Dual Path Multi-Modal High-Order Features for Textual Content Based Visual Question Answering

Yanan Li, Yuetan Lin, Hongrui Zhao, Donghui Wang

Responsive image

Auto-TLDR; TextVQA: An End-to-End Visual Question Answering Model for Text-Based VQA

Slides

As a typical cross-modal problem, visual question answering (VQA) has received increasing attention from the communities of computer vision and natural language processing. Reading and reasoning about texts and visual contents in the images is a burgeoning and important research topic in VQA, especially for the visually impaired assistance applications. Given an image, it aims to predict an answer to a provided natural language question closely related to its textual contents. In this paper, we propose a novel end-to-end textual content based VQA model, which grounds question answering both on the visual and textual information. After encoding the image, question and recognized text words, it uses multi-modal factorized high-order modules and the attention mechanism to fuse question-image and question-text features respectively. The complex correlations among different features can be captured efficiently. To ensure the model's extendibility, it embeds candidate answers and recognized texts in a semantic embedding space and adopts semantic embedding based classifier to perform answer prediction. Extensive experiments on the newly proposed benchmark TextVQA demonstrate that the proposed model can achieve promising results.

Similar papers

Multi-Modal Contextual Graph Neural Network for Text Visual Question Answering

Yaoyuan Liang, Xin Wang, Xuguang Duan, Wenwu Zhu

Responsive image

Auto-TLDR; Multi-modal Contextual Graph Neural Network for Text Visual Question Answering

Slides Poster Similar

Text visual question answering (TextVQA) targets at answering the question related to texts appearing in the given images, posing more challenges than VQA by requiring a deeper recognition and understanding of various shapes of human-readable scene texts as well as their meanings in different contexts. Existing works on TextVQA suffer from two weaknesses: i) scene texts and non-textual objects are processed separately and independently without considering their mutual interactions during the question understanding and answering process, ii) scene texts are encoded only through word embeddings without taking the corresponding visual appearance features as well as their potential relationships with other non-textual objects in the images into account. To overcome the weakness of exiting works, we propose a novel multi-modal contextual graph neural network (MCG) model for TextVQA. The proposed MCG model can capture the relationships between visual features of scene texts and non-textual objects in the given images as well as utilize richer sources of multi-modal features to improve the model performance. In particular, we encode the scene texts into richer features containing textual, visual and positional features, then model the visual relations between scene texts and non-textual objects through a contextual graph neural network. Our extensive experiments on real-world dataset demonstrate the advantages of the proposed MCG model over baseline approaches.

Multi-Stage Attention Based Visual Question Answering

Aakansha Mishra, Ashish Anand, Prithwijit Guha

Responsive image

Auto-TLDR; Alternative Bi-directional Attention for Visual Question Answering

Poster Similar

Recent developments in the field of Visual Question Answering (VQA) have witnessed promising improvements in performance through contributions in attention based networks. Most such approaches have focused on unidirectional attention that leverage over attention from textual domain (question) on visual space. These approaches mostly focused on learning high-quality attention in the visual space. In contrast, this work proposes an alternating bi-directional attention framework. First, a question to image attention helps to learn the robust visual space embedding, and second, an image to question attention helps to improve the question embedding. This attention mechanism is realized in an alternating fashion i.e. question-to-image followed by image-to-question and is repeated for maximizing performance. We believe that this process of alternating attention generation helps both the modalities and leads to better representations for the VQA task. This proposal is benchmark on TDIUC dataset and against state-of-art approaches. Our ablation analysis shows that alternate attention is the key to achieve high performance in VQA.

A Novel Attention-Based Aggregation Function to Combine Vision and Language

Matteo Stefanini, Marcella Cornia, Lorenzo Baraldi, Rita Cucchiara

Responsive image

Auto-TLDR; Fully-Attentive Reduction for Vision and Language

Slides Poster Similar

The joint understanding of vision and language has been recently gaining a lot of attention in both the Computer Vision and Natural Language Processing communities, with the emergence of tasks such as image captioning, image-text matching, and visual question answering. As both images and text can be encoded as sets or sequences of elements - like regions and words - proper reduction functions are needed to transform a set of encoded elements into a single response, like a classification or similarity score. In this paper, we propose a novel fully-attentive reduction method for vision and language. Specifically, our approach computes a set of scores for each element of each modality employing a novel variant of cross-attention, and performs a learnable and cross-modal reduction, which can be used for both classification and ranking. We test our approach on image-text matching and visual question answering, building fair comparisons with other reduction choices, on both COCO and VQA 2.0 datasets. Experimentally, we demonstrate that our approach leads to a performance increase on both tasks. Further, we conduct ablation studies to validate the role of each component of the approach.

Answer-Checking in Context: A Multi-Modal Fully Attention Network for Visual Question Answering

Hantao Huang, Tao Han, Wei Han, Deep Yap Deep Yap, Cheng-Ming Chiang

Responsive image

Auto-TLDR; Fully Attention Based Visual Question Answering

Slides Poster Similar

Visual Question Answering (VQA) is challenging due to the complex cross-modality relations. It has received extensive attention from the research community. From the human perspective, to answer a visual question, one needs to read the question and then refer to the image to generate an answer. Such answer will then be checked against the question and image again for the final confirmation. In this paper, we mimic this process and propose a fully attention based VQA architecture. Moreover, an answer-checking module is proposed to perform a unified attention on the jointly answer, question and image representation to update the answer. This mimics the human answer checking process to consider the answer in the context. With answer-checking modules and transferred BERT layers, our model achieves a state-of-the-art accuracy 71.57\% using less parameters on VQA-v2.0 test-standard split.

Integrating Historical States and Co-Attention Mechanism for Visual Dialog

Tianling Jiang, Yi Ji, Chunping Liu

Responsive image

Auto-TLDR; Integrating Historical States and Co-attention for Visual Dialog

Slides Poster Similar

Visual dialog is a typical multi-modal task which involves both vision and language. Nowadays, it faces two major difficulties. In this paper, we propose Integrating Historical States and Co-attention (HSCA) for visual dialog to solve them. It includes two main modules, Co-ATT and MATCH. Specifically, the main purpose of the Co-ATT module is to guide the image with questions and answers in the early stage to get more specific objects. It tackles the temporal sequence issue in historical information which may influence the precise answer for multi-round questions. The MATCH module is, based on a question with pronouns, to retrieve the best matching historical information block. It overcomes the visual reference problem which requires to solve pronouns referring to unknowns in the text message and then to locate the objects in the given image. We quantitatively and qualitatively evaluate our model on VisDial v1.0, at the same time, ablation studies are carried out. The experimental results demonstrate that HSCA outperforms the state-of-the-art methods in many aspects.

Question-Agnostic Attention for Visual Question Answering

Moshiur R Farazi, Salman Hameed Khan, Nick Barnes

Responsive image

Auto-TLDR; Question-Agnostic Attention for Visual Question Answering

Slides Poster Similar

Visual Question Answering (VQA) models employ attention mechanisms to discover image locations that are most relevant for answering a specific question. For this purpose, several multimodal fusion strategies have been proposed, ranging from relatively simple operations (e.g., linear sum) to more complex ones (e.g., Block). The resulting multimodal representations define an intermediate feature space for capturing the interplay between visual and semantic features, that is helpful in selectively focusing on image content. In this paper, we propose a question-agnostic attention mechanism that is complementary to the existing question-dependent attention mechanisms. Our proposed model parses object instances to obtain an `object map' and applies this map on the visual features to generate Question-Agnostic Attention (QAA) features. In contrast to question-dependent attention approaches that are learned end-to-end, the proposed QAA does not involve question-specific training, and can be easily included in almost any existing VQA model as a generic light-weight pre-processing step, thereby adding minimal computation overhead for training. Further, when used in complement with the question-dependent attention, the QAA allows the model to focus on the regions containing objects that might have been overlooked by the learned attention representation. Through extensive evaluation on VQAv1, VQAv2 and TDIUC datasets, we show that incorporating complementary QAA allows state-of-the-art VQA models to perform better, and provides significant boost to simplistic VQA models, enabling them to performance on par with highly sophisticated fusion strategies.

Multi-Scale Relational Reasoning with Regional Attention for Visual Question Answering

Yuntao Ma, Yirui Wu, Tong Lu

Responsive image

Auto-TLDR; Question-Guided Relational Reasoning for Visual Question Answering

Slides Poster Similar

The main challenges of visual question answering (VQA) lie in modeling an alignment between image and question to find out informative regions in images that related to the question and reasoning relations among visual objects according to the question. In this paper, we propose question-guided relational reasoning in multi-scales for visual question answering, in which each region is enhanced by regional attention. Specifically, we present regional attention, which consists of a soft attention and a hard attention, to pick up informative regions of the image according to informative evaluations implemented by question-guided soft attention. And combinations of different informative regions are then concatenated with question embedding in different scales to capture relational information. Relational reasoning can extract question-based relational information between regions, and the multi-scale mechanism gives it the ability to analyze relationships in diversity and sensitivity to numbers by modeling scales of relationships. We conduct experiments to show that our proposed architecture is effective and achieves a new state-of-the-art on VQA v2.

Transformer Reasoning Network for Image-Text Matching and Retrieval

Nicola Messina, Fabrizio Falchi, Andrea Esuli, Giuseppe Amato

Responsive image

Auto-TLDR; A Transformer Encoder Reasoning Network for Image-Text Matching in Large-Scale Information Retrieval

Slides Poster Similar

Image-text matching is an interesting and fascinating task in modern AI research. Despite the evolution of deep-learning-based image and text processing systems, multi-modal matching remains a challenging problem. In this work, we consider the problem of accurate image-text matching for the task of multi-modal large-scale information retrieval. State-of-the-art results in image-text matching are achieved by inter-playing image and text features from the two different processing pipelines, usually using mutual attention mechanisms. However, this invalidates any chance to extract separate visual and textual features needed for later indexing steps in large-scale retrieval systems. In this regard, we introduce the Transformer Encoder Reasoning Network (TERN), an architecture built upon one of the modern relationship-aware self-attentive architectures, the Transformer Encoder (TE). This architecture is able to separately reason on the two different modalities and to enforce a final common abstract concept space by sharing the weights of the deeper transformer layers. Thanks to this design, the implemented network is able to produce compact and very rich visual and textual features available for the successive indexing step. Experiments are conducted on the MS-COCO dataset, and we evaluate the results using a discounted cumulative gain metric with relevance computed exploiting caption similarities, in order to assess possibly non-exact but relevant search results. We demonstrate that on this metric we are able to achieve state-of-the-art results in the image retrieval task. Our code is freely available at https://github.com/mesnico/TERN.

P ≈ NP, at Least in Visual Question Answering

Shailza Jolly, Sebastian Palacio, Joachim Folz, Federico Raue, Jörn Hees, Andreas Dengel

Responsive image

Auto-TLDR; Polar vs Non-Polar VQA: A Cross-over Analysis of Feature Spaces for Joint Training

Similar

In recent years, progress in the Visual Question Answering (VQA) field has largely been driven by public challenges and large datasets. One of the most widely-used of these is the VQA 2.0 dataset, consisting of polar ("yes/no") and non-polar questions. Looking at the question distribution over all answers, we find that the answers "yes" and "no" account for 38% of the questions, while the remaining 62% are spread over the more than 3000 remaining answers. While several sources of biases have already been investigated in the field, the effects of such an over-representation of polar vs. non-polar questions remain unclear. In this paper, we measure the potential confounding factors when polar and non-polar samples are used jointly to train a baseline VQA classifier, and compare it to an upper bound where the over-representation of polar questions is excluded from the training. Further, we perform cross-over experiments to analyze how well the feature spaces align. Contrary to expectations, we find no evidence of counterproductive effects in the joint training of unbalanced classes. In fact, by exploring the intermediate feature space of visual-text embeddings, we find that the feature space of polar questions already encodes sufficient structure to answer many non-polar questions. Our results indicate that the polar (P) and the non-polar (NP) feature spaces are strongly aligned, hence the expression P ≈ NP.

Label or Message: A Large-Scale Experimental Survey of Texts and Objects Co-Occurrence

Koki Takeshita, Juntaro Shioyama, Seiichi Uchida

Responsive image

Auto-TLDR; Large-scale Survey of Co-occurrence between Objects and Scene Text with a State-of-the-art Scene Text detector and Recognizer

Similar

Our daily life is surrounded by textual information. Nowadays, the automatic collection of textual information becomes possible owing to the drastic improvement of scene text detectors and recognizer. The purpose of this paper is to conduct a large-scale survey of co-occurrence between visual objects (such as book and car) and scene texts with a large image dataset and a state-of-the-art scene text detector and recognizer. Especially, we focus on the function of ``label'' texts, which are attached to objects for detailing the objects. By analyzing co-occurrence between objects and scene texts, it is possible to observe the statistics about the label texts and understand how the scene texts will be useful for recognizing the objects and vice versa.

Recognizing Multiple Text Sequences from an Image by Pure End-To-End Learning

Zhenlong Xu, Shuigeng Zhou, Fan Bai, Cheng Zhanzhan, Yi Niu, Shiliang Pu

Responsive image

Auto-TLDR; Pure End-to-End Learning for Multiple Text Sequences Recognition from Images

Slides Poster Similar

We address a challenging problem: recognizing multiple text sequences from an image by pure end-to-end learning. It is twofold: 1) Multiple text sequences recognition. Each image may contain multiple text sequences of different content, location and orientation, we try to recognize all these texts in the image. 2) Pure end-to-end (PEE) learning.We solve the problem in a pure end-to-end learning way where each training image is labeled by only text transcripts of the contained sequences, without any geometric annotations. Most existing works recognize multiple text sequences from an image in a non-end-to-end (NEE) or quasi-end-to-end (QEE) way, in which each image is trained with both text transcripts and text locations. Only recently, a PEE method was proposed to recognize text sequences from an image where the text sequence was split to several lines in the image. However, it cannot be directly applied to recognizing multiple text sequences from an image. So in this paper, we propose a pure end-to-end learning method to recognize multiple text sequences from an image. Our method directly learns the probability distribution of multiple sequences conditioned on each input image, and outputs multiple text transcripts with a well-designed decoding strategy. To evaluate the proposed method, we construct several datasets mainly based on an existing public dataset and two real application scenarios. Experimental results show that the proposed method can effectively recognize multiple text sequences from images, and outperforms CTC-based and attention-based baseline methods.

Improving Visual Question Answering Using Active Perception on Static Images

Theodoros Bozinis, Nikolaos Passalis, Anastasios Tefas

Responsive image

Auto-TLDR; Fine-Grained Visual Question Answering with Reinforcement Learning-based Active Perception

Slides Poster Similar

Visual Question Answering (VQA) is one of the most challenging emerging applications of deep learning. Providing powerful attention mechanisms is crucial for VQA, since the model must correctly identify the region of an image that is relevant to the question at hand. However, existing models analyze the input images at a fixed and typically small resolution, often leading to discarding valuable fine-grained details. To overcome this limitation, in this work we propose a reinforcement learning-based active perception approach that works by applying a series of transformation operations on the images (translation, zoom) in order to facilitate answering the question at hand. This allows for performing fine-grained analysis, effectively increasing the resolution at which the models process information. The proposed method is orthogonal to existing attention mechanisms and it can be combined with most existing VQA methods. The effectiveness of the proposed method is experimentally demonstrated on a challenging VQA dataset.

Cross-Lingual Text Image Recognition Via Multi-Task Sequence to Sequence Learning

Zhuo Chen, Fei Yin, Xu-Yao Zhang, Qing Yang, Cheng-Lin Liu

Responsive image

Auto-TLDR; Cross-Lingual Text Image Recognition with Multi-task Learning

Slides Poster Similar

This paper considers recognizing texts shown in a source language and translating into a target language, without generating the intermediate source language text image recognition results. We call this problem Cross-Lingual Text Image Recognition (CLTIR). To solve this problem, we propose a multi-task system containing a main task of CLTIR and an auxiliary task of Mono-Lingual Text Image Recognition (MLTIR) simultaneously. Two different sequence to sequence learning methods, a convolution based attention model and a BLSTM model with CTC, are adopted for these tasks respectively. We evaluate the system on a newly collected Chinese-English bilingual movie subtitle image dataset. Experimental results demonstrate the multi-task learning framework performs superiorly in both languages.

MEAN: A Multi-Element Attention Based Network for Scene Text Recognition

Ruijie Yan, Liangrui Peng, Shanyu Xiao, Gang Yao, Jaesik Min

Responsive image

Auto-TLDR; Multi-element Attention Network for Scene Text Recognition

Slides Poster Similar

Scene text recognition is a challenging problem due to the wide variances in content, style, orientation, and image quality of text instances in natural scene images. To learn the intrinsic representation of scene texts, a novel multi-element attention (MEA) mechanism is proposed to exploit geometric structures from local to global levels in the feature map extracted from a scene text image. The MEA mechanism is a generalized form of self-attention technique with the incorporation of graph structure modeling. The elements in feature maps are taken as the nodes of an undirected graph, and three kinds of adjacency matrices are introduced to aggregating information at local, neighborhood and global levels before calculating the attention weights. If only the local adjacency matrix is used, the MEA mechanism degenerates to a self-attention form. A multi-element attention network (MEAN) is implemented which includes a CNN for feature extraction, an encoder with MEA mechanism and a decoder for predicting text codes. Orientation positional encoding information is further added to the feature map output by the CNN, and a feature sequence as the encoder's input is obtained by element-level decomposition of the feature map. Experimental results show that MEAN has achieved state-of-the-art or competitive performance on public English scene text datasets. Further experiments and analyses conducted on both English and Chinese scene text datasets show that MEAN can handle horizontal, vertical, and irregular scene text samples.

A Multi-Head Self-Relation Network for Scene Text Recognition

Zhou Junwei, Hongchao Gao, Jiao Dai, Dongqin Liu, Jizhong Han

Responsive image

Auto-TLDR; Multi-head Self-relation Network for Scene Text Recognition

Slides Poster Similar

The text embedded in scene images can be seen everywhere in our lives. However, recognizing text from natural scene images is still a challenge because of its diverse shapes and distorted patterns. Recently, advanced recognition networks generally treat scene text recognition as a sequence prediction task. Although achieving excellent performance, these recognition networks consider the feature map cells as independent individuals and update cells state without utilizing the information of their neighboring cells. And the local receptive field of traditional convolutional neural network (CNN) makes a single cell that cannot cover the whole text region in an image. Due to these issues, the existing recognition networks cannot extract the global context in a visual scene. To deal with the above problems, we propose a Multi-head Self-relation Network(MSRN) for scene text recognition in this paper. The MSRN consists of several multi-head self-relation layers, which is designed for extracting the global context of a visual scene, so that transforms a cell into a new cell that fuses the information of the related cells. Furthermore, experiments over several public datasets demonstrate that our proposed recognition network achieves superior performance on several benchmark datasets including IC03, IC13, IC15, SVT-Perspective.

VSR++: Improving Visual Semantic Reasoning for Fine-Grained Image-Text Matching

Hui Yuan, Yan Huang, Dongbo Zhang, Zerui Chen, Wenlong Cheng, Liang Wang

Responsive image

Auto-TLDR; Improving Visual Semantic Reasoning for Fine-Grained Image-Text Matching

Slides Poster Similar

Image-text matching has made great progresses recently, but there still remains challenges in fine-grained matching. To deal with this problem, we propose an Improved Visual Semantic Reasoning model (VSR++), which jointly models 1) global alignment between images and texts and 2) local correspondence between regions and words in a unified framework. To exploit their complementary advantages, we also develop a suitable learning strategy to balance their relative importance. As a result, our model can distinguish image regions and text words in a fine-grained level, and thus achieves the current stateof-the-art performance on two benchmark datasets.

Attentive Visual Semantic Specialized Network for Video Captioning

Jesus Perez-Martin, Benjamin Bustos, Jorge Pérez

Responsive image

Auto-TLDR; Adaptive Visual Semantic Specialized Network for Video Captioning

Slides Poster Similar

As an essential high-level task of video understanding topic, automatically describing a video with natural language has recently gained attention as a fundamental challenge in computer vision. Previous models for video captioning have several limitations, such as the existence of gaps in current semantic representations and the inexpressibility of the generated captions. To deal with these limitations, in this paper, we present a new architecture that we callAttentive Visual Semantic Specialized Network(AVSSN), which is an encoder-decoder model based on our Adaptive Attention Gate and Specialized LSTM layers. This architecture can selectively decide when to use visual or semantic information into the text generation process. The adaptive gate makes the decoder to automatically select the relevant information for providing a better temporal state representation than the existing decoders. Besides, the model is capable of learning to improve the expressiveness of generated captions attending to their length, using a sentence-length-related loss function. We evaluate the effectiveness of the proposed approach on the Microsoft Video Description(MSVD) and the Microsoft Research Video-to-Text (MSR-VTT) datasets, achieving state-of-the-art performance with several popular evaluation metrics: BLEU-4, METEOR, CIDEr, and ROUGE_L.

Context Visual Information-Based Deliberation Network for Video Captioning

Min Lu, Xueyong Li, Caihua Liu

Responsive image

Auto-TLDR; Context visual information-based deliberation network for video captioning

Slides Poster Similar

Video captioning is to automatically and accurately generate a textual description for a video. The typical methods following the encoder-decoder architecture directly utilized hidden states to predict words. Nevertheless, these methods did not amend the inaccurate hidden states before feeding those states into word prediction. This led to a cascade of errors on generating word by word. In this paper, the context visual information-based deliberation network is proposed, abbreviated as CVI-DelNet. Its key idea is to introduce the deliberator into the encoder-decoder framework. The encoder-decoder firstly generates a raw hidden state sequence. Unlike the existing methods, the raw hidden state is no more directly used for word prediction but is fed into the deliberator to generate the refined hidden state. The words are then predicted according to the refined hidden states and the contextual visual features. Results on two datasets shows that the proposed method significantly outperforms the baselines.

Visual Style Extraction from Chart Images for Chart Restyling

Danqing Huang, Jinpeng Wang, Guoxin Wang, Chin-Yew Lin

Responsive image

Auto-TLDR; Exploiting Visual Properties from Reference Chart Images for Chart Restyling

Slides Poster Similar

Creating a good looking chart for better visualization is time consuming. There are plenty of well-designed charts on the Web, which are ideal references for imitation of chart style. However, stored as bitmap images, reference charts have hinder machine interpretation of style settings and thus difficult to be directly applied. In this paper, we extract visual properties from reference chart images as style templates to restyle charts. We first construct a large-scale dataset of 187,059 chart images from real world data, labeled with predefined visual property values. Then we introduce an end-to-end learning network to extract the properties based on two image-encoding approaches. Furthermore, in order to capture spatial relationships of chart objects, which are crucial in solving the task, we propose a novel positional encoding method to integrate clues of relative positions between objects. Experimental results show that our model significantly outperforms baseline models. By adding positional features, our model achieves better performance. Finally, we present the application for chart restyling based on our model.

Weakly Supervised Attention Rectification for Scene Text Recognition

Chengyu Gu, Shilin Wang, Yiwei Zhu, Zheng Huang, Kai Chen

Responsive image

Auto-TLDR; An auxiliary supervision branch for attention-based scene text recognition

Slides Poster Similar

Scene text recognition has become a hot topic in recent years due to its booming real-life applications. Attention-based encoder-decoder framework has become one of the most popular frameworks especially in the irregular text scenario. However, the “attention drift” problem reduces the recognition performance for most existing attention-based scene text recognition methods. To solve this problem, we propose an auxiliary supervision branch along with the attention-based encoder-decoder framework. A new loss function is designed to refine the feature map and to help the attention region align the target character area. Compared with existing attention rectification mechanisms, our method does not require character-level annotations or introduce any additional trainable parameter. Furthermore, our method can improve the performance for both RNN-Attention and Scaled Dot-Product Attention. The experiment results on various benchmarks have demonstrated that the proposed approach outperforms the state-of-the-art methods in both regular and irregular text recognition scenarios.

ReADS: A Rectified Attentional Double Supervised Network for Scene Text Recognition

Qi Song, Qianyi Jiang, Xiaolin Wei, Nan Li, Rui Zhang

Responsive image

Auto-TLDR; ReADS: Rectified Attentional Double Supervised Network for General Scene Text Recognition

Slides Poster Similar

In recent years, scene text recognition is always regarded as a sequence-to-sequence problem. Connectionist Temporal Classification (CTC) and Attentional sequence recognition (Attn) are two very prevailing approaches to tackle this problem while they may fail in some scenarios respectively. CTC concentrates more on every individual character but is weak in text semantic dependency modeling. Attn based methods have better context semantic modeling ability while tends to overfit on limited training data. In this paper, we elaborately design a Rectified Attentional Double Supervised Network (ReADS) for general scene text recognition. To overcome the weakness of CTC and Attn, both of them are applied in our method but with different modules in two supervised branches which can make a complementary to each other. Moreover, effective spatial and channel attention mechanisms are introduced to eliminate background noise and extract valid foreground information. Finally, a simple rectified network is implemented to rectify irregular text. The ReADS can be trained end-to-end and only word-level annotations are required. Extensive experiments on various benchmarks verify the effectiveness of ReADS which achieves state-of-the-art performance.

PICK: Processing Key Information Extraction from Documents Using Improved Graph Learning-Convolutional Networks

Wenwen Yu, Ning Lu, Xianbiao Qi, Ping Gong, Rong Xiao

Responsive image

Auto-TLDR; PICK: A Graph Learning Framework for Key Information Extraction from Documents

Slides Poster Similar

Computer vision with state-of-the-art deep learning models have achieved huge success in the field of Optical Character Recognition (OCR) including text detection and recognition tasks recently. However, Key Information Extraction (KIE) from documents as the downstream task of OCR, having a large number of use scenarios in real-world, remains a challenge because documents not only have textual features extracting from OCR systems but also have semantic visual features that are not fully exploited and play a critical role in KIE. Too little work has been devoted to efficiently make full use of both textual and visual features of the documents. In this paper, we introduce PICK, a framework that is effective and robust in handling complex documents layout for KIE by combining graph learning with graph convolution operation, yielding a richer semantic representation containing the textual and visual features and global layout without ambiguity. Extensive experiments on real-world datasets have been conducted to show that our method outperforms baselines methods by significant margins.

Text Recognition in Real Scenarios with a Few Labeled Samples

Jinghuang Lin, Cheng Zhanzhan, Fan Bai, Yi Niu, Shiliang Pu, Shuigeng Zhou

Responsive image

Auto-TLDR; Few-shot Adversarial Sequence Domain Adaptation for Scene Text Recognition

Slides Poster Similar

Scene text recognition (STR) is still a hot research topic in computer vision field due to its various applications. Existing works mainly focus on learning a general model with a huge number of synthetic text images to recognize unconstrained scene texts, and have achieved substantial progress. However, these methods are not quite applicable in many real-world scenarios where 1) high recognition accuracy is required, while 2) labeled samples are lacked. To tackle this challenging problem, this paper proposes a few-shot adversarial sequence domain adaptation (FASDA) approach to build sequence adaptation between the synthetic source domain (with many synthetic labeled samples) and a specific target domain (with only some or a few real labeled samples). This is done by simultaneously learning each character’s feature representation with an attention mech- anism and establishing the corresponding character-level latent subspace with adversarial learning. Our approach can maximize the character-level confusion between the source domain and the target domain, thus achieves the sequence-level adaptation with even a small number of labeled samples in the target domain. Extensive experiments on various datasets show that our method significantly outperforms the finetuning scheme, and obtains comparable performance to the state-of-the-art STR methods.

Gaussian Constrained Attention Network for Scene Text Recognition

Zhi Qiao, Xugong Qin, Yu Zhou, Fei Yang, Weiping Wang

Responsive image

Auto-TLDR; Gaussian Constrained Attention Network for Scene Text Recognition

Slides Poster Similar

Scene text recognition has been a hot topic in computer vision. Recent methods adopt the attention mechanism for sequence prediction which achieve convincing results. However, we argue that the existing attention mechanism faces the problem of attention diffusion, in which the model may not focus on a certain character area. In this paper, we propose Gaussian Constrained Attention Network to deal with this problem. It is a 2D attention-based method integrated with a novel Gaussian Constrained Refinement Module, which predicts an additional Gaussian mask to refine the attention weights. Different from adopting an additional supervision on the attention weights simply, our proposed method introduce an explicit refinement. In this way, the attention weights will be more concentrated and the attention-based recognition network achieves better performance. The proposed Gaussian Constrained Refinement Module is flexible and can be applied to existing attention-based methods directly. The experiments on several benchmark datasets demonstrate the effectiveness of our proposed method. Our code has been available at https://github.com/Pay20Y/GCAN.

GCNs-Based Context-Aware Short Text Similarity Model

Xiaoqi Sun

Responsive image

Auto-TLDR; Context-Aware Graph Convolutional Network for Text Similarity

Slides Poster Similar

Semantic textual similarity is a fundamental task in text mining and natural language processing (NLP), which has profound research value. The essential step for text similarity is text representation learning. Recently, researches have explored the graph convolutional network (GCN) techniques on text representation, since GCN does well in handling complex structures and preserving syntactic information. However, current GCN models are usually limited to very shallow layers due to the vanishing gradient problem, which cannot capture non-local dependency information of sentences. In this paper, we propose a GCNs-based context-aware (GCSTS) model that applies iterated GCN blocks to train deeper GCNs. Recurrently employing the same GCN block prevents over-fitting and provides broad effective input width. Combined with dense connections, GCSTS can be trained more deeply. Besides, we use dynamic graph structures in the block, which further extend the receptive field of each vertex in graphs, learning better sentence representations. Experiments show that our model outperforms existing models on several text similarity datasets, while also verify that GCNs-based text representation models can be trained in a deeper manner, rather than being trained in two or three layers.

Text Recognition - Real World Data and Where to Find Them

Klára Janoušková, Lluis Gomez, Dimosthenis Karatzas, Jiri Matas

Responsive image

Auto-TLDR; Exploiting Weakly Annotated Images for Text Extraction

Slides Poster Similar

We present a method for exploiting weakly annotated images to improve text extraction pipelines. The approach uses an arbitrary end-to-end text recognition system to obtain text region proposals and their, possibly erroneous, transcriptions. The proposed method includes matching of imprecise transcription to weak annotations and edit distance guided neighbourhood search. It produces nearly error-free, localised instances of scene text, which we treat as "pseudo ground truth" (PGT). We apply the method to two weakly-annotated datasets. Training with the extracted PGT consistently improves the accuracy of a state of the art recognition model, by 3.7 % on average, across different benchmark datasets (image domains) and 24.5 % on one of the weakly annotated datasets.

Visual Oriented Encoder: Integrating Multimodal and Multi-Scale Contexts for Video Captioning

Bang Yang, Yuexian Zou

Responsive image

Auto-TLDR; Visual Oriented Encoder for Video Captioning

Slides Poster Similar

Video captioning is a challenging task which aims at automatically generating a natural language description of a given video. Recent researches have shown that exploiting the intrinsic multi-modalities of videos significantly promotes captioning performance. However, how to integrate multi-modalities to generate effective semantic representations for video captioning is still an open issue. Some researchers proposed to learn multimodal features in parallel during the encoding stage. The downside of these methods lies in the neglect of the interaction among multi-modalities and their rich contextual information. In this study, inspired by the fact that visual contents are generally more important for comprehending videos, we propose a novel Visual Oriented Encoder (VOE) to integrate multimodal features in an interactive manner. Specifically, VOE is designed as a hierarchical structure, where bottom layers are utilized to extract multi-scale contexts from auxiliary modalities while the top layer is exploited to generate joint representations by considering both visual and contextual information. Following the encoder-decoder framework, we systematically develop a VOE-LSTM model and evaluate it on two mainstream benchmarks: MSVD and MSR-VTT. Experimental results show that the proposed VOE surpasses conventional encoders and our VOE-LSTM model achieves competitive results compared with state-of-the-art approaches.

Stratified Multi-Task Learning for Robust Spotting of Scene Texts

Kinjal Dasgupta, Sudip Das, Ujjwal Bhattacharya

Responsive image

Auto-TLDR; Feature Representation Block for Multi-task Learning of Scene Text

Slides Similar

Gaining control over the dynamics of multi-task learning should help to unlock the potential of the deep network to a great extent. In the existing multi-task learning (MTL) approaches of deep network, all the parameters of its feature encoding part are subjected to adjustments corresponding to each of the underlying sub-tasks. On the other hand, different functional areas of human brain are responsible for distinct functions such as the Broca's area of the cerebrum is responsible for speech formation whereas its Wernicke's area is related to the language development etc. Inspired by this fact, in the present study, we propose to introduce a block (termed as Feature Representation Block) of connection weights spanned over a few successive layers of a deep multi-task learning architecture and stratify the same into distinct subsets for their adjustments exclusively corresponding to different sub-tasks. Additionally, we have introduced a novel regularization component for controlled training of this Feature Representation Block. The purpose of the development of this learning framework is efficient end-to-end recognition of scene texts. Simulation results of the proposed strategy on various benchmark scene text datasets such as ICDAR 2015, ICDAR 2017 MLT, COCO-Text and MSRA-TD500 have improved respective SOTA performance.

Zero-Shot Text Classification with Semantically Extended Graph Convolutional Network

Tengfei Liu, Yongli Hu, Junbin Gao, Yanfeng Sun, Baocai Yin

Responsive image

Auto-TLDR; Semantically Extended Graph Convolutional Network for Zero-shot Text Classification

Slides Poster Similar

As a challenging task of Natural Language Processing(NLP), zero-shot text classification has attracted more and more attention recently. It aims to detect classes that the model has never seen in the training set. For this purpose, a feasible way is to construct connection between the seen and unseen classes by semantic extension and classify the unseen classes by information propagation over the connection. Although many related zero-shot text classification methods have been exploited, how to realize semantic extension properly and propagate information effectively is far from solved. In this paper, we propose a novel zero-shot text classification method called Semantically Extended Graph Convolutional Network (SEGCN). In the proposed method, the semantic category knowledge from ConceptNet is utilized to semantic extension for linking seen classes to unseen classes and constructing a graph of all classes. Then, we build upon Graph Convolutional Network (GCN) for predicting the textual classifier for each category, which transfers the category knowledge by the convolution operators on the constructed graph and is trained in a semi-supervised manner using the samples of the seen classes. The experimental results on Dbpedia and 20newsgroup datasets show that our method outperforms the state of the art zero-shot text classification methods.

MAGNet: Multi-Region Attention-Assisted Grounding of Natural Language Queries at Phrase Level

Amar Shrestha, Krittaphat Pugdeethosapol, Haowen Fang, Qinru Qiu

Responsive image

Auto-TLDR; MAGNet: A Multi-Region Attention-Aware Grounding Network for Free-form Textual Queries

Slides Poster Similar

Grounding free-form textual queries necessitates an understanding of these textual phrases and its relation to the visual cues to reliably reason about the described locations. Spatial attention networks are known to learn this relationship and focus its gaze on salient objects in the image. Thus, we propose to utilize spatial attention networks for image-level visual-textual fusion preserving local (word) and global (phrase) information to refine region proposals with an in-network Region Proposal Network (RPN) and detect single or multiple regions for a phrase query. We focus only on the phrase query - ground truth pair (referring expression) for a model independent of the constraints of the datasets i.e. additional attributes, context etc. For such referring expression dataset ReferIt game, our Multi- region Attention-assisted Grounding network (MAGNet) achieves over 12% improvement over the state-of-the-art. Without the con- text from image captions and attribute information in Flickr30k Entities, we still achieve competitive results compared to the state- of-the-art.

Feature Embedding Based Text Instance Grouping for Largely Spaced and Occluded Text Detection

Pan Gao, Qi Wan, Renwu Gao, Linlin Shen

Responsive image

Auto-TLDR; Text Instance Embedding Based Feature Embeddings for Multiple Text Instance Grouping

Slides Poster Similar

A text instance can be easily detected as multiple ones due to the large space between texts/characters, curved shape and partial occlusion. In this paper, a feature embedding based text instance grouping algorithm is proposed to solve this problem. To learn the feature space, a TIEM (Text Instance Embedding Module) is trained to minimize the within instance scatter and maximize the between instance scatter. Similarity between different text instances are measured in the feature space and merged if they meet certain conditions. Experimental results show that our approach can effectively connect text regions that belong to the same text instance. Competitive performance of our approach has been achieved on CTW1500, Total-Text, IC15 and a subset consists of texts selected from the three datasets, with large spacing and occlusions.

Information Graphic Summarization Using a Collection of Multimodal Deep Neural Networks

Edward Kim, Connor Onweller, Kathleen F. Mccoy

Responsive image

Auto-TLDR; A multimodal deep learning framework that can generate summarization text supporting the main idea of an information graphic for presentation to blind or visually impaired

Slides Similar

We present a multimodal deep learning framework that can generate summarization text supporting the main idea of an information graphic for presentation to a person who is blind or visually impaired. The framework utilizes the visual, textual, positional, and size characteristics extracted from the image to create the summary. Different and complimentary neural architectures are optimized for each task using crowdsourced training data. From our quantitative experiments and results, we explain the reasoning behind our framework and show the effectiveness of our models. Our qualitative results showcase text generated from our framework and show that Mechanical Turk participants favor them to other automatic and human generated summarizations. We describe the design and of of an experiment to evaluate the utility of our system for people who have visual impairments in the context of understanding Twitter Tweets containing line graphs.

CKG: Dynamic Representation Based on Context and Knowledge Graph

Xunzhu Tang, Tiezhu Sun, Rujie Zhu

Responsive image

Auto-TLDR; CKG: Dynamic Representation Based on Knowledge Graph for Language Sentences

Slides Poster Similar

Recently, neural language representation models pre-trained on large corpus can capture rich co-occurrence information and be fine-tuned in downstream tasks to improve the performance. As a result, they have achieved state-of-the-art results in a large range of language tasks. However, there exists other valuable semantic information such as similar, opposite, or other possible meanings in external knowledge graphs (KGs). We argue that entities in KGs could be used to enhance the correct semantic meaning of language sentences. In this paper, we propose a new method CKG: Dynamic Representation Based on \textbf{C}ontext and \textbf{K}nowledge \textbf{G}raph. On the one side, CKG can extract rich semantic information of large corpus. On the other side, it can make full use of inside information such as co-occurrence in large corpus and outside information such as similar entities in KGs. We conduct extensive experiments on a wide range of tasks, including QQP, MRPC, SST-5, SQuAD, CoNLL 2003, and SNLI. The experiment results show that CKG achieves SOTA 89.2 on SQuAD compared with SAN (84.4), ELMo (85.8), and BERT$_{Base}$ (88.5).

Enhanced User Interest and Expertise Modeling for Expert Recommendation

Tongze He, Caili Guo, Yunfei Chu

Responsive image

Auto-TLDR; A Unified Framework for Expert Recommendation in Community Question Answering

Slides Poster Similar

The rapid development of Community Question Answering (CQA) satisfies users' request for professional and personal knowledge. In CQA, one key issue is to recommend users with high expertise and willingness to answer the given questions, namely expert recommendation. However, most of existing methods for expert recommendation ignore some key information, such as time information and historical feedback information, degrading the performance. On the one hand, users' interest are changing over time. It is biased if we don't consider the dynamics. On the other hand, feedback information is critical to estimate users' expertise. To solve these problems, we propose a unified framework for expert recommendation to exploit user interest and expertise more precisely. Considering the inconsistency between them, we propose to learn their embeddings separately. We leverage Long Short-Term Memory (LSTM) to model user's short-term interest and combine it with long-term interest. The user expertise is learned by the designed user expertise network, which explicitly models feedback on users' historical behavior. The extensive experiments on a large-scale dataset from a real-world CQA site demonstrate the superior performance of our method than state-of-the-art solutions to the problem.

IBN-STR: A Robust Text Recognizer for Irregular Text in Natural Scenes

Xiaoqian Li, Jie Liu, Shuwu Zhang

Responsive image

Auto-TLDR; IBN-STR: A Robust Text Recognition System Based on Data and Feature Representation

Poster Similar

Although text recognition methods based on deep neural networks have promising performance, there are still challenges due to the variety of text styles, perspective distortion, text with large curvature, and so on. To obtain a robust text recognizer, we have improved the performance from two aspects: data aspect and feature representation aspect. In terms of data, we transform the input images into S-shape distorted images in order to increase the diversity of training data. Besides, we explore the effects of different training data. In terms of feature representation, the combination of instance normalization and batch normalization improves the model's capacity and generalization ability. This paper proposes a robust text recognizer IBN-STR, which is an attention-based model. Through extensive experiments, the model analysis and comparison have been carried out from the aspects of data and feature representation, and the effectiveness of IBN-STR on both regular and irregular text instances has been verified. Furthermore, IBN-STR is an end-to-end recognition system that can achieve state-of-the-art performance.

PIN: A Novel Parallel Interactive Network for Spoken Language Understanding

Peilin Zhou, Zhiqi Huang, Fenglin Liu, Yuexian Zou

Responsive image

Auto-TLDR; Parallel Interactive Network for Spoken Language Understanding

Slides Poster Similar

Spoken Language Understanding (SLU) is an essential part of the spoken dialogue system, which typically consists of intent detection (ID) and slot filling (SF) tasks. Recently, recurrent neural networks (RNNs) based methods achieved the state-of-the-art for SLU. It is noted that, in the existing RNN-based approaches, ID and SF tasks are often jointly modeled to utilize the correlation information between them. However, we noted that, so far, the efforts to obtain better performance by supporting bidirectional and explicit information exchange between ID and SF are not well studied. In addition, few studies attempt to capture the local context information to enhance the performance of SF. Motivated by these findings, in this paper, Parallel Interactive Network (PIN) is proposed to model the mutual guidance between ID and SF. Specifically, given an utterance, a Gaussian self-attentive encoder is introduced to generate the context-aware feature embedding of the utterance which is able to capture local context information. Taking the feature embedding of the utterance, Slot2Intent module and Intent2Slot module are developed to capture the bidirectional information flow for ID and SF tasks. Finally, a cooperation mechanism is constructed to fuse the information obtained from Slot2Intent and Intent2Slot modules to further reduce the prediction bias. The experiments on two benchmark datasets, i.e., SNIPS and ATIS, demonstrate the effectiveness of our approach, which achieves a competitive result with state-of-the-art models. More encouragingly, by using the feature embedding of the utterance generated by the pre-trained language model BERT, our method achieves the state-of-the-art among all comparison approaches.

Enriching Video Captions with Contextual Text

Philipp Rimle, Pelin Dogan, Markus Gross

Responsive image

Auto-TLDR; Contextualized Video Captioning Using Contextual Text

Slides Poster Similar

Understanding video content and generating caption with context is an important and challenging task. Unlike prior methods that typically attempt to generate generic video captions without context, our architecture contextualizes captioning by infusing extracted information from relevant text data. We propose an end-to-end sequence-to-sequence model which generates video captions based on visual input, and mines relevant knowledge such as names and locations from contextual text. In contrast to previous approaches, we do not preprocess the text further, and let the model directly learn to attend over it. Guided by the visual input, the model is able to copy words from the contextual text via a pointer-generator network, allowing to produce more specific video captions. We show competitive performance on the News Video Dataset and, through ablation studies, validate the efficacy of contextual video captioning as well as individual design choices in our model architecture.

Automatic Student Network Search for Knowledge Distillation

Zhexi Zhang, Wei Zhu, Junchi Yan, Peng Gao, Guotong Xie

Responsive image

Auto-TLDR; NAS-KD: Knowledge Distillation for BERT

Slides Poster Similar

Pre-trained language models (PLMs), such as BERT, have achieved outstanding performance on multiple natural language processing (NLP) tasks. However, such pre-trained models usually contain a huge number of parameters and are computationally expensive. The high resource demand hinders their application on resource-restricted devices like mobile phones. Knowledge distillation (KD) is an effective compression approach, aiming at encouraging a light-weight student network to imitate the teacher network, and accordingly latent knowledge is transferred from the teacher to student. However, the great majority of student networks in previous KD methods are manually designed, normally a subnetwork of the teacher network. Transformer is generally utilized as the student for compressing BERT but still contains masses of parameters. Motivated by this, we propose a novel approach named NAS-KD, which automatically generates an optimal student network using neural architecture search (NAS) to enhance the distillation for BERT. Experiment on 7 classification tasks in NLP domain demonstrates that NAS-KD can substantially reduce the size of BERT without much performance sacrifice.

Cost-Effective Adversarial Attacks against Scene Text Recognition

Mingkun Yang, Haitian Zheng, Xiang Bai, Jiebo Luo

Responsive image

Auto-TLDR; Adversarial Attacks on Scene Text Recognition

Slides Poster Similar

Scene text recognition is a challenging task due to the diversity in text appearance and complexity of natural scenes. Thanks to the development of deep learning and the large volume of training data, scene text recognition has made impressive progress in recent years. However, recent research on adversarial examples has shown that deep learning models are vulnerable to adversarial input with imperceptible changes. As one of the most practical tasks in computer vision, scene text recognition is also facing huge security risks. To our best knowledge, there has been no work on adversarial attacks against scene text recognition. To investigate its effects on scene text recognition, we make the first attempt to attack the state-of-the-art scene text recognizer, i.e., attention-based recognizer. To that end, we first adjust the objective function designed for non-sequential tasks, such as image classification, semantic segmentation and image retrieval, to the sequential form. We then propose a novel and effective objective function to further reduce the amount of perturbation while achieving a higher attack success rate. Comprehensive experiments on several standard benchmarks clearly demonstrate effective adversarial effects on scene text recognition by the proposed attacks.

Improving Word Recognition Using Multiple Hypotheses and Deep Embeddings

Siddhant Bansal, Praveen Krishnan, C. V. Jawahar

Responsive image

Auto-TLDR; EmbedNet: fuse recognition-based and recognition-free approaches for word recognition using learning-based methods

Slides Poster Similar

We propose to fuse recognition-based and recognition-free approaches for word recognition using learning-based methods. For this purpose, results obtained using a text recognizer and deep embeddings (generated using an End2End network) are fused. To further improve the embeddings, we propose EmbedNet, it uses triplet loss for training and learns an embedding space where the embedding of the word image lies closer to its corresponding text transcription’s embedding. This updated embedding space helps in choosing the correct prediction with higher confidence. To further improve the accuracy, we propose a plug-and-play module called Confidence based Accuracy Booster (CAB). It takes in the confidence scores obtained from the text recognizer and Euclidean distances between the embeddings and generates an updated distance vector. This vector has lower distance values for the correct words and higher distance values for the incorrect words. We rigorously evaluate our proposed method systematically on a collection of books that are in the Hindi language. Our method achieves an absolute improvement of around 10% in terms of word recognition accuracy.

ConvMath : A Convolutional Sequence Network for Mathematical Expression Recognition

Zuoyu Yan, Xiaode Zhang, Liangcai Gao, Ke Yuan, Zhi Tang

Responsive image

Auto-TLDR; Convolutional Sequence Modeling for Mathematical Expressions Recognition

Slides Poster Similar

Despite the recent advances in optical character recognition (OCR), mathematical expressions still face a great challenge to recognize due to their two-dimensional graphical layout. In this paper, we propose a convolutional sequence modeling network, ConvMath, which converts the mathematical expression description in an image into a LaTeX sequence in an end-to-end way. The network combines an image encoder for feature extraction and a convolutional decoder for sequence generation. Compared with other Long Short Term Memory(LSTM) based encoder-decoder models, ConvMath is entirely based on convolution, thus it is easy to perform parallel computation. Besides, the network adopts multi-layer attention mechanism in the decoder, which allows the model to align output symbols with source feature vectors automatically, and alleviates the problem of lacking coverage while training the model. The performance of ConvMath is evaluated on an open dataset named IM2LATEX-100K, including 103556 samples. The experimental results demonstrate that the proposed network achieves state-of-the-art accuracy and much better efficiency than previous methods.

Evaluation of BERT and ALBERT Sentence Embedding Performance on Downstream NLP Tasks

Hyunjin Choi, Judong Kim, Seongho Joe, Youngjune Gwon

Responsive image

Auto-TLDR; Sentence Embedding Models for BERT and ALBERT: A Comparison and Evaluation

Slides Poster Similar

Contextualized representations from a pre-trained language model are central to achieve a high performance on downstream NLP task. The pre-trained BERT and A Lite BERT (ALBERT) models can be fine-tuned to give state-of-the-art results in sentence-pair regressions such as semantic textual similarity (STS) and natural language inference (NLI). Although BERT-based models yield the [CLS] token vector as a reasonable sentence embedding, the search for an optimal sentence embedding scheme remains an active research area in computational linguistics. This paper explores on sentence embedding models for BERT and ALBERT. In particular, we take a modified BERT network with siamese and triplet network structures called Sentence-BERT (SBERT) and replace BERT with ALBERT to create Sentence-ALBERT (SALBERT). We also experiment with an outer CNN sentence-embedding network for SBERT and SALBERT. We evaluate performances of all sentence-embedding models considered using the STS and NLI datasets. The empirical results indicate that our CNN architecture improves ALBERT models substantially more than BERT models for STS benchmark. Despite significantly fewer model parameters, ALBERT sentence embedding is highly competitive to BERT in downstream NLP evaluations.

Label Incorporated Graph Neural Networks for Text Classification

Yuan Xin, Linli Xu, Junliang Guo, Jiquan Li, Xin Sheng, Yuanyuan Zhou

Responsive image

Auto-TLDR; Graph Neural Networks for Semi-supervised Text Classification

Slides Poster Similar

Graph Neural Networks (GNNs) have achieved great success on graph-structured data, and their applications on traditional data structures such as natural language processing and semi-supervised text classification have been extensively explored in recent years. While previous works only consider the text information while building the graph, heterogeneous information such as labels is ignored. In this paper, we consider to incorporate the label information while building the graph by adding text-label-text paths, through which the supervision information will propagate among the graph more directly. Specifically, we treat labels as nodes in the graph which also contains text and word nodes, and then connect labels with texts belonging to that label. Through graph convolutions, label embeddings are jointly learned with text embeddings in the same latent semantic space. The newly incorporated label nodes will facilitate learning more accurate text embeddings by introducing the label information, and thus benefit the downstream text classification tasks. Extensive results on several benchmark datasets show that the proposed framework outperforms baseline methods by a significant margin.

Efficient Sentence Embedding Via Semantic Subspace Analysis

Bin Wang, Fenxiao Chen, Yun Cheng Wang, C.-C. Jay Kuo

Responsive image

Auto-TLDR; S3E: Semantic Subspace Sentence Embedding

Slides Poster Similar

A novel sentence embedding method built upon semantic subspace analysis, called semantic subspace sentence embedding (S3E), is proposed in this work. Given the fact that word embeddings can capture semantic relationship while semantically similar words tend to form semantic groups in a high-dimensional embedding space, we develop a sentence representation scheme by analyzing semantic subspaces of its constituent words. Specifically, we construct a sentence model from two aspects. First, we represent words that lie in the same semantic group using the intra-group descriptor. Second, we characterize the interaction between multiple semantic groups with the inter-group descriptor. The proposed S3E method is evaluated on both textual similarity tasks and supervised tasks. Experimental results show that it offers comparable or better performance than the state-of-the-art. The complexity of our S3E method is also much lower than other parameterized models.

Graph Discovery for Visual Test Generation

Neil Hallonquist, Laurent Younes, Donald Geman

Responsive image

Auto-TLDR; Visual Question Answering over Graphs: A Probabilistic Framework for VQA

Slides Poster Similar

We consider the problem of uncovering an unknown attributed graph, where both its edges and vertices are hidden from view, through a sequence of binary questions about it. In order to select questions efficiently, we define a probability distribution over graphs, with randomness not just over edges, but over vertices as well. We then sequentially select questions so as to: (1) minimize the expected entropy of the random graph, given the answers to the previous questions in the sequence; and (2) to instantiate the vertices that compose the graph. We propose some basic question spaces, from which to select questions, that vary in their capacity. We apply this framework to the problem of test generation in Visual Question Answering (VQA), where semantic questions are used to evaluate vision systems over rich image representations. To do this, we use a restricted question vocabulary, resulting in image representations that take the form of scene graphs; by defining a distribution over them, a consistent set of probabilities is associated with the questions, and used in their selection.

2D License Plate Recognition based on Automatic Perspective Rectification

Hui Xu, Zhao-Hong Guo, Da-Han Wang, Xiang-Dong Zhou, Yu Shi

Responsive image

Auto-TLDR; Perspective Rectification Network for License Plate Recognition

Slides Poster Similar

License plate recognition (LPR) remains a challenging task in face of some difficulties such as image deformation and multi-line character distribution. Text rectification that is crucial to eliminate the effects of image deformation has attracted increasing attentions in scene text recognition. However, current text rectification methods are not designed specifically for LPR, which did not take the features of plate deformation into account. Considering the fact that a license plate (LP) can only generate perspective distortion in the image due to its rigid feature, in this paper we propose a novel perspective rectification network (PRN) to automatically estimate the perspective transformation and rectify the distorted LP accordingly. For recognition, we propose a location-aware 2D attention based recognition network that is capable of recognizing both single-line and double-line plates with perspective deformation. The rectification network and recognition network are connected for end-to-end training. Experiments on common datasets show that the proposed method achieves the state-of-the-art performance, demonstrating the effectiveness of the proposed approach.

Global Context-Based Network with Transformer for Image2latex

Nuo Pang, Chun Yang, Xiaobin Zhu, Jixuan Li, Xu-Cheng Yin

Responsive image

Auto-TLDR; Image2latex with Global Context block and Transformer

Slides Poster Similar

Image2latex usually means converts mathematical formulas in images into latex markup. It is a very challenging job due to the complex two-dimensional structure, variant scales of input, and very long representation sequence. Many researchers use encoder-decoder based model to solve this task and achieved good results. However, these methods don't make full use of the structure and position information of the formula. %In this paper, we improve the encoder by employing Global Context block and Transformer. To solve this problem, we propose a global context-based network with transformer that can (1) learn a more powerful and robust intermediate representation via aggregating global features and (2) encode position information explicitly and (3) learn latent dependencies between symbols by using self-attention mechanism. The experimental results on the dataset IM2LATEX-100K demonstrate the effectiveness of our method.

Sample-Aware Data Augmentor for Scene Text Recognition

Guanghao Meng, Tao Dai, Shudeng Wu, Bin Chen, Jian Lu, Yong Jiang, Shutao Xia

Responsive image

Auto-TLDR; Sample-Aware Data Augmentation for Scene Text Recognition

Slides Poster Similar

Deep neural networks (DNNs) have been widely used in scene text recognition, and achieved remarkable performance. Such DNN-based scene text recognizers usually require plenty of training data for training, but data collection and annotation is usually cost-expensive in practice. To alleviate this issue, data augmentation is often applied to train the scene text recognizers. However, existing data augmentation methods including affine transformation and elastic transformation methods suffer from the problems of under- and over-diversity, due to the complexity of text contents and shapes. In this paper, we propose a sample-aware data augmentor to transform samples adaptively based on the contents of samples. Specifically, our data augmentor consists of three parts: gated module, affine transformation module, and elastic transformation module. In our data augmentor, affine transformation module focuses on keeping the affinity of samples, while elastic transformation module aims to improve the diversity of samples. With the gated module, our data augmentor determines transformation type adaptively based on the properties of training samples and the recognizer capability during the training process. Besides, our framework introduces an adversarial learning strategy to optimize the augmentor and the recognizer jointly. Extensive experiments on scene text recognition benchmarks show that our sample-aware data augmentor significantly improves the performance of state-of-the-art scene text recognizer.