Ujjwal Bhattacharya

Papers from this author

CardioGAN: An Attention-Based Generative Adversarial Network for Generation of Electrocardiograms

Subhrajyoti Dasgupta, Sudip Das, Ujjwal Bhattacharya

Responsive image

Auto-TLDR; CardioGAN: Generative Adversarial Network for Synthetic Electrocardiogram Signals

Slides Poster Similar

Electrocardiogram (ECG) signal is studied to obtain crucial information about the condition of a patient's heart. Machine learning based automated medical diagnostic systems that may help to evaluate the condition of the heart from this signal are required to be trained using large volumes of labelled training samples and the same may increase the chance of compromising with the patients' privacy. To solve this issue, generation of synthetic electrocardiogram signals by learning only from the general distributions of the available real training samples have been attempted in the literature. However, these studies did not pay necessary attention to the specific vital details of these signals, such as the P wave, the QRS complex, and the T wave. This shortcoming often results in the generation of unrealistic synthetic signals, such as a signal which does not contain one or more of the above components. In the present study, a novel deep generative architecture, termed as CardioGAN, based on generative adversarial network and powered by the effective attention mechanism has been designed which is capable of learning the intricate inter-dependencies among the various parts of real samples leading to the generation of more realistic electrocardiogram signals. Also, it helps in reducing the risk of breaching the privacy of patients. Extensive experimentation performed by us establishes that the proposed method achieves a better performance in generating synthetic electrocardiogram signals in comparison to the existing methods. The source code will be made available on github.

DenseRecognition of Spoken Languages

Jaybrata Chakraborty, Bappaditya Chakraborty, Ujjwal Bhattacharya

Responsive image

Auto-TLDR; DenseNet: A Dense Convolutional Network Architecture for Speech Recognition in Indian Languages

Slides Poster Similar

In the present study, we have, for the first time, con- sidered a large number of Indian languages for recog- nition from their audio signals of different sources. A dense convolutional network architecture (DenseNet) has been proposed for this classification problem. Dy- namic elimination of low energy frames from the input speech signal has been considered as a preprocessing operation. Mel-spectrogram of pre-processed speech signal is fed to a DenseNet architecture for recogni- tion of its language. Recognition performance of the proposed architecture has been compared with that of several state-of-the-art deep architectures which include a traditional convolutional neural network (CNN), multiple ResNet architectures, CNN-BLSTM and DenseNet-BLSTM hybrid architectures. Addition- ally, we obtained recognition performances of a stacked BLSTM architecture fed with different sets of hand- crafted features for comparison purpose. Simulations have been performed on two different standard datasets which include (i) IITKGP-MLILSC dataset of news clips in 27 different Indian languages and (ii) Linguistic Data Consortium (LDC) dataset of telephonic conver- sations in 5 different Indian languages. Recognition performance of the proposed framework has been found to be consistently and significantly better than all other frameworks implemented in this study.

Stratified Multi-Task Learning for Robust Spotting of Scene Texts

Kinjal Dasgupta, Sudip Das, Ujjwal Bhattacharya

Responsive image

Auto-TLDR; Feature Representation Block for Multi-task Learning of Scene Text

Slides Similar

Gaining control over the dynamics of multi-task learning should help to unlock the potential of the deep network to a great extent. In the existing multi-task learning (MTL) approaches of deep network, all the parameters of its feature encoding part are subjected to adjustments corresponding to each of the underlying sub-tasks. On the other hand, different functional areas of human brain are responsible for distinct functions such as the Broca's area of the cerebrum is responsible for speech formation whereas its Wernicke's area is related to the language development etc. Inspired by this fact, in the present study, we propose to introduce a block (termed as Feature Representation Block) of connection weights spanned over a few successive layers of a deep multi-task learning architecture and stratify the same into distinct subsets for their adjustments exclusively corresponding to different sub-tasks. Additionally, we have introduced a novel regularization component for controlled training of this Feature Representation Block. The purpose of the development of this learning framework is efficient end-to-end recognition of scene texts. Simulation results of the proposed strategy on various benchmark scene text datasets such as ICDAR 2015, ICDAR 2017 MLT, COCO-Text and MSRA-TD500 have improved respective SOTA performance.