Abdesselam Bouzerdoum

Papers from this author

Ordinal Depth Classification Using Region-Based Self-Attention

Minh Hieu Phan, Son Lam Phung, Abdesselam Bouzerdoum

Responsive image

Auto-TLDR; Region-based Self-Attention for Multi-scale Depth Estimation from a Single 2D Image

Slides Poster Similar

Depth estimation from a single 2D image has been widely applied in 3D understanding, 3D modelling and robotics. It is challenging as reliable cues (e.g. stereo correspondences and motions) are not available. Most of the modern approaches exploited multi-scale feature extraction to provide more powerful representations for deep networks. However, these studies have not focused on how to effectively fuse the learned multi-scale features. This paper proposes a novel region-based self-attention (rSA) module. The rSA recalibrates the multi-scale responses by explicitly modelling the interdependency between channels in separate image regions. We discretize continuous depths to solve an ordinal depth classification in which the relative order between categories is significant. We contribute a dataset of 4410 RGB-D images, captured in outdoor environments at the University of Wollongong's campus. In our experimental results, the proposed module improves the lightweight models on small-sized datasets by 22% - 40%

Real-time Pedestrian Lane Detection for Assistive Navigation using Neural Architecture Search

Sui Paul Ang, Son Lam Phung, Thi Nhat Anh Nguyen, Soan T. M. Duong, Abdesselam Bouzerdoum, Mark M. Schira

Responsive image

Auto-TLDR; Real-Time Pedestrian Lane Detection Using Deep Neural Networks

Slides Poster Similar

Pedestrian lane detection is a core component in many assistive and autonomous navigation systems. These systems are usually deployed on environments that require real-time processing. Many state-of-the-art deep neural networks only focus on detection accuracy but not inference speed. Hence, without further modifications, they are not suitable for real-time applications. Furthermore, the task of designing a high-performing deep neural network is time-consuming and requires experience. To tackle these issues, we propose a neural architecture search algorithm that can find the best deep network for pedestrian lane detection automatically. The proposed method searches in a network-level space using the gradient descent algorithm. Evaluated on a dataset of 5,000 images, the models derived by the proposed algorithm achieve comparable segmentation accuracy, while being significantly faster than other state-of-the-art methods. The proposed method has been successfully implemented as a real-time pedestrian lane detection tool.