trained all together with a backbone feature extractor. In this paper, we propose a new method that relies on graphs only to interpolate feature vectors instead, resulting in a transductive learning setting with no additional parameters to train. Our proposed method thus exploits two levels of information: a) transfer features obtained on generic datasets, b) transductive information obtained from other samples to be classified. Using standard few-shot vision classification datasets, we demonstrate its ability to bring significant gains compared to other works.

Complementing Representation Deficiency in Few-Shot Image Classification: A Meta-Learning Approach

Xian Zhong, Cheng Gu, Wenxin Huang, Lin Li, Shuqin Chen, Chia-Wen Lin

Responsive image

Auto-TLDR; Meta-learning with Complementary Representations Network for Few-Shot Learning

Slides Poster Similar

Few-shot learning is a challenging problem that has attracted more and more attention recently since abundant training samples are difficult to obtain in practical applications. Meta-learning has been proposed to address this issue, which focuses on quickly adapting a predictor as a base-learner to new tasks, given limited labeled samples. However, a critical challenge for meta-learning is the representation deficiency since it is hard to discover common information from a small number of training samples or even one, as is the representation of key features from such little information. As a result, a meta-learner cannot be trained well in a high-dimensional parameter space to generalize to new tasks. Existing methods mostly resort to extracting less expressive features so as to avoid the representation deficiency. Aiming at learning better representations, we propose a meta-learning approach with complemented representations network (MCRNet) for few-shot image classification. In particular, we embed a latent space, where latent codes are reconstructed with extra representation information to complement the representation deficiency. Furthermore, the latent space is established with variational inference, collaborating well with different base-learners, and can be extended to other models. Finally, our end-to-end framework achieves the state-of-the-art performance in image classification on three standard few-shot learning datasets.

DA-RefineNet: Dual-Inputs Attention RefineNet for Whole Slide Image Segmentation

Ziqiang Li, Rentuo Tao, Qianrun Wu, Bin Li

Responsive image

Auto-TLDR; DA-RefineNet: A dual-inputs attention network for whole slide image segmentation

Slides Poster Similar

Automatic medical image segmentation techniques have wide applications for disease diagnosing, however, its much more challenging than natural optical image segmentation tasks due to the high-resolution of medical images and the corresponding huge computation cost. Sliding window was a commonly used technique for whole slide image (WSI) segmentation, however, for these methods that based on sliding window, the main drawback was lacking of global contextual information for supervision. In this paper, we proposed a dual-inputs attention network (denoted as DA-RefineNet) for WSI segmentation, where both local fine-grained information and global coarse information can be efficiently utilized. Sufficient comparative experiments were conducted to evaluate the effectiveness of the proposed method, the results proved that the proposed method can achieve better performance on WSI segmentation tasks compared to methods rely on single-input.

Semantic Object Segmentation in Cultural Sites Using Real and Synthetic Data

Francesco Ragusa, Daniele Di Mauro, Alfio Palermo, Antonino Furnari, Giovanni Maria Farinella

Responsive image

Auto-TLDR; Exploiting Synthetic Data for Object Segmentation in Cultural Sites

Slides Poster Similar

We consider the problem of object segmentation in cultural sites. Since collecting and labeling large datasets of real images is challenging, we investigate whether the use of synthetic images can be useful to achieve good segmentation performance on real data. To perform the study, we collected a new dataset comprising both real and synthetic images of 24 artworks in a cultural site. The synthetic images have been automatically generated from the 3D model of the considered cultural site using a tool developed for that purpose. Real and synthetic images have been labeled for the task of semantic segmentation of artworks. We compare three different approaches to perform object segmentation exploiting real and synthetic data. The experimental results point out that the use of synthetic data helps to improve the performances of segmentation algorithms when tested on real images. Satisfactory performance is achieved exploiting semantic segmentation together with image-to-image translation and including a small amount of real data during training. To encourage research on the topic, we publicly release the proposed dataset at the following url: https://iplab.dmi.unict.it/EGO-CH-OBJ-SEG/.

Zoom-CAM: Generating Fine-Grained Pixel Annotations from Image Labels

Xiangwei Shi, Seyran Khademi, Yunqiang Li, Jan Van Gemert

Responsive image

Auto-TLDR; Zoom-CAM for Weakly Supervised Object Localization and Segmentation

Slides Poster Similar

Current weakly supervised object localization and segmentation rely on class-discriminative visualization techniques for convolutional neural networks (CNN) to generate pseudo-labels for pixel-level training. However, visualization methods, including CAM and Grad-CAM, focus on most discriminative object parts summarized in the last convolutional layer, missing the complete pixel mapping in intermediate layers. We propose Zoom-CAM: going beyond the last lowest resolution layer by integrating the importance maps over all activations in intermediate layers. Zoom-CAM captures fine-grained small-scale objects for various discriminative class instances, which are commonly missed by the baseline visualization methods. We focus on generating pixel-level pseudo-labels from class labels. The quality of our pseudo-labels evaluated on the ImageNet localization task exhibits more than 2.8% improvement on top-1 error. For weakly supervised semantic segmentation our generated pseudo-labels improve a state of the art model by 1.1%.