Zerui Chen

Papers from this author

On the Robustness of 3D Human Pose Estimation

Zerui Chen, Yan Huang, Liang Wang

Responsive image

Auto-TLDR; Robustness of 3D Human Pose Estimation Methods to Adversarial Attacks

Slides Similar

It is widely shown that Convolutional Neural Networks (CNNs) are vulnerable to adversarial examples on most recognition tasks, such as image classification and segmentation. However, few work studies the more complicated task -- 3D human pose estimation. This task often requires large-scale datasets, specialized network architectures, and it can be solved either from single-view RGB images or from multi-view RGB images. In this paper, we make the first attempt to investigate the robustness of current state-of-the-art 3D human pose estimation methods. To this end, we build four representative baseline models, where most of the current methods can be generally classified as one of them. Furthermore, we design targeted adversarial attacks to detect whether 3D pose estimators are robust to different camera parameters. For different types of methods, we present a comprehensive study of their robustness on the large-scale \emph{Human3.6M} benchmark. Our work shows that different methods vary significantly in their resistance to adversarial attacks. Through extensive experiments, we show that multi-view 3D pose estimators can be more vulnerable to adversarial examples. We believe that our efforts can shed light on future works to design more robust 3D human pose estimators.

VSR++: Improving Visual Semantic Reasoning for Fine-Grained Image-Text Matching

Hui Yuan, Yan Huang, Dongbo Zhang, Zerui Chen, Wenlong Cheng, Liang Wang

Responsive image

Auto-TLDR; Improving Visual Semantic Reasoning for Fine-Grained Image-Text Matching

Slides Poster Similar

Image-text matching has made great progresses recently, but there still remains challenges in fine-grained matching. To deal with this problem, we propose an Improved Visual Semantic Reasoning model (VSR++), which jointly models 1) global alignment between images and texts and 2) local correspondence between regions and words in a unified framework. To exploit their complementary advantages, we also develop a suitable learning strategy to balance their relative importance. As a result, our model can distinguish image regions and text words in a fine-grained level, and thus achieves the current stateof-the-art performance on two benchmark datasets.