Semantics to Space(S2S): Embedding Semantics into Spatial Space for Zero-Shot Verb-Object Query Inferencing

Sungmin Eum, Heesung Kwon

Responsive image

Auto-TLDR; Semantics-to-Space: Deep Zero-Shot Learning for Verb-Object Interaction with Vectors

Slides Poster

We present a novel deep zero-shot learning (ZSL) model for inferencing human-object-interaction with verb-object (VO) query. While the previous two-stream ZSL approaches only use the semantic/textual information to be fed into the query stream, we seek to incorporate and embed the semantics into the visual representation stream as well. Our approach is powered by Semantics-to-Space (S2S) architecture where semantics derived from the residing objects are embedded into a spatial space of the visual stream. This architecture allows the co-capturing of the semantic attributes of the human and the objects along with their location/size/silhouette information. To validate, we have constructed a new dataset, Verb-Transferability 60 (VT60). VT60 provides 60 different VO pairs with overlapping verbs tailored for testing two-stream ZSL approaches with VO query. Experimental evaluations show that our approach not only outperforms the state-of-the-art, but also shows the capability of consistently improving performance regardless of which ZSL baseline architecture is used.

Similar papers

Developing Motion Code Embedding for Action Recognition in Videos

Maxat Alibayev, David Andrea Paulius, Yu Sun

Responsive image

Auto-TLDR; Motion Embedding via Motion Codes for Action Recognition

Slides Poster Similar

We propose a motion embedding strategy via the motion codes that is a vectorized representation of motions based on their salient mechanical attributes. We show that our motion codes can provide robust motion representation. We train a deep neural network model that learns to embed demonstration videos into motion codes. We integrate the extracted features from the motion embedding model into the current state-of-the-art action recognition model. The obtained model achieved higher accuracy than the baseline on a verb classification task from egocentric videos in EPIC-KITCHENS dataset.

Prior Knowledge about Attributes: Learning a More Effective Potential Space for Zero-Shot Recognition

Chunlai Chai, Yukuan Lou

Responsive image

Auto-TLDR; Attribute Correlation Potential Space Generation for Zero-Shot Learning

Slides Poster Similar

Zero-shot learning (ZSL) aims to recognize unseen classes accurately by learning seen classes and known attributes, but correlations in attributes were ignored by previous study which lead to classification results confused. To solve this problem, we build an Attribute Correlation Potential Space Generation (ACPSG) model which uses a graph convolution network and attribute correlation to generate a more discriminating potential space. Combining potential discrimination space and user-defined attribute space, we can better classify unseen classes. Our approach outperforms some existing state-of-the-art methods on several benchmark datasets, whether it is conventional ZSL or generalized ZSL.

Using Scene Graphs for Detecting Visual Relationships

Anurag Tripathi, Siddharth Srivastava, Brejesh Lall, Santanu Chaudhury

Responsive image

Auto-TLDR; Relationship Detection using Context Aligned Scene Graph Embeddings

Slides Poster Similar

In this paper we solve the problem of detecting relationships between pairs of objects in an image. We develop spatially aware word embeddings using scene graphs and use joint feature representations containing visual, spatial and semantic embeddings from the input images to train a deep network on the task of relationship detection. Further, we propose to utilize context aligned scene graph embeddings from the train set, without requiring explicit availability of scene graphs at test time. We show that the proposed method outperforms the state-of-the-art methods for predicate detection and provides competing results on relationship detection. We also show the generalization ability of the proposed method by performing predictions under zero shot settings. Further, we also provide an exhaustive empirical evaluation on each component of the proposed network.

Context for Object Detection Via Lightweight Global and Mid-Level Representations

Mesut Erhan Unal, Adriana Kovashka

Responsive image

Auto-TLDR; Context-Based Object Detection with Semantic Similarity

Slides Poster Similar

We propose an approach for explicitly capturing context in object detection. We model visual and geometric relationships between object regions, but also model the global scene as a first-class participant. In contrast to prior approaches, both the context we rely on, as well as our proposed mechanism for belief propagation over regions, is lightweight. We also experiment with capturing similarities between regions at a semantic level, by modeling class co-occurrence and linguistic similarity between class names. We show that our approach significantly outperforms Faster R-CNN, and performs competitively with a much more costly approach that also models context.

MAGNet: Multi-Region Attention-Assisted Grounding of Natural Language Queries at Phrase Level

Amar Shrestha, Krittaphat Pugdeethosapol, Haowen Fang, Qinru Qiu

Responsive image

Auto-TLDR; MAGNet: A Multi-Region Attention-Aware Grounding Network for Free-form Textual Queries

Slides Poster Similar

Grounding free-form textual queries necessitates an understanding of these textual phrases and its relation to the visual cues to reliably reason about the described locations. Spatial attention networks are known to learn this relationship and focus its gaze on salient objects in the image. Thus, we propose to utilize spatial attention networks for image-level visual-textual fusion preserving local (word) and global (phrase) information to refine region proposals with an in-network Region Proposal Network (RPN) and detect single or multiple regions for a phrase query. We focus only on the phrase query - ground truth pair (referring expression) for a model independent of the constraints of the datasets i.e. additional attributes, context etc. For such referring expression dataset ReferIt game, our Multi- region Attention-assisted Grounding network (MAGNet) achieves over 12% improvement over the state-of-the-art. Without the con- text from image captions and attribute information in Flickr30k Entities, we still achieve competitive results compared to the state- of-the-art.

Incrementally Zero-Shot Detection by an Extreme Value Analyzer

Sixiao Zheng, Yanwei Fu, Yanxi Hou

Responsive image

Auto-TLDR; IZSD-EVer: Incremental Zero-Shot Detection for Incremental Learning

Slides Similar

Human beings not only have the ability of recogniz-ing novel unseen classes, but also can incrementally incorporatethe new classes to existing knowledge preserved. However, thezero-shot learning models assume that all seen classes should beknown beforehand, while incremental learning models cannotrecognize unseen classes. This paper introduces a novel andchallenging task of Incrementally Zero-Shot Detection (IZSD),a practical strategy for both zero-shot learning and class-incremental learning in real-world object detection. An innovativeend-to-end model – IZSD-EVer was proposed to tackle this taskthat requires incrementally detecting new classes and detectingthe classes that have never been seen. Specifically, we proposea novel extreme value analyzer to simultaneously detect objectsfrom old seen, new seen, and unseen classes. Additionally andtechnically, we propose two innovative losses, i.e., background-foreground mean squared error loss alleviating the extremeimbalance of the background and foreground of images, andprojection distance loss aligning the visual space and semanticspaces of old seen classes. Experiments demonstrate the efficacyof our model in detecting objects from both the seen and unseenclasses, outperforming the alternative models on Pascal VOC andMSCOCO datasets.

A Novel Attention-Based Aggregation Function to Combine Vision and Language

Matteo Stefanini, Marcella Cornia, Lorenzo Baraldi, Rita Cucchiara

Responsive image

Auto-TLDR; Fully-Attentive Reduction for Vision and Language

Slides Poster Similar

The joint understanding of vision and language has been recently gaining a lot of attention in both the Computer Vision and Natural Language Processing communities, with the emergence of tasks such as image captioning, image-text matching, and visual question answering. As both images and text can be encoded as sets or sequences of elements - like regions and words - proper reduction functions are needed to transform a set of encoded elements into a single response, like a classification or similarity score. In this paper, we propose a novel fully-attentive reduction method for vision and language. Specifically, our approach computes a set of scores for each element of each modality employing a novel variant of cross-attention, and performs a learnable and cross-modal reduction, which can be used for both classification and ranking. We test our approach on image-text matching and visual question answering, building fair comparisons with other reduction choices, on both COCO and VQA 2.0 datasets. Experimentally, we demonstrate that our approach leads to a performance increase on both tasks. Further, we conduct ablation studies to validate the role of each component of the approach.

Self-Selective Context for Interaction Recognition

Kilickaya Kilickaya, Noureldien Hussein, Efstratios Gavves, Arnold Smeulders

Responsive image

Auto-TLDR; Self-Selective Context for Human-Object Interaction Recognition

Slides Poster Similar

Human-object interaction recognition aims for identifying the relationship between a human subject and an object. Researchers incorporate global scene context into the early layers of deep Convolutional Neural Networks as a solution. They report a significant increase in the performance since generally interactions are correlated with the scene (i.e. riding bicycle on the city street). However, this approach leads to the following problems. It increases the network size in the early layers, therefore not efficient. It leads to noisy filter responses when the scene is irrelevant, therefore not accurate. It only leverages scene context whereas human-object interactions offer a multitude of contexts, therefore incomplete. To circumvent these issues, in this work, we propose Self-Selective Context (SSC). SSC operates on the joint appearance of human-objects and context to bring the most discriminative context(s) into play for recognition. We devise novel contextual features that model the locality of human-object interactions and show that SSC can seamlessly integrate with the State-of-the-art interaction recognition models. Our experiments show that SSC leads to an important increase in interaction recognition performance, while using much fewer parameters.

Recognizing Bengali Word Images - A Zero-Shot Learning Perspective

Sukalpa Chanda, Daniël Arjen Willem Haitink, Prashant Kumar Prasad, Jochem Baas, Umapada Pal, Lambert Schomaker

Responsive image

Auto-TLDR; Zero-Shot Learning for Word Recognition in Bengali Script

Slides Poster Similar

Zero-Shot Learning(ZSL) techniques could classify a completely unseen class, which it has never seen before during training. Thus, making it more apt for any real-life classification problem, where it is not possible to train a system with annotated data for all possible class types. This work investigates recognition of word images written in Bengali Script in a ZSL framework. The proposed approach performs Zero-Shot word recognition by coupling deep learned features procured from VGG16 architecture along with 13 basic shapes/stroke primitives commonly observed in Bengali script characters. As per the notion of ZSL framework those 13 basic shapes are termed as “Signature Attributes”. The obtained results are promising while evaluation was carried out in a Five-Fold cross-validation setup dealing with samples from 250 word classes.

Adaptive Word Embedding Module for Semantic Reasoning in Large-Scale Detection

Yu Zhang, Xiaoyu Wu, Ruolin Zhu

Responsive image

Auto-TLDR; Adaptive Word Embedding Module for Object Detection

Slides Poster Similar

In recent years, convolutional neural networks have achieved rapid development in the field of object detection. However, due to the imbalance of data, high costs in labor and uneven level of data labeling, the overall performance of the previous detection network has dropped sharply when dataset extended to the large-scale with hundreds and thousands categories. We present the Adaptive Word Embedding Module, extracting the adaptive semantic knowledge graph to reach semantic consistency within one image. Our method endows the ability to infer global semantic of detection networks without other attribute or relationship annotations. Compared with Faster RCNN, the algorithm on the MSCOCO dataset was significantly improved by 4.1%, and the mAP value has reached 32.8%. On the VG1000 dataset, it increased by 0.9% to 6.7% compared with Faster RCNN. Adaptive Word Embedding Module is lightweight, general-purpose and can be plugged into diverse detection networks. Code will be made available.

Incorporating Depth Information into Few-Shot Semantic Segmentation

Yifei Zhang, Desire Sidibe, Olivier Morel, Fabrice Meriaudeau

Responsive image

Auto-TLDR; RDNet: A Deep Neural Network for Few-shot Segmentation Using Depth Information

Slides Poster Similar

Few-shot segmentation presents a significant challenge for semantic scene understanding under limited supervision. Namely, this task targets at generalizing the segmentation ability of the model to new categories given a few samples. In order to obtain complete scene information, we extend the RGB-centric methods to take advantage of complementary depth information. In this paper, we propose a two-stream deep neural network based on metric learning. Our method, known as RDNet, learns class-specific prototype representations within RGB and depth embedding spaces, respectively. The learned prototypes provide effective semantic guidance on the corresponding RGB and depth query image, leading to more accurate performance. Moreover, we build a novel outdoor scene dataset, known as Cityscapes-3i, using labeled RGB images and depth images from the Cityscapes dataset. We also perform ablation studies to explore the effective use of depth information in few-shot segmentation tasks. Experiments on Cityscapes-3i show that our method achieves promising results with visual and complementary geometric cues from only a few labeled examples.

Transformer Reasoning Network for Image-Text Matching and Retrieval

Nicola Messina, Fabrizio Falchi, Andrea Esuli, Giuseppe Amato

Responsive image

Auto-TLDR; A Transformer Encoder Reasoning Network for Image-Text Matching in Large-Scale Information Retrieval

Slides Poster Similar

Image-text matching is an interesting and fascinating task in modern AI research. Despite the evolution of deep-learning-based image and text processing systems, multi-modal matching remains a challenging problem. In this work, we consider the problem of accurate image-text matching for the task of multi-modal large-scale information retrieval. State-of-the-art results in image-text matching are achieved by inter-playing image and text features from the two different processing pipelines, usually using mutual attention mechanisms. However, this invalidates any chance to extract separate visual and textual features needed for later indexing steps in large-scale retrieval systems. In this regard, we introduce the Transformer Encoder Reasoning Network (TERN), an architecture built upon one of the modern relationship-aware self-attentive architectures, the Transformer Encoder (TE). This architecture is able to separately reason on the two different modalities and to enforce a final common abstract concept space by sharing the weights of the deeper transformer layers. Thanks to this design, the implemented network is able to produce compact and very rich visual and textual features available for the successive indexing step. Experiments are conducted on the MS-COCO dataset, and we evaluate the results using a discounted cumulative gain metric with relevance computed exploiting caption similarities, in order to assess possibly non-exact but relevant search results. We demonstrate that on this metric we are able to achieve state-of-the-art results in the image retrieval task. Our code is freely available at https://github.com/mesnico/TERN.

SL-DML: Signal Level Deep Metric Learning for Multimodal One-Shot Action Recognition

Raphael Memmesheimer, Nick Theisen, Dietrich Paulus

Responsive image

Auto-TLDR; One-Shot Action Recognition using Metric Learning

Slides Similar

Recognizing an activity with a single reference sample using metric learning approaches is a promising research field. The majority of few-shot methods focus on object recognition or face-identification. We propose a metric learning approach to reduce the action recognition problem to a nearest neighbor search in embedding space. We encode signals into images and extract features using a deep residual CNN. Using triplet loss, we learn a feature embedding. The resulting encoder transforms features into an embedding space in which closer distances encode similar actions while higher distances encode different actions. Our approach is based on a signal level formulation and remains flexible across a variety of modalities. It further outperforms the baseline on the large scale NTU RGB+D 120 dataset for the One-Shot action recognition protocol by \ntuoneshotimpro%. With just 60% of the training data, our approach still outperforms the baseline approach by \ntuoneshotimproreduced%. With 40% of the training data, our approach performs comparably well as the second follow up. Further, we show that our approach generalizes well in experiments on the UTD-MHAD dataset for inertial, skeleton and fused data and the Simitate dataset for motion capturing data. Furthermore, our inter-joint and inter-sensor experiments suggest good capabilities on previously unseen setups.

Improving Visual Relation Detection Using Depth Maps

Sahand Sharifzadeh, Sina Moayed Baharlou, Max Berrendorf, Rajat Koner, Volker Tresp

Responsive image

Auto-TLDR; Exploiting Depth Maps for Visual Relation Detection

Slides Poster Similar

State-of-the-art visual relation detection methods mostly rely on object information extracted from RGB images such as 2D bounding boxes, feature maps, and predicted class probabilities. Depth maps can additionally provide valuable information on object relations, e.g. helping to detect not only spatial relations, such as standing behind, but also non-spatial relations, such as holding. In this work, we study the effect of using different object information with a focus on depth maps. To enable this study, we release a new synthetic dataset of depth maps, VG-Depth, as an extension to Visual Genome (VG). We also note that given the highly imbalanced distribution of relations in VG, typical evaluation metrics for visual relation detection cannot reveal improvements of under-represented relations. To address this problem, we propose using an additional metric, calling it Macro Recall@K, and demonstrate its remarkable performance on VG. Finally, our experiments confirm that by effective utilization of depth maps within a simple, yet competitive framework, the performance of visual relation detection can be improved by a margin of up to 8%.

Multiscale Attention-Based Prototypical Network for Few-Shot Semantic Segmentation

Yifei Zhang, Desire Sidibe, Olivier Morel, Fabrice Meriaudeau

Responsive image

Auto-TLDR; Few-shot Semantic Segmentation with Multiscale Feature Attention

Slides Similar

Deep learning-based image understanding techniques require a large number of labeled images for training. Few-shot semantic segmentation, on the contrary, aims at generalizing the segmentation ability of the model to new categories given only a few labeled samples. To tackle this problem, we propose a novel prototypical network (MAPnet) with multiscale feature attention. To fully exploit the representative features of target classes, we firstly extract rich contextual information of labeled support images via a multiscale feature enhancement module. The learned prototypes from support features provide further semantic guidance on the query image. Then we adaptively integrate multiple similarity-guided probability maps by attention mechanism, yielding an optimal pixel-wise prediction. Furthermore, the proposed method was validated on the PASCAL-5i dataset in terms of 1-way N-shot evaluation. We also test the model with weak annotations, including scribble and bounding box annotations. Both the qualitative and quantitative results demonstrate the advantages of our approach over other state-of-the-art methods.

Heterogeneous Graph-Based Knowledge Transfer for Generalized Zero-Shot Learning

Junjie Wang, Xiangfeng Wang, Bo Jin, Junchi Yan, Wenjie Zhang, Hongyuan Zha

Responsive image

Auto-TLDR; Heterogeneous Graph-based Knowledge Transfer for Generalized Zero-Shot Learning

Slides Poster Similar

Generalized zero-shot learning (GZSL) tackles the problem of learning to classify instances involving both seen classes and unseen ones. The key issue is how to effectively transfer the model learned from seen classes to unseen classes. Existing works in GZSL usually assume that some prior information about unseen classes are available. However, such an assumption is unrealistic when new unseen classes appear dynamically. To this end, we propose a novel heterogeneous graph-based knowledge transfer method (HGKT) for GZSL, agnostic to unseen classes and instances, by leveraging graph neural network. Specifically, a structured heterogeneous graph is constructed with high-level representative nodes for seen classes, which are chosen through Wasserstein barycenter in order to simultaneously capture inter-class and intra-class relationship. The aggregation and embedding functions can be learned throughgraph neural network, which can be used to compute the embeddings of unseen classes by transferring the knowledge from their neighbors. Extensive experiments on public benchmark datasets show that our method achieves state-of-the-art results.

Self-Supervised Joint Encoding of Motion and Appearance for First Person Action Recognition

Mirco Planamente, Andrea Bottino, Barbara Caputo

Responsive image

Auto-TLDR; A Single Stream Architecture for Egocentric Action Recognition from the First-Person Point of View

Slides Poster Similar

Wearable cameras are becoming more and more popular in several applications, increasing the interest of the research community in developing approaches for recognizing actions from the first-person point of view. An open challenge in egocentric action recognition is that videos lack detailed information about the main actor's pose and thus tend to record only parts of the movement when focusing on manipulation tasks. Thus, the amount of information about the action itself is limited, making crucial the understanding of the manipulated objects and their context. Many previous works addressed this issue with two-stream architectures, where one stream is dedicated to modeling the appearance of objects involved in the action, and another to extracting motion features from optical flow. In this paper, we argue that learning features jointly from these two information channels is beneficial to capture the spatio-temporal correlations between the two better. To this end, we propose a single stream architecture able to do so, thanks to the addition of a self-supervised block that uses a pretext motion prediction task to intertwine motion and appearance knowledge. Experiments on several publicly available databases show the power of our approach.

Dual Path Multi-Modal High-Order Features for Textual Content Based Visual Question Answering

Yanan Li, Yuetan Lin, Hongrui Zhao, Donghui Wang

Responsive image

Auto-TLDR; TextVQA: An End-to-End Visual Question Answering Model for Text-Based VQA

Slides Similar

As a typical cross-modal problem, visual question answering (VQA) has received increasing attention from the communities of computer vision and natural language processing. Reading and reasoning about texts and visual contents in the images is a burgeoning and important research topic in VQA, especially for the visually impaired assistance applications. Given an image, it aims to predict an answer to a provided natural language question closely related to its textual contents. In this paper, we propose a novel end-to-end textual content based VQA model, which grounds question answering both on the visual and textual information. After encoding the image, question and recognized text words, it uses multi-modal factorized high-order modules and the attention mechanism to fuse question-image and question-text features respectively. The complex correlations among different features can be captured efficiently. To ensure the model's extendibility, it embeds candidate answers and recognized texts in a semantic embedding space and adopts semantic embedding based classifier to perform answer prediction. Extensive experiments on the newly proposed benchmark TextVQA demonstrate that the proposed model can achieve promising results.

Augmented Bi-Path Network for Few-Shot Learning

Baoming Yan, Chen Zhou, Bo Zhao, Kan Guo, Yang Jiang, Xiaobo Li, Zhang Ming, Yizhou Wang

Responsive image

Auto-TLDR; Augmented Bi-path Network for Few-shot Learning

Slides Poster Similar

Few-shot Learning (FSL) which aims to learn from few labeled training data is becoming a popular research topic, due to the expensive labeling cost in many real-world applications. One kind of successful FSL method learns to compare the testing (query) image and training (support) image by simply concatenating the features of two images and feeding it into the neural network. However, with few labeled data in each class, the neural network has difficulty in learning or comparing the local features of two images. Such simple image-level comparison may cause serious mis-classification. To solve this problem, we propose Augmented Bi-path Network (ABNet) for learning to compare both global and local features on multi-scales. Specifically, the salient patches are extracted and embedded as the local features for every image. Then, the model learns to augment the features for better robustness. Finally, the model learns to compare global and local features separately, \emph{i.e.}, in two paths, before merging the similarities. Extensive experiments show that the proposed ABNet outperforms the state-of-the-art methods. Both quantitative and visual ablation studies are provided to verify that the proposed modules lead to more precise comparison results.

VSB^2-Net: Visual-Semantic Bi-Branch Network for Zero-Shot Hashing

Xin Li, Xiangfeng Wang, Bo Jin, Wenjie Zhang, Jun Wang, Hongyuan Zha

Responsive image

Auto-TLDR; VSB^2-Net: inductive zero-shot hashing for image retrieval

Slides Poster Similar

Zero-shot hashing aims at learning hashing model from seen classes and the obtained model is capable of generalizing to unseen classes for image retrieval. Inspired by zero-shot learning, existing zero-shot hashing methods usually transfer the supervised knowledge from seen to unseen classes, by embedding the hamming space to a shared semantic space. However, this makes instances difficult to distinguish due to limited hashing bit numbers, especially for semantically similar unseen classes. We propose a novel inductive zero-shot hashing framework, i.e., VSB^2-Net, where both semantic space and visual feature space are embedded to the same hamming space instead. The reconstructive semantic relationships are established in the hamming space, preserving local similarity relationships and explicitly enlarging the discrepancy between semantic hamming vectors. A two-task architecture, comprising of classification module and visual feature reconstruction module, is employed to enhance the generalization and transfer abilities. Extensive evaluation results on several benchmark datasets demonstratethe superiority of our proposed method compared to several state-of-the-art baselines.

Zero-Shot Text Classification with Semantically Extended Graph Convolutional Network

Tengfei Liu, Yongli Hu, Junbin Gao, Yanfeng Sun, Baocai Yin

Responsive image

Auto-TLDR; Semantically Extended Graph Convolutional Network for Zero-shot Text Classification

Slides Poster Similar

As a challenging task of Natural Language Processing(NLP), zero-shot text classification has attracted more and more attention recently. It aims to detect classes that the model has never seen in the training set. For this purpose, a feasible way is to construct connection between the seen and unseen classes by semantic extension and classify the unseen classes by information propagation over the connection. Although many related zero-shot text classification methods have been exploited, how to realize semantic extension properly and propagate information effectively is far from solved. In this paper, we propose a novel zero-shot text classification method called Semantically Extended Graph Convolutional Network (SEGCN). In the proposed method, the semantic category knowledge from ConceptNet is utilized to semantic extension for linking seen classes to unseen classes and constructing a graph of all classes. Then, we build upon Graph Convolutional Network (GCN) for predicting the textual classifier for each category, which transfers the category knowledge by the convolution operators on the constructed graph and is trained in a semi-supervised manner using the samples of the seen classes. The experimental results on Dbpedia and 20newsgroup datasets show that our method outperforms the state of the art zero-shot text classification methods.

Modeling Long-Term Interactions to Enhance Action Recognition

Alejandro Cartas, Petia Radeva, Mariella Dimiccoli

Responsive image

Auto-TLDR; A Hierarchical Long Short-Term Memory Network for Action Recognition in Egocentric Videos

Slides Poster Similar

In this paper, we propose a new approach to understand actions in egocentric videos that exploit the semantics of object interactions at both frame and temporal levels. At the frame level, we use a region-based approach that takes as input a primary region roughly corresponding to the user hands and a set of secondary regions potentially corresponding to the interacting objects and calculates the action score through a CNN formulation. This information is then fed to a Hierarchical Long Short-Term Memory Network (HLSTM) that captures temporal dependencies between actions within and across shots. Ablation studies thoroughly validate the proposed approach, showing in particular that both levels of the HLSTM architecture contribute to performance improvement. Furthermore, quantitative comparisons show that the proposed approach outperforms the state-of-the-art in terms of action recognition on standard benchmarks, without relying on motion information.

Question-Agnostic Attention for Visual Question Answering

Moshiur R Farazi, Salman Hameed Khan, Nick Barnes

Responsive image

Auto-TLDR; Question-Agnostic Attention for Visual Question Answering

Slides Poster Similar

Visual Question Answering (VQA) models employ attention mechanisms to discover image locations that are most relevant for answering a specific question. For this purpose, several multimodal fusion strategies have been proposed, ranging from relatively simple operations (e.g., linear sum) to more complex ones (e.g., Block). The resulting multimodal representations define an intermediate feature space for capturing the interplay between visual and semantic features, that is helpful in selectively focusing on image content. In this paper, we propose a question-agnostic attention mechanism that is complementary to the existing question-dependent attention mechanisms. Our proposed model parses object instances to obtain an `object map' and applies this map on the visual features to generate Question-Agnostic Attention (QAA) features. In contrast to question-dependent attention approaches that are learned end-to-end, the proposed QAA does not involve question-specific training, and can be easily included in almost any existing VQA model as a generic light-weight pre-processing step, thereby adding minimal computation overhead for training. Further, when used in complement with the question-dependent attention, the QAA allows the model to focus on the regions containing objects that might have been overlooked by the learned attention representation. Through extensive evaluation on VQAv1, VQAv2 and TDIUC datasets, we show that incorporating complementary QAA allows state-of-the-art VQA models to perform better, and provides significant boost to simplistic VQA models, enabling them to performance on par with highly sophisticated fusion strategies.

Attentive Visual Semantic Specialized Network for Video Captioning

Jesus Perez-Martin, Benjamin Bustos, Jorge Pérez

Responsive image

Auto-TLDR; Adaptive Visual Semantic Specialized Network for Video Captioning

Slides Poster Similar

As an essential high-level task of video understanding topic, automatically describing a video with natural language has recently gained attention as a fundamental challenge in computer vision. Previous models for video captioning have several limitations, such as the existence of gaps in current semantic representations and the inexpressibility of the generated captions. To deal with these limitations, in this paper, we present a new architecture that we callAttentive Visual Semantic Specialized Network(AVSSN), which is an encoder-decoder model based on our Adaptive Attention Gate and Specialized LSTM layers. This architecture can selectively decide when to use visual or semantic information into the text generation process. The adaptive gate makes the decoder to automatically select the relevant information for providing a better temporal state representation than the existing decoders. Besides, the model is capable of learning to improve the expressiveness of generated captions attending to their length, using a sentence-length-related loss function. We evaluate the effectiveness of the proposed approach on the Microsoft Video Description(MSVD) and the Microsoft Research Video-to-Text (MSR-VTT) datasets, achieving state-of-the-art performance with several popular evaluation metrics: BLEU-4, METEOR, CIDEr, and ROUGE_L.

Extracting Action Hierarchies from Action Labels and their Use in Deep Action Recognition

Konstadinos Bacharidis, Antonis Argyros

Responsive image

Auto-TLDR; Exploiting the Information Content of Language Label Associations for Human Action Recognition

Slides Poster Similar

Human activity recognition is a fundamental and challenging task in computer vision. Its solution can support multiple and diverse applications in areas including but not limited to smart homes, surveillance, daily living assistance, Human-Robot Collaboration (HRC), etc. In realistic conditions, the complexity of human activities ranges from simple coarse actions, such as siting or standing up, to more complex activities that consist of multiple actions with subtle variations in appearance and motion patterns. A large variety of existing datasets target specific action classes, with some of them being coarse and others being fine-grained. In all of them, a description of the action and its complexity is manifested in the action label sentence. As the action/activity complexity increases, so is the label sentence size and the amount of action-related semantic information contained in this description. In this paper, we propose an approach to exploit the information content of these action labels to formulate a coarse-to-fine action hierarchy based on linguistic label associations, and investigate the potential benefits and drawbacks. Moreover, in a series of quantitative and qualitative experiments, we show that the exploitation of this hierarchical organization of action classes in different levels of granularity improves the learning speed and overall performance of a range of baseline and mid-range deep architectures for human action recognition (HAR).

A Prototype-Based Generalized Zero-Shot Learning Framework for Hand Gesture Recognition

Jinting Wu, Yujia Zhang, Xiao-Guang Zhao

Responsive image

Auto-TLDR; Generalized Zero-Shot Learning for Hand Gesture Recognition

Slides Poster Similar

Hand gesture recognition plays a significant role in human-computer interaction for understanding various human gestures and their intent. However, most prior works can only recognize gestures of limited labeled classes and fail to adapt to new categories. The task of Generalized Zero-Shot Learning (GZSL) for hand gesture recognition aims to address the above issue by leveraging semantic representations and detecting both seen and unseen class samples. In this paper, we propose an end-to-end prototype-based GZSL framework for hand gesture recognition which consists of two branches. The first branch is a prototype-based detector that learns gesture representations and determines whether an input sample belongs to a seen or unseen category. The second branch is a zero-shot label predictor which takes the features of unseen classes as input and outputs predictions through a learned mapping mechanism between the feature and the semantic space. We further establish a hand gesture dataset that specifically targets this GZSL task, and comprehensive experiments on this dataset demonstrate the effectiveness of our proposed approach on recognizingQuestionnaire both seen and unseen gestures.

Enriching Video Captions with Contextual Text

Philipp Rimle, Pelin Dogan, Markus Gross

Responsive image

Auto-TLDR; Contextualized Video Captioning Using Contextual Text

Slides Poster Similar

Understanding video content and generating caption with context is an important and challenging task. Unlike prior methods that typically attempt to generate generic video captions without context, our architecture contextualizes captioning by infusing extracted information from relevant text data. We propose an end-to-end sequence-to-sequence model which generates video captions based on visual input, and mines relevant knowledge such as names and locations from contextual text. In contrast to previous approaches, we do not preprocess the text further, and let the model directly learn to attend over it. Guided by the visual input, the model is able to copy words from the contextual text via a pointer-generator network, allowing to produce more specific video captions. We show competitive performance on the News Video Dataset and, through ablation studies, validate the efficacy of contextual video captioning as well as individual design choices in our model architecture.

Directed Variational Cross-encoder Network for Few-Shot Multi-image Co-segmentation

Sayan Banerjee, Divakar Bhat S, Subhasis Chaudhuri, Rajbabu Velmurugan

Responsive image

Auto-TLDR; Directed Variational Inference Cross Encoder for Class Agnostic Co-Segmentation of Multiple Images

Slides Poster Similar

In this paper, we propose a novel framework for class agnostic co-segmentation of multiple images using comparatively smaller datasets. We have developed a novel encoder-decoder network termed as DVICE (Directed Variational Inference Cross Encoder), which learns a continuous embedding space to ensure better similarity learning. We employ a combination of the proposed variational encoder-decoder and a novel few-shot learning approach to tackle the small sample size problem in co-segmentation. Furthermore, the proposed framework does not use any semantic class labels and is entirely class agnostic. Through exhaustive experimentation using a small volume of data over multiple datasets, we have demonstrated that our approach outperforms all existing state-of-the-art techniques.

Making Every Label Count: Handling Semantic Imprecision by Integrating Domain Knowledge

Clemens-Alexander Brust, Björn Barz, Joachim Denzler

Responsive image

Auto-TLDR; Class Hierarchies for Imprecise Label Learning and Annotation eXtrapolation

Slides Poster Similar

Noisy data, crawled from the web or supplied by volunteers such as Mechanical Turkers or citizen scientists, is considered an alternative to professionally labeled data. There has been research focused on mitigating the effects of label noise. It is typically modeled as inaccuracy, where the correct label is replaced by an incorrect label from the same set. We consider an additional dimension of label noise: imprecision. For example, a non-breeding snow bunting is labeled as a bird. This label is correct, but not as precise as the task requires. Standard softmax classifiers cannot learn from such a weak label because they consider all classes mutually exclusive, which non-breeding snow bunting and bird are not. We propose CHILLAX (Class Hierarchies for Imprecise Label Learning and Annotation eXtrapolation), a method based on hierarchical classification, to fully utilize labels of any precision. Experiments on noisy variants of NABirds and ILSVRC2012 show that our method outperforms strong baselines by as much as 16.4 percentage points, and the current state of the art by up to 3.9 percentage points.

Exploiting Knowledge Embedded Soft Labels for Image Recognition

Lixian Yuan, Riquan Chen, Hefeng Wu, Tianshui Chen, Wentao Wang, Pei Chen

Responsive image

Auto-TLDR; A Soft Label Vector for Image Recognition

Slides Poster Similar

Objects from correlated classes usually share highly similar appearances while objects from uncorrelated classes are very different. Most of current image recognition works treat each class independently, which ignores these class correlations and inevitably leads to sub-optimal performance in many cases. Fortunately, object classes inherently form a hierarchy with different levels of abstraction and this hierarchy encodes rich correlations among different classes. In this work, we utilize a soft label vector that encodes the prior knowledge of class correlations as extra regularization to train the image classifiers. Specifically, for each class, instead of simply using a one-hot vector, we assign a high value to its correlated classes and assign small values to those uncorrelated ones, thus generating knowledge embedded soft labels. We conduct experiments on both general and fine-grained image recognition benchmarks and demonstrate its superiority compared with existing methods.

Few-Shot Few-Shot Learning and the Role of Spatial Attention

Yann Lifchitz, Yannis Avrithis, Sylvaine Picard

Responsive image

Auto-TLDR; Few-shot Learning with Pre-trained Classifier on Large-Scale Datasets

Slides Poster Similar

Few-shot learning is often motivated by the ability of humans to learn new tasks from few examples. However, standard few-shot classification benchmarks assume that the representation is learned on a limited amount of base class data, ignoring the amount of prior knowledge that a human may have accumulated before learning new tasks. At the same time, even if a powerful representation is available, it may happen in some domain that base class data are limited or non-existent. This motivates us to study a problem where the representation is obtained from a classifier pre-trained on a large-scale dataset of a different domain, assuming no access to its training process, while the base class data are limited to few examples per class and their role is to adapt the representation to the domain at hand rather than learn from scratch. We adapt the representation in two stages, namely on the few base class data if available and on the even fewer data of new tasks. In doing so, we obtain from the pre-trained classifier a spatial attention map that allows focusing on objects and suppressing background clutter. This is important in the new problem, because when base class data are few, the network cannot learn where to focus implicitly. We also show that a pre-trained network may be easily adapted to novel classes, without meta-learning.

Visual Oriented Encoder: Integrating Multimodal and Multi-Scale Contexts for Video Captioning

Bang Yang, Yuexian Zou

Responsive image

Auto-TLDR; Visual Oriented Encoder for Video Captioning

Slides Poster Similar

Video captioning is a challenging task which aims at automatically generating a natural language description of a given video. Recent researches have shown that exploiting the intrinsic multi-modalities of videos significantly promotes captioning performance. However, how to integrate multi-modalities to generate effective semantic representations for video captioning is still an open issue. Some researchers proposed to learn multimodal features in parallel during the encoding stage. The downside of these methods lies in the neglect of the interaction among multi-modalities and their rich contextual information. In this study, inspired by the fact that visual contents are generally more important for comprehending videos, we propose a novel Visual Oriented Encoder (VOE) to integrate multimodal features in an interactive manner. Specifically, VOE is designed as a hierarchical structure, where bottom layers are utilized to extract multi-scale contexts from auxiliary modalities while the top layer is exploited to generate joint representations by considering both visual and contextual information. Following the encoder-decoder framework, we systematically develop a VOE-LSTM model and evaluate it on two mainstream benchmarks: MSVD and MSR-VTT. Experimental results show that the proposed VOE surpasses conventional encoders and our VOE-LSTM model achieves competitive results compared with state-of-the-art approaches.

Human-Centric Parsing Network for Human-Object Interaction Detection

Guanyu Chen, Chong Chen, Zhicheng Zhao, Fei Su

Responsive image

Auto-TLDR; Human-Centric Parsing Network for Human-Object Interactions Detection

Slides Poster Similar

Human-object interactions detection is an essential task of image inference, but current methods can’t efficiently make use of global knowledge in the image. To tackle this challenge, in this paper, we propose a Human-Centric Parsing Network (HCPN), which integrates global structural knowledge to infer human-object interactions. In HCPN, a semantic parse graph is first constructed by binding human-object relationships, edge features and node features, where the detected human box in image is regarded as the center node and other detected boxes are linked to it. Second, based on the message passing mechanism, edge features and node features with the relation graph are updated and finally, HCPN predicts human-object interactions and associated locations by a readout function. We evaluate our model on V-COCO dataset, and a great improvement is achieved compared with state-of-the-art methods.

A CNN-RNN Framework for Image Annotation from Visual Cues and Social Network Metadata

Tobia Tesan, Pasquale Coscia, Lamberto Ballan

Responsive image

Auto-TLDR; Context-Based Image Annotation with Multiple Semantic Embeddings and Recurrent Neural Networks

Slides Poster Similar

Images represent a commonly used form of visual communication among people. Nevertheless, image classification may be a challenging task when dealing with unclear or non-common images needing more context to be correctly annotated. Metadata accompanying images on social-media represent an ideal source of additional information for retrieving proper neighborhoods easing image annotation task. To this end, we blend visual features extracted from neighbors and their metadata to jointly leverage context and visual cues. Our models use multiple semantic embeddings to achieve the dual objective of being robust to vocabulary changes between train and test sets and decoupling the architecture from the low-level metadata representation. Convolutional and recurrent neural networks (CNNs-RNNs) are jointly adopted to infer similarity among neighbors and query images. We perform comprehensive experiments on the NUS-WIDE dataset showing that our models outperform state-of-the-art architectures based on images and metadata, and decrease both sensory and semantic gaps to better annotate images.

Beyond the Deep Metric Learning: Enhance the Cross-Modal Matching with Adversarial Discriminative Domain Regularization

Li Ren, Kai Li, Liqiang Wang, Kien Hua

Responsive image

Auto-TLDR; Adversarial Discriminative Domain Regularization for Efficient Cross-Modal Matching

Slides Poster Similar

Matching information across image and text modalities is a fundamental challenge for many applications that involve both vision and natural language processing. The objective is to find efficient similarity metrics to compare the similarity between visual and textual information. Existing approaches mainly match the local visual objects and the sentence words in a shared space with attention mechanisms. The matching performance is still limited because the similarity computation is based on simple comparisons of the matching features, ignoring the characteristics of their distribution in the data. In this paper, we address this limitation with an efficient learning objective that considers the discriminative feature distributions between the visual objects and sentence words. Specifically, we propose a novel Adversarial Discriminative Domain Regularization (ADDR) learning framework, beyond the paradigm metric learning objective, to construct a set of discriminative data domains within each image-text pairs. Our approach can generally improve the learning efficiency and the performance of existing metrics learning frameworks by regulating the distribution of the hidden space between the matching pairs. The experimental results show that this new approach significantly improves the overall performance of several popular cross-modal matching techniques (SCAN, VSRN, BFAN) on the MS-COCO and Flickr30K benchmarks.

Explore and Explain: Self-Supervised Navigation and Recounting

Roberto Bigazzi, Federico Landi, Marcella Cornia, Silvia Cascianelli, Lorenzo Baraldi, Rita Cucchiara

Responsive image

Auto-TLDR; Exploring a Photorealistic Environment for Explanation and Navigation

Slides Similar

Embodied AI has been recently gaining attention as it aims to foster the development of autonomous and intelligent agents. In this paper, we devise a novel embodied setting in which an agent needs to explore a previously unknown environment while recounting what it sees during the path. In this context, the agent needs to navigate the environment driven by an exploration goal, select proper moments for description, and output natural language descriptions of relevant objects and scenes. Our model integrates a novel self-supervised exploration module with penalty, and a fully-attentive captioning model for explanation. Also, we investigate different policies for selecting proper moments for explanation, driven by information coming from both the environment and the navigation. Experiments are conducted on photorealistic environments from the Matterport3D dataset and investigate the navigation and explanation capabilities of the agent as well as the role of their interactions.

Multi-Stage Attention Based Visual Question Answering

Aakansha Mishra, Ashish Anand, Prithwijit Guha

Responsive image

Auto-TLDR; Alternative Bi-directional Attention for Visual Question Answering

Poster Similar

Recent developments in the field of Visual Question Answering (VQA) have witnessed promising improvements in performance through contributions in attention based networks. Most such approaches have focused on unidirectional attention that leverage over attention from textual domain (question) on visual space. These approaches mostly focused on learning high-quality attention in the visual space. In contrast, this work proposes an alternating bi-directional attention framework. First, a question to image attention helps to learn the robust visual space embedding, and second, an image to question attention helps to improve the question embedding. This attention mechanism is realized in an alternating fashion i.e. question-to-image followed by image-to-question and is repeated for maximizing performance. We believe that this process of alternating attention generation helps both the modalities and leads to better representations for the VQA task. This proposal is benchmark on TDIUC dataset and against state-of-art approaches. Our ablation analysis shows that alternate attention is the key to achieve high performance in VQA.

Integrating Historical States and Co-Attention Mechanism for Visual Dialog

Tianling Jiang, Yi Ji, Chunping Liu

Responsive image

Auto-TLDR; Integrating Historical States and Co-attention for Visual Dialog

Slides Poster Similar

Visual dialog is a typical multi-modal task which involves both vision and language. Nowadays, it faces two major difficulties. In this paper, we propose Integrating Historical States and Co-attention (HSCA) for visual dialog to solve them. It includes two main modules, Co-ATT and MATCH. Specifically, the main purpose of the Co-ATT module is to guide the image with questions and answers in the early stage to get more specific objects. It tackles the temporal sequence issue in historical information which may influence the precise answer for multi-round questions. The MATCH module is, based on a question with pronouns, to retrieve the best matching historical information block. It overcomes the visual reference problem which requires to solve pronouns referring to unknowns in the text message and then to locate the objects in the given image. We quantitatively and qualitatively evaluate our model on VisDial v1.0, at the same time, ablation studies are carried out. The experimental results demonstrate that HSCA outperforms the state-of-the-art methods in many aspects.

Text Synopsis Generation for Egocentric Videos

Aidean Sharghi, Niels Lobo, Mubarak Shah

Responsive image

Auto-TLDR; Egocentric Video Summarization Using Multi-task Learning for End-to-End Learning

Slides Similar

Mass utilization of body-worn cameras has led to a huge corpus of available egocentric video. Existing video summarization algorithms can accelerate browsing such videos by selecting (visually) interesting shots from them. Nonetheless, since the system user still has to watch the summary videos, browsing large video databases remain a challenge. Hence, in this work, we propose to generate a textual synopsis, consisting of a few sentences describing the most important events in a long egocentric videos. Users can read the short text to gain insight about the video, and more importantly, efficiently search through the content of a large video database using text queries. Since egocentric videos are long and contain many activities and events, using video-to-text algorithms results in thousands of descriptions, many of which are incorrect. Therefore, we propose a multi-task learning scheme to simultaneously generate descriptions for video segments and summarize the resulting descriptions in an end-to-end fashion. We Input a set of video shots and the network generates a text description for each shot. Next, visual-language content matching unit that is trained with a weakly supervised objective, identifies the correct descriptions. Finally, the last component of our network, called purport network, evaluates the descriptions all together to select the ones containing crucial information. Out of thousands of descriptions generated for the video, a few informative sentences are returned to the user. We validate our framework on the challenging UT Egocentric video dataset, where each video is between 3 to 5 hours long, associated with over 3000 textual descriptions on average. The generated textual summaries, including only 5 percent (or less) of the generated descriptions, are compared to groundtruth summaries in text domain using well-established metrics in natural language processing.

Attention Pyramid Module for Scene Recognition

Zhinan Qiao, Xiaohui Yuan, Chengyuan Zhuang, Abolfazl Meyarian

Responsive image

Auto-TLDR; Attention Pyramid Module for Multi-Scale Scene Recognition

Slides Poster Similar

The unrestricted open vocabulary and diverse substances of scenery images bring significant challenges to scene recognition. However, most deep learning architectures and attention methods are developed on general-purpose datasets and omit the characteristics of scene data. In this paper, we exploit the attention pyramid module (APM) to tackle the predicament of scene recognition. Our method streamlines the multi-scale scene recognition pipeline, learns comprehensive scene features at various scales and locations, addresses the interdependency among scales, and further assists feature re-calibration as well as aggregation process. APM is extremely light-weighted and can be easily plugged into existing network architectures in a parameter-efficient manner. By simply integrating APM into ResNet-50, we obtain a 3.54\% boost in terms of top-1 accuracy on the benchmark scene dataset. Comprehensive experiments show that APM achieves better performance comparing with state-of-the-art attention methods using significant less computation budget. Code and pre-trained models will be made publicly available.

FatNet: A Feature-Attentive Network for 3D Point Cloud Processing

Chaitanya Kaul, Nick Pears, Suresh Manandhar

Responsive image

Auto-TLDR; Feature-Attentive Neural Networks for Point Cloud Classification and Segmentation

Slides Similar

The application of deep learning to 3D point clouds is challenging due to its lack of order. Inspired by the point embeddings of PointNet and the edge embeddings of DGCNNs, we propose three improvements to the task of point cloud analysis. First, we introduce a novel feature-attentive neural network layer, a FAT layer, that combines both global point-based features and local edge-based features in order to generate better embeddings. Second, we find that applying the same attention mechanism across two different forms of feature map aggregation, max pooling and average pooling, gives better performance than either alone. Third, we observe that residual feature reuse in this setting propagates information more effectively between the layers, and makes the network easier to train. Our architecture achieves state-of-the-art results on the task of point cloud classification, as demonstrated on the ModelNet40 dataset, and an extremely competitive performance on the ShapeNet part segmentation challenge.

Sketch-SNet: Deeper Subdivision of Temporal Cues for Sketch Recognition

Yizhou Tan, Lan Yang, Honggang Zhang

Responsive image

Auto-TLDR; Sketch Recognition using Invariable Structural Feature and Drawing Habits Feature

Slides Poster Similar

Sketch recognition is a central task in sketchrelated researches. Different from the natural image, the sparse pixel distribution of sketch destroys the visual texture which encourages researchers to explore the temporal information of sketch. With the release of million-scale datasets, we explore the invariable structure of sketch and specific order of strokes in sketch. Prior works based on Recurrent Neural Network (RNN) trend to output different features with changed stroke orders. In particular, we adopt a novel method by employing a Graph Convolutional Network (GCN) to extract invariable structural feature under any orders of strokes. Compared to traditional comprehension of sketch, we further split the temporal information of sketch into two types of feature (invariable structural feature (ISF) and drawing habits feature (DHF)) which aim to reduce the confusion in temporal information. We propose a two-branch GCN-RNN network to extract two types of feature respectively, termed Sketch-SNet. The GCN branch is encouraged to extract the ISF through receiving various shuffled strokes of an input sketch. The RNN branch takes the original input to extract DHF by learning the pattern of strokes’ order. Meanwhile, we introduce semantic information to generate soft-labels owing to the high abstractness of sketch. Extensive experiments on the Quick-Draw dataset demonstrate that our further subdivision of temporal information improves the performance of sketch recognition which surpasses state-of-the-art by a large margin.

Concept Embedding through Canonical Forms: A Case Study on Zero-Shot ASL Recognition

Azamat Kamzin, Apurupa Amperyani, Prasanth Sukhapalli, Ayan Banerjee, Sandeep Gupta

Responsive image

Auto-TLDR; A canonical form of gestures in American Sign Language

Slides Poster Similar

In the recognition problem, a canonical form that expresses the spatio-temporal relation of concepts for a given class can potentially increase accuracy. Concepts are defined as attributes that can be recognized using a soft matching paradigm. We consider the specific case study of American Sign Language (ASL) to show that canonical forms of classes can be used to recognize unseen gestures. There are several advantages of a canonical form of gestures including translation between gestures, gesture-based searching, and automated transcription of gestures into any spoken language. We applied our technique to two independently collected datasets: a) IMPACT Lab dataset: 23 ASL gestures each executed three times from 130 first time ASL learners as training data and b) ASLTEXT dataset: 190 gestures each executed six times on an average. Our technique was able to recognize 19 arbitrarily chosen previously unseen gestures in the IMPACT dataset from seven individuals who are not a part of 130 and 34 unseen gestures from the ASLTEXT dataset without any retraining. Our normalized accuracy on ASLTEXT dataset is 66 % which is 13.6 % higher than state-of-art technique.

Detective: An Attentive Recurrent Model for Sparse Object Detection

Amine Kechaou, Manuel Martinez, Monica Haurilet, Rainer Stiefelhagen

Responsive image

Auto-TLDR; Detective: An attentive object detector that identifies objects in images in a sequential manner

Slides Poster Similar

In this work, we present Detective – an attentive object detector that identifies objects in images in a sequential manner. Our network is based on an encoder-decoder architecture, where the encoder is a convolutional neural network, and the decoder is a convolutional recurrent neural network coupled with an attention mechanism. At each iteration, our decoder focuses on the relevant parts of the image using an attention mechanism, and then estimates the object’s class and the bounding box coordinates. Current object detection models generate dense predictions and rely on post-processing to remove duplicate predictions. Detective is a sparse object detector that generates a single bounding box per object instance. However, training a sparse object detector is challenging, as it requires the model to reason at the instance level and not just at the class and spatial levels. We propose a training mechanism based on the Hungarian Algorithm and a loss that balances the localization and classification tasks. This allows Detective to achieve promising results on the PASCAL VOC object detection dataset. Our experiments demonstrate that sparse object detection is possible and has a great potential for future developments in applications where the order of the objects to be predicted is of interest.

Complementing Representation Deficiency in Few-Shot Image Classification: A Meta-Learning Approach

Xian Zhong, Cheng Gu, Wenxin Huang, Lin Li, Shuqin Chen, Chia-Wen Lin

Responsive image

Auto-TLDR; Meta-learning with Complementary Representations Network for Few-Shot Learning

Slides Poster Similar

Few-shot learning is a challenging problem that has attracted more and more attention recently since abundant training samples are difficult to obtain in practical applications. Meta-learning has been proposed to address this issue, which focuses on quickly adapting a predictor as a base-learner to new tasks, given limited labeled samples. However, a critical challenge for meta-learning is the representation deficiency since it is hard to discover common information from a small number of training samples or even one, as is the representation of key features from such little information. As a result, a meta-learner cannot be trained well in a high-dimensional parameter space to generalize to new tasks. Existing methods mostly resort to extracting less expressive features so as to avoid the representation deficiency. Aiming at learning better representations, we propose a meta-learning approach with complemented representations network (MCRNet) for few-shot image classification. In particular, we embed a latent space, where latent codes are reconstructed with extra representation information to complement the representation deficiency. Furthermore, the latent space is established with variational inference, collaborating well with different base-learners, and can be extended to other models. Finally, our end-to-end framework achieves the state-of-the-art performance in image classification on three standard few-shot learning datasets.

Multimodal Side-Tuning for Document Classification

Stefano Zingaro, Giuseppe Lisanti, Maurizio Gabbrielli

Responsive image

Auto-TLDR; Side-tuning for Multimodal Document Classification

Slides Poster Similar

In this paper, we propose to exploit the side-tuning framework for multimodal document classification. Side-tuning is a methodology for network adaptation recently introduced to solve some of the problems related to previous approaches. Thanks to this technique it is actually possible to overcome model rigidity and catastrophic forgetting of transfer learning by fine-tuning. The proposed solution uses off-the-shelf deep learning architectures leveraging the side-tuning framework to combine a base model with a tandem of two side networks. We show that side-tuning can be successfully employed also when different data sources are considered, e.g. text and images in document classification. The experimental results show that this approach pushes further the limit for document classification accuracy with respect to the state of the art.

ScarfNet: Multi-Scale Features with Deeply Fused and Redistributed Semantics for Enhanced Object Detection

Jin Hyeok Yoo, Dongsuk Kum, Jun Won Choi

Responsive image

Auto-TLDR; Semantic Fusion of Multi-scale Feature Maps for Object Detection

Slides Poster Similar

Convolutional neural networks (CNNs) have led us to achieve significant progress in object detection research. To detect objects of various sizes, object detectors often exploit the hierarchy of the multiscale feature maps called {\it feature pyramids}, which are readily obtained by the CNN architecture. However, the performance of these object detectors is limited because the bottom-level feature maps, which experience fewer convolutional layers, lack the semantic information needed to capture the characteristics of the small objects. To address such problems, various methods have been proposed to increase the depth for the bottom-level features used for object detection. While most approaches are based on the generation of additional features through the top-down pathway with lateral connections, our approach directly fuses multi-scale feature maps using bidirectional long short-term memory (biLSTM) in an effort to leverage the gating functions and parameter-sharing in generating deeply fused semantics. The resulting semantic information is redistributed to the individual pyramidal feature at each scale through the channel-wise attention model. We integrate our semantic combining and attentive redistribution feature network (ScarfNet) with the baseline object detectors, i.e., Faster R-CNN, single-shot multibox detector (SSD), and RetinaNet. Experimental results show that our method offers a significant performance gain over the baseline detectors and outperforms the competing multiscale fusion methods in the PASCAL VOC and COCO detection benchmarks.

Enhanced Vote Network for 3D Object Detection in Point Clouds

Min Zhong, Gang Zeng

Responsive image

Auto-TLDR; A Vote Feature Enhancement Network for 3D Bounding Box Prediction

Slides Poster Similar

In this work, we aim to estimate 3D bounding boxes by voting to object centers and then groups and aggregates the votes to generate 3D box proposals and semantic classes of objects. However, due to the sparse and unstructured nature of the point clouds, we face some challenges when directly predicting bounding box from the vote feature: the sparse vote feature may lack some necessary semantic and context information. To address the challenges, we propose a vote feature enhancement network that aims to encode semantic-aware information and aggravate global context for the vote feature. Specifically, we learn the point-wise semantic information and supplement it to the vote feature, and we also encode the pairwise relations to collect the global context. Experiments on two large datasets of real 3D scans, ScanNet and SUN RGB-D, demonstrate that our method can achieve excellent 3D detection results.