Enhanced Vote Network for 3D Object Detection in Point Clouds

Min Zhong, Gang Zeng

Responsive image

Auto-TLDR; A Vote Feature Enhancement Network for 3D Bounding Box Prediction

Slides Poster

In this work, we aim to estimate 3D bounding boxes by voting to object centers and then groups and aggregates the votes to generate 3D box proposals and semantic classes of objects. However, due to the sparse and unstructured nature of the point clouds, we face some challenges when directly predicting bounding box from the vote feature: the sparse vote feature may lack some necessary semantic and context information. To address the challenges, we propose a vote feature enhancement network that aims to encode semantic-aware information and aggravate global context for the vote feature. Specifically, we learn the point-wise semantic information and supplement it to the vote feature, and we also encode the pairwise relations to collect the global context. Experiments on two large datasets of real 3D scans, ScanNet and SUN RGB-D, demonstrate that our method can achieve excellent 3D detection results.

Similar papers

S-VoteNet: Deep Hough Voting with Spherical Proposal for 3D Object Detection

Yanxian Chen, Huimin Ma, Xi Li, Xiong Luo

Responsive image

Auto-TLDR; S-VoteNet: 3D Object Detection with Spherical Bounded Box Prediction

Slides Poster Similar

Current 3D object detection methods adopt an analogous box prediction structure with the 2D methods, which predict center and size of the object simultaneously in a box regression procedure, leading to the poor performance of 3D detector to a great extent. In this work, we propose S-VoteNet, which converts the prediction of 3D bounding box into two parts: center prediction and size prediction. By introducing a novel spherical proposal, S-VoteNet uses vote groups to predict the center and radius of object rather than all parameters of 3D bounding box. The prediction of radius is used to constrain the object size, and the radius-based spherical center loss is applied to measure the geometric distance between the proposal and ground-truth. To make better use of the geometric information provided by point cloud, S-VoteNet gathers seed points whose corresponding votes are within the vote groups for seed group generation. Seed groups are then consumed for box size regression and orientation estimation. By decoupling the localization and size estimation, our method effectively reduces the regression pressure of the 3D detector. Experimental results on SUN RGB-D 3D detection benchmark demonstrate that our S-VoteNet achieves state-of-the-art performance by using only point cloud as input.

Joint Semantic-Instance Segmentation of 3D Point Clouds: Instance Separation and Semantic Fusion

Min Zhong, Gang Zeng

Responsive image

Auto-TLDR; Joint Semantic Segmentation and Instance Separation of 3D Point Clouds

Slides Poster Similar

This paper introduces an approach for jointly addressing semantic segmentation (SS) and instance segmentation (IS) of 3D point clouds. Two novel modules are designed to model the interplay between SS and IS. Specifically, we develop an Instance Separation Module that supplements the position-invariance semantic feature with the instance-specific centroid position to help separate different instances. To fuse the semantic information within a single instance, an attention-based Semantic Fusion Module is proposed to encode attention maps in the instance embedding space, which are applied to fuse semantic information in the semantic feature space. The proposed method is thoroughly evaluated on the S3DIS dataset. Compared with the excellent method ASIS, our approach achieves significant improvements across all evaluation metrics in both IS and SS.

Yolo+FPN: 2D and 3D Fused Object Detection with an RGB-D Camera

Ya Wang

Responsive image

Auto-TLDR; Yolo+FPN: Combining 2D and 3D Object Detection for Real-Time Object Detection

Slides Poster Similar

In this paper we propose a new deep neural network system, called Yolo+FPN, which fuses both 2D and 3D object detection algorithms to achieve better real-time object detection results and faster inference speed, to be used on real robots. Finding an optimized fusion strategy to efficiently combine 3D object detection with 2D detection information is useful and challenging for both indoor and outdoor robots. In order to satisfy real-time requirements, a trade-off between accuracy and efficiency is needed. We not only have improved training and test accuracies and lower mean losses on the KITTI object detection benchmark, but also achieve better average precision on 3D detection of all classes in three levels of difficulty. Also, we implemented Yolo+FPN system using an RGB-D camera, and compared the speed of 2D and 3D object detection using different GPUs. For the real implementation of both indoor and outdoor scenes, we focus on person detection, which is the most challenging and important among the three classes.

PointDrop: Improving Object Detection from Sparse Point Clouds Via Adversarial Data Augmentation

Wenxin Ma, Jian Chen, Qing Du, Wei Jia

Responsive image

Auto-TLDR; PointDrop: Improving Robust 3D Object Detection to Sparse Point Clouds

Slides Poster Similar

Current 3D object detection methods achieve accurate and efficient results on the standard point cloud dataset. However, in real-world applications, due to the expensive cost of obtaining the annotated 3D object detection data, we expect to directly apply the model trained on the standard dataset to real-world scenarios. This strategy may fail because the point cloud samples obtained in the real-world scenarios may be much sparser due to various reasons (occlusion, low reflectivity of objects and fewer laser beams) and existing methods do not consider the limitations of their models on sparse point clouds. To improve the robustness of an object detector to sparser point clouds, we propose PointDrop, which learns to drop the features of some key points in the point clouds to generate challenging sparse samples for data augmentation. Moreover, PointDrop is able to adjust the difficulty of the generated samples based on the capacity of the detector and thus progressively improve the performance of the detector. We create two sparse point clouds datasets from the KITTI dataset to evaluate our method, and the experimental results show that PointDrop significantly improves the robustness of the detector to sparse point clouds.

MixedFusion: 6D Object Pose Estimation from Decoupled RGB-Depth Features

Hangtao Feng, Lu Zhang, Xu Yang, Zhiyong Liu

Responsive image

Auto-TLDR; MixedFusion: Combining Color and Point Clouds for 6D Pose Estimation

Slides Poster Similar

Estimating the 6D pose of objects is an important process for intelligent systems to achieve interaction with the real-world. As the RGB-D sensors become more accessible, the fusion-based methods have prevailed, since the point clouds provide complementary geometric information with RGB values. However, Due to the difference in feature space between color image and depth image, the network structures that directly perform point-to-point matching fusion do not effectively fuse the features of the two. In this paper, we propose a simple but effective approach, named MixedFusion. Different from the prior works, we argue that the spatial correspondence of color and point clouds could be decoupled and reconnected, thus enabling a more flexible fusion scheme. By performing the proposed method, more informative points can be mixed and fused with rich color features. Extensive experiments are conducted on the challenging LineMod and YCB-Video datasets, show that our method significantly boosts the performance without introducing extra overheads. Furthermore, when the minimum tolerance of metric narrows, the proposed approach performs better for the high-precision demands.

PS^2-Net: A Locally and Globally Aware Network for Point-Based Semantic Segmentation

Na Zhao, Tat Seng Chua, Gim Hee Lee

Responsive image

Auto-TLDR; PS2-Net: A Local and Globally Aware Deep Learning Framework for Semantic Segmentation on 3D Point Clouds

Slides Poster Similar

In this paper, we present the PS^2-Net - a locally and globally aware deep learning framework for semantic segmentation on 3D scene-level point clouds. In order to deeply incorporate local structures and global context to support 3D scene segmentation, our network is built on four repeatedly stacked encoders, where each encoder has two basic components: EdgeConv that captures local structures and NetVLAD that models global context. Different from existing start-of-the-art methods for point-based scene semantic segmentation that either violate or do not achieve permutation invariance, our PS2-Net is designed to be permutation invariant which is an essential property of any deep network used to process unordered point clouds. We further provide theoretical proof to guarantee the permutation invariance property of our network. We perform extensive experiments on two large-scale 3D indoor scene datasets and demonstrate that our PS2-Net is able to achieve state-of-the-art performances as compared to existing approaches.

CASNet: Common Attribute Support Network for Image Instance and Panoptic Segmentation

Xiaolong Liu, Yuqing Hou, Anbang Yao, Yurong Chen, Keqiang Li

Responsive image

Auto-TLDR; Common Attribute Support Network for instance segmentation and panoptic segmentation

Slides Poster Similar

Instance segmentation and panoptic segmentation is being paid more and more attention in recent years. In comparison with bounding box based object detection and semantic segmentation, instance segmentation can provide more analytical results at pixel level. Given the insight that pixels belonging to one instance have one or more common attributes of current instance, we bring up an one-stage instance segmentation network named Common Attribute Support Network (CASNet), which realizes instance segmentation by predicting and clustering common attributes. CASNet is designed in the manner of fully convolutional and can implement training and inference from end to end. And CASNet manages predicting the instance without overlaps and holes, which problem exists in most of current instance segmentation algorithms. Furthermore, it can be easily extended to panoptic segmentation through minor modifications with little computation overhead. CASNet builds a bridge between semantic and instance segmentation from finding pixel class ID to obtaining class and instance ID by operations on common attribute. Through experiment for instance and panoptic segmentation, CASNet gets mAP 32.8\% and PQ 59.0\% on Cityscapes validation dataset by joint training, and mAP 36.3\% and PQ 66.1\% by separated training mode. For panoptic segmentation, CASNet gets state-of-the-art performance on the Cityscapes validation dataset.

PointSpherical: Deep Shape Context for Point Cloud Learning in Spherical Coordinates

Hua Lin, Bin Fan, Yongcheng Liu, Yirong Yang, Zheng Pan, Jianbo Shi, Chunhong Pan, Huiwen Xie

Responsive image

Auto-TLDR; Spherical Hierarchical Modeling of 3D Point Cloud

Slides Poster Similar

We propose Spherical Hierarchical modeling of 3D point cloud. Inspired by Shape Context, we design a receptive field on each 3D point by placing a spherical coordinate on it. We sample points using the furthest point method and creating overlapping balls of points. For each ball, we divide the space into radial, polar angular and azimuthal angular bins on which we form a Spherical Hierarchy. We apply 1x1 CNN convolution on points to start the initial feature extraction. Repeated 3D CNN and max pooling over the Spherical bins propagate contextual information until all the information is condensed in the center bin. Extensive experiments on five datasets strongly evidence that our method outperform current models on various Point Cloud Learning tasks, including 2D/3D shape classification, 3D part segmentation and 3D semantic segmentation.

PC-Net: A Deep Network for 3D Point Clouds Analysis

Zhuo Chen, Tao Guan, Yawei Luo, Yuesong Wang

Responsive image

Auto-TLDR; PC-Net: A Hierarchical Neural Network for 3D Point Clouds Analysis

Slides Poster Similar

Due to the irregularity and sparsity of 3D point clouds, applying convolutional neural networks directly on them can be nontrivial. In this work, we propose a simple but effective approach for 3D Point Clouds analysis, named PC-Net. PC-Net directly learns on point sets and is equipped with three new operations: first, we apply a novel scale-aware neighbor search for adaptive neighborhood extracting; second, for each neighboring point, we learn a local spatial feature as a complement to their associated features; finally, at the end we use a distance re-weighted pooling to aggregate all the features from local structure. With this module, we design hierarchical neural network for point cloud understanding. For both classification and segmentation tasks, our architecture proves effective in the experiments and our models demonstrate state-of-the-art performance over existing deep learning methods on popular point cloud benchmarks.

HPERL: 3D Human Pose Estimastion from RGB and LiDAR

Michael Fürst, Shriya T.P. Gupta, René Schuster, Oliver Wasenmüler, Didier Stricker

Responsive image

Auto-TLDR; 3D Human Pose Estimation Using RGB and LiDAR Using Weakly-Supervised Approach

Slides Poster Similar

In-the-wild human pose estimation has a huge potential for various fields, ranging from animation and action recognition to intention recognition and prediction for autonomous driving. The current state-of-the-art is focused only on RGB and RGB-D approaches for predicting the 3D human pose. However, not using precise LiDAR depth information limits the performance and leads to very inaccurate absolute pose estimation. With LiDAR sensors becoming more affordable and common on robots and autonomous vehicle setups, we propose an end-to-end architecture using RGB and LiDAR to predict the absolute 3D human pose with unprecedented precision. Additionally, we introduce a weakly-supervised approach to generate 3D predictions using 2D pose annotations from PedX. This allows for many new opportunities in the field of 3D human pose estimation.

FatNet: A Feature-Attentive Network for 3D Point Cloud Processing

Chaitanya Kaul, Nick Pears, Suresh Manandhar

Responsive image

Auto-TLDR; Feature-Attentive Neural Networks for Point Cloud Classification and Segmentation

Slides Similar

The application of deep learning to 3D point clouds is challenging due to its lack of order. Inspired by the point embeddings of PointNet and the edge embeddings of DGCNNs, we propose three improvements to the task of point cloud analysis. First, we introduce a novel feature-attentive neural network layer, a FAT layer, that combines both global point-based features and local edge-based features in order to generate better embeddings. Second, we find that applying the same attention mechanism across two different forms of feature map aggregation, max pooling and average pooling, gives better performance than either alone. Third, we observe that residual feature reuse in this setting propagates information more effectively between the layers, and makes the network easier to train. Our architecture achieves state-of-the-art results on the task of point cloud classification, as demonstrated on the ModelNet40 dataset, and an extremely competitive performance on the ShapeNet part segmentation challenge.

Cross-Regional Attention Network for Point Cloud Completion

Hang Wu, Yubin Miao

Responsive image

Auto-TLDR; Learning-based Point Cloud Repair with Graph Convolution

Slides Poster Similar

Point clouds obtained from real word scanning are always incomplete and ununiformly distributed, which would cause structural losses in 3D shape representations. Therefore, a learning-based method is introduced in this paper to repair partial point clouds and restore the complete shapes of target objects. First, we design an encoder that takes both local features and global features into consideration. Second, we establish a graph to connect the local features together, and then implement graph convolution with multi-head attention on it. The graph enables each local feature vector to search across the regions and selectively absorb other local features based on the its own features and global features. Third, we design a coarse decoder to collect cross-region features from the graph and generate coarse point clouds with low resolution, and a folding-based decoder to generate fine point clouds with high resolution. Our network is trained on six categories of objects in the ModelNet dataset, and its performance is compared with several existing methods, the results show that our network is able to generate dense complete point cloud with the highest accuracy.

Sensor-Independent Pedestrian Detection for Personal Mobility Vehicles in Walking Space Using Dataset Generated by Simulation

Takahiro Shimizu, Kenji Koide, Shuji Oishi, Masashi Yokozuka, Atsuhiko Banno, Motoki Shino

Responsive image

Auto-TLDR; CosPointPillars: A 3D Object Detection Method for Pedestrian Detection in Walking Spaces

Slides Poster Similar

Autonomous driving of a personal mobility vehicle such as a wheelchair in a walking space is necessary in the future as a means of transportation for the elderly and the physically handicapped. To realize this, accurate pedestrian detection is indispensable. As existing 3D object detection methods are trained with a roadway dataset, they are widely used for object detection in roadways. These methods have two major issues in the detection of objects in walking spaces. The first issue is that they are largely affected by the difference of the LIDAR models. To eliminate this issue, we propose a 3D object detection method, CosPointPillars. CosPointPillars does not take the reflection intensities of LIDAR point cloud, which cause a sensor model dependency, as input. Furthermore, CosPointPillars utilizes a cosine estimation network (CEN) to retain the detection accuracy. The second issue is that networks trained with a roadway dataset cannot sufficiently detect pedestrians (who are major traffic participants in walking spaces) located within a short distance; this is because the roadway dataset hardly includes nearby pedestrians. To solve this issue, we generated a new walking space dataset called SimDataset, which includes nearby pedestrians as a training dataset in the simulations. An experiment on the KITTI showed that the CEN helps in pedestrian detection in sparse point clouds. Furthermore, an experiment on a real walking space showed that SimDataset is suitable for pedestrian detection in such cases.

Detecting Objects with High Object Region Percentage

Fen Fang, Qianli Xu, Liyuan Li, Ying Gu, Joo-Hwee Lim

Responsive image

Auto-TLDR; Faster R-CNN for High-ORP Object Detection

Slides Poster Similar

Object shape is a subtle but important factor for object detection. It has been observed that the object-region-percentage (ORP) can be utilized to improve detection accuracy for elongated objects, which have much lower ORPs than other types of objects. In this paper, we propose an approach to improve the detection performance for objects whose ORPs are relatively higher.To address the problem of high-ORP object detection, we propose a method consisting of three steps. First, we adjust the ground truth bounding boxes of high-ORP objects to an optimal range. Second, we train an object detector, Faster R-CNN, based on adjusted bounding boxes to achieve high recall. Finally, we train a DCNN to learn the adjustment ratios towards four directions and adjust detected bounding boxes of objects to get better localization for higher precision. We evaluate the effectiveness of our method on 12 high-ORP objects in COCO and 8 objects in a proprietary gearbox dataset. The experimental results show that our method can achieve state-of-the-art performance on these objects while costing less resources in training and inference stages.

Deep Space Probing for Point Cloud Analysis

Yirong Yang, Bin Fan, Yongcheng Liu, Hua Lin, Jiyong Zhang, Xin Liu, 蔡鑫宇 蔡鑫宇, Shiming Xiang, Chunhong Pan

Responsive image

Auto-TLDR; SPCNN: Space Probing Convolutional Neural Network for Point Cloud Analysis

Slides Poster Similar

3D points distribute in a continuous 3D space irregularly, thus directly adapting 2D image convolution to 3D points is not an easy job. Previous works often artificially divide the space into regular grids, yet it could be suboptimal to learn geometry. In this paper, we propose SPCNN, namely, Space Probing Convolutional Neural Network, which naturally generalizes image CNN to deal with point clouds. The key idea of SPCNN is learning to probe the 3D space in an adaptive manner. Specifically, we define a pool of learnable convolutional weights, and let each point in the local region learn to choose a suitable convolutional weight from the pool. This is achieved by constructing a geometry guided index-mapping function that implicitly establishes a correspondence between convolutional weights and some local regions in the neighborhood (Fig. 1). In this way, the index-mapping function learns to adaptively partition nearby space for local geometry pattern recognition. With this convolution as a basic operator, SPCNN, a hierarchical architecture can be developed for effective point cloud analysis. Extensive experiments on challenging benchmarks across three tasks demonstrate that SPCNN achieves the state-of-the-art or has competitive performance.

Multi-Scale Residual Pyramid Attention Network for Monocular Depth Estimation

Jing Liu, Xiaona Zhang, Zhaoxin Li, Tianlu Mao

Responsive image

Auto-TLDR; Multi-scale Residual Pyramid Attention Network for Monocular Depth Estimation

Slides Poster Similar

Monocular depth estimation is a challenging problem in computer vision and is crucial for understanding 3D scene geometry. Recently, deep convolutional neural networks (DCNNs) based methods have improved the estimation accuracy significantly. However, existing methods fail to consider complex textures and geometries in scenes, thereby resulting in loss of local details, distorted object boundaries, and blurry reconstruction. In this paper, we proposed an end-to-end Multi-scale Residual Pyramid Attention Network (MRPAN) to mitigate these problems.First,we propose a Multi-scale Attention Context Aggregation (MACA) module, which consists of Spatial Attention Module (SAM) and Global Attention Module (GAM). By considering the position and scale correlation of pixels from spatial and global perspectives, the proposed module can adaptively learn the similarity between pixels so as to obtain more global context information of the image and recover the complex structure in the scene. Then we proposed an improved Residual Refinement Module (RRM) to further refine the scene structure, giving rise to deeper semantic information and retain more local details. Experimental results show that our method achieves more promisin performance in object boundaries and local details compared with other state-of-the-art methods.

Scene Text Detection with Selected Anchors

Anna Zhu, Hang Du, Shengwu Xiong

Responsive image

Auto-TLDR; AS-RPN: Anchor Selection-based Region Proposal Network for Scene Text Detection

Slides Poster Similar

Object proposal technique with dense anchoring scheme for scene text detection were applied frequently to achieve high recall. It results in the significant improvement in accuracy but waste of computational searching, regression and classification. In this paper, we propose an anchor selection-based region proposal network (AS-RPN) using effective selected anchors instead of dense anchors to extract text proposals. The center, scales, aspect ratios and orientations of anchors are learnable instead of fixing, which leads to high recall and greatly reduced numbers of anchors. By replacing the anchor-based RPN in Faster RCNN, the AS-RPN-based Faster RCNN can achieve comparable performance with previous state-of-the-art text detecting approaches on standard benchmarks, including COCO-Text, ICDAR2013, ICDAR2015 and MSRA-TD500 when using single-scale and single model (ResNet50) testing only.

Object Detection Using Dual Graph Network

Shengjia Chen, Zhixin Li, Feicheng Huang, Canlong Zhang, Huifang Ma

Responsive image

Auto-TLDR; A Graph Convolutional Network for Object Detection with Key Relation Information

Slides Similar

Most object detection methods focus only on the local information near the region proposal and ignore the object's global semantic relation and local spatial relation information, resulting in limited performance. To capture and explore these important relations, we propose a detection method based on a graph convolutional network (GCN). Two independent relation graph networks are used to obtain the global semantic information of the object in labels and the local spatial information in images. Semantic relation networks can implicitly acquire global knowledge, and by constructing a directed graph on the dataset, each node is represented by the word embedding of labels and then sent to the GCN to obtain high-level semantic representation. The spatial relation network encodes the relation by the positional relation module and the visual connection module, and enriches the object features through local key information from objects. The feature representation is further improved by aggregating the outputs of the two networks. Instead of directly disseminating visual features in the network, the dual-graph network explores more advanced feature information, giving the detector the ability to obtain key relations in labels and region proposals. Experiments on the PASCAL VOC and MS COCO datasets demonstrate that key relation information significantly improve the performance of detection with better ability to detect small objects and reasonable boduning box. The results on COCO dataset demonstrate our method obtains around 32.3% improvement on AP in terms of small objects.

Progressive Scene Segmentation Based on Self-Attention Mechanism

Yunyi Pan, Yuan Gan, Kun Liu, Yan Zhang

Responsive image

Auto-TLDR; Two-Stage Semantic Scene Segmentation with Self-Attention

Slides Poster Similar

Semantic scene segmentation is vital for a large variety of applications as it enables understanding of 3D data. Nowadays, various approaches based upon point clouds ignore the mathematical distribution of points and treat the points equally. The methods following this direction neglect the imbalance problem of samples that naturally exists in scenes. To avoid these issues, we propose a two-stage semantic scene segmentation framework based on self-attention mechanism and achieved state-of-the-art performance on 3D scene understanding tasks. We split the whole task into two small ones which efficiently relief the sample imbalance issue. In addition, we have designed a new self-attention block which could be inserted into submanifold convolution networks to model the long-range dependencies that exists among points. The proposed network consists of an encoder and a decoder, with the spatial-wise and channel-wise attention modules inserted. The two-stage network shares a U-Net architecture and is an end-to-end trainable framework which could predict the semantic label for the scene point clouds fed into it. Experiments on standard benchmarks of 3D scenes implies that our network could perform at par or better than the existing state-of-the-art methods.

Object Detection Model Based on Scene-Level Region Proposal Self-Attention

Yu Quan, Zhixin Li, Canlong Zhang, Huifang Ma

Responsive image

Auto-TLDR; Exploiting Semantic Informations for Object Detection

Slides Poster Similar

The improvement of object detection performance is mostly focused on the extraction of local information near the region of interest in the image, which results in detection performance in this area being unable to achieve the desired effect. First, a depth-wise separable convolution network(D_SCNet-127 R-CNN) is built on the backbone network. Considering the importance of scene and semantic informations for visual recognition, the feature map is sent into the branch of the semantic segmentation module, region proposal network module, and the region proposal self-attention module to build the network of scene-level and region proposal self-attention module. Second, a deep reinforcement learning was utilized to achieve accurate positioning of border regression, and the calculation speed of the whole model was improved through implementing a light-weight head network. This model can effectively solve the limitation of feature extraction in traditional object detection and obtain more comprehensive detailed features. The experimental verification on MSCOCO17, VOC12, and Cityscapes datasets shows that the proposed method has good validity and scalability.

Forground-Guided Vehicle Perception Framework

Kun Tian, Tong Zhou, Shiming Xiang, Chunhong Pan

Responsive image

Auto-TLDR; A foreground segmentation branch for vehicle detection

Slides Poster Similar

As the basis of advanced visual tasks such as vehicle tracking and traffic flow analysis, vehicle detection needs to accurately predict the position and category of vehicle objects. In the past decade, deep learning based methods have made great progress. However, we also notice that some existing cases are not studied thoroughly. First, false positive on the background regions is one of the critical problems. Second, most of the previous approaches only optimize a single vehicle detection model, ignoring the relationship between different visual perception tasks. In response to the above two findings, we introduce a foreground segmentation branch for the first time, which can predict the pixel level of vehicles in advance. Furthermore, two attention modules are designed to guide the work of the detection branch. The proposed method can be easily grafted into the one-stage and two-stage detection framework. We evaluate the effectiveness of our model on LSVH, a dataset with large variations in vehicle scales, and achieve the state-of-the-art detection accuracy.

Nighttime Pedestrian Detection Based on Feature Attention and Transformation

Gang Li, Shanshan Zhang, Jian Yang

Responsive image

Auto-TLDR; FAM and FTM: Enhanced Feature Attention Module and Feature Transformation Module for nighttime pedestrian detection

Slides Poster Similar

Pedestrian detection at nighttime is an important yet challenging task, which is fundamental for many practical applications, e.g. autonomous driving, video surveillance. To address this problem, in this work we start with some analysis, from which we find that the nighttime features have much more noise than that of daytime, resulting in low discrimination ability. Besides, we also observe some pedestrian examples are under adverse illumination conditions, and they can hardly provide sufficient information for accurate detection. Based on these findings, we propose the Feature Attention Module (FAM) and Feature Transformation Module (FTM) to enhance nighttime features. In FAM, guided by progressive segmentation supervision, hierarchical feature attention is produced to enhance multi-level features. On the other hand, FTM is introduced to enforce features from adverse illumination to approach that from better illumination. Based on feature attention and transformation (FAT) mechanism, a two-stage detector called FATNet is constructed for nighttime pedestrian detection. We conduct extensive experiments on nighttime datasets of EuroCity Persons (Night) and NightOwls to demonstrate the effectiveness of our method. On both two datasets, our method achieves significant improvements to the baseline and also outperforms state-of-the-art detectors.

SFPN: Semantic Feature Pyramid Network for Object Detection

Yi Gan, Wei Xu, Jianbo Su

Responsive image

Auto-TLDR; SFPN: Semantic Feature Pyramid Network to Address Information Dilution Issue in FPN

Slides Poster Similar

Feature Pyramid Network(FPN) employs a top-down path to enhance low level feature by utilizing high level feature.However, further improvement of detector is greatly hindered by the inner defect of FPN. The dilution issue in FPN is analyzed in this paper, and a new architecture named Semantic Feature Pyramid Network(SFPN) is introduced to address the information imbalance problem caused by information dilution. The proposed method consists of two simple and effective components: Semantic Pyramid Module(SPM) and Semantic Feature Fusion Module(SFFM). To compensate for the weaknesses of FPN, the semantic segmentation result is utilized as an extra information source in our architecture.By constructing a semantic pyramid based on the segmentation result and fusing it with FPN, feature maps at each level can obtain the necessary information without suffering from the dilution issue. The proposed architecture could be applied on many detectors, and non-negligible improvement could be achieved. Although this method is designed for object detection, other tasks such as instance segmentation can also largely benefit from it. The proposed method brings Faster R-CNN and Mask R-CNN with ResNet-50 as backbone both 1.8 AP improvements respectively. Furthermore, SFPN improves Cascade R-CNN with backbone ResNet-101 from 42.4 AP to 43.5 AP.

Towards Efficient 3D Point Cloud Scene Completion Via Novel Depth View Synthesis

Haiyan Wang, Liang Yang, Xuejian Rong, Ying-Li Tian

Responsive image

Auto-TLDR; 3D Point Cloud Completion with Depth View Synthesis and Depth View synthesis

Poster Similar

3D point cloud completion has been a long-standing challenge at scale, and corresponding per-point supervised training strategies suffered from the cumbersome annotations. 2D supervision has recently emerged as a promising alternative for 3D tasks, but specific approaches for 3D point cloud completion still remain to be explored. To overcome these limitations, we propose an end-to-end method that directly lifts a single depth map to a completed point cloud. With one depth map as input, a multi-way novel depth view synthesis network (NDVNet) is designed to infer coarsely completed depth maps under various viewpoints. Meanwhile, a geometric depth perspective rendering module is introduced to utilize the raw input depth map to generate a re-projected depth map for each view. Therefore, the two parallelly generated depth maps for each view are further concatenated and refined by a depth completion network (DCNet). The final completed point cloud is fused from all refined depth views. Experimental results demonstrate the effectiveness of our proposed approach composed of aforementioned components, to produce high-quality state-of-the-art results on the popular SUNCG benchmark.

Object Detection on Monocular Images with Two-Dimensional Canonical Correlation Analysis

Zifan Yu, Suya You

Responsive image

Auto-TLDR; Multi-Task Object Detection from Monocular Images Using Multimodal RGB and Depth Data

Slides Poster Similar

Accurate and robust detection objects from monocular images is a fundamental vision task. This paper describes a novel approach of holistic scene understanding that can simultaneously achieve multiple tasks of scene reconstruction and object detection from a single monocular camera. Rather than pursuing an independent solution for each individual task as most existing work does, we seek a globally optimal solution that holistically resolves the multiple perception and reasoning tasks in an effective manner. The approach explores the complementary properties of multimodal RGB imagery and depth data to improve scene perception tasks. It uniquely combines the techniques of canonical correlation analysis and deep learning to learn the most correlated features to maximize the modal cross-correlation for improving the performance and robustness of object detection in complex environments. Extensive experiments have been conducted to evaluate and demonstrate the performances of the proposed approach.

Construction Worker Hardhat-Wearing Detection Based on an Improved BiFPN

Chenyang Zhang, Zhiqiang Tian, Jingyi Song, Yaoyue Zheng, Bo Xu

Responsive image

Auto-TLDR; A One-Stage Object Detection Method for Hardhat-Wearing in Construction Site

Slides Poster Similar

Work in the construction site is considered to be one of the occupations with the highest safety risk factor. Therefore, safety plays an important role in construction site. One of the most fundamental safety rules in construction site is to wear a hardhat. To strengthen the safety of the construction site, most of the current methods use multi-stage method for hardhat-wearing detection. These methods have limitations in terms of adaptability and generalizability. In this paper, we propose a one-stage object detection method based on convolutional neural network. We present a multi-scale strategy that selects the high-resolution feature maps of DarkNet-53 to effectively identify small-scale hardhats. In addition, we propose an improved weighted bi-directional feature pyramid network (BiFPN), which could fuse more semantic features from more scales. The proposed method can not only detect hardhat-wearing, but also identify the color of the hardhat. Experimental results show that the proposed method achieves a mAP of 87.04%, which outperforms several state-of-the-art methods on a public dataset.

Self-Supervised Detection and Pose Estimation of Logistical Objects in 3D Sensor Data

Nikolas Müller, Jonas Stenzel, Jian-Jia Chen

Responsive image

Auto-TLDR; A self-supervised and fully automated deep learning approach for object pose estimation using simulated 3D data

Slides Poster Similar

Localization of objects in cluttered scenes with machine learning methods is a fairly young research area. Despite the high potential of object localization for full process automation in Industry 4.0 and logistical environments, 3D data sets for such applications to train machine learning models are not openly available and less publications have been made on that topic. To the authors knowledge, this is the first publication that describes a self-supervised and fully automated deep learning approach for object pose estimation using simulated 3D data. The solution covers the simulated generation of training data, the detection of objects in point clouds using a fully convolutional feedforward network and the computation of the pose for each detected object instance.

PRF-Ped: Multi-Scale Pedestrian Detector with Prior-Based Receptive Field

Yuzhi Tan, Hongxun Yao, Haoran Li, Xiusheng Lu, Haozhe Xie

Responsive image

Auto-TLDR; Bidirectional Feature Enhancement Module for Multi-Scale Pedestrian Detection

Slides Poster Similar

Multi-scale feature representation is a common strategy to handle the scale variation in pedestrian detection. Existing methods simply utilize the convolutional pyramidal features for multi-scale representation. However, they rarely pay attention to the differences among different feature scales and extract multi-scale features from a single feature map, which may make the detectors sensitive to scale-variance in multi-scale pedestrian detection. In this paper, we introduce a bidirectional feature enhancement module (BFEM) to augment the semantic information of low-level features and the localization information of high-level features. In addition, we propose a prior-based receptive field block (PRFB) for multi-scale pedestrian feature extraction, where the receptive field is closer to the aspect ratio of the pedestrian target. Consequently, it is less affected by the surrounding background when extracting features. Experimental results indicate that the proposed method outperform the state-of-the-art methods on the CityPersons and Caltech datasets.

Bidirectional Matrix Feature Pyramid Network for Object Detection

Wei Xu, Yi Gan, Jianbo Su

Responsive image

Auto-TLDR; BMFPN: Bidirectional Matrix Feature Pyramid Network for Object Detection

Slides Poster Similar

Feature pyramids are widely used to improve scale invariance for object detection. Most methods just map the objects to feature maps with relevant square receptive fields, but rarely pay attention to the aspect ratio variation, which is also an important property of object instances. It will lead to a poor match between rectangular objects and assigned features with square receptive fields, thus preventing from accurate recognition and location. Besides, the information propagation among feature layers is sparse, namely, each feature in the pyramid may mainly or only contain single-level information, which is not representative enough for classification and localization sub-tasks. In this paper, Bidirectional Matrix Feature Pyramid Network (BMFPN) is proposed to address these issues. It consists of three modules: Diagonal Layer Generation Module (DLGM), Top-down Module (TDM) and Bottom-up Module (BUM). First, multi-level features extracted by backbone are fed into DLGM to produce the base features. Then these base features are utilized to construct the final feature pyramid through TDM and BUM in series. The receptive fields of the designed feature layers in BMFPN have various scales and aspect ratios. Objects can be correctly assigned to appropriate and representative feature maps with relevant receptive fields depending on its scale and aspect ratio properties. Moreover, TDM and BUM form bidirectional and reticular information flow, which effectively fuses multi level information in top-down and bottom-up manner respectively. To evaluate the effectiveness of our proposed architecture, an end-toend anchor-free detector is designed and trained by integrating BMFPN into FCOS. And the center ness branch in FCOS is modified with our Gaussian center-ness branch (GCB), which brings another slight improvement. Without bells and whistles, our method gains +3.3%, +2.4% and +2.6% AP on MS COCO dataset from baselines with ResNet-50, ResNet-101 and ResNeXt-101 backbones, respectively.

MANet: Multimodal Attention Network Based Point-View Fusion for 3D Shape Recognition

Yaxin Zhao, Jichao Jiao, Ning Li

Responsive image

Auto-TLDR; Fusion Network for 3D Shape Recognition based on Multimodal Attention Mechanism

Slides Poster Similar

3D shape recognition has attracted more and more attention as a task of 3D vision research. The proliferation of 3D data encourages various deep learning methods based on 3D data. Now there have been many deep learning models based on point-cloud data or multi-view data alone. However, in the era of big data, integrating data of two different modals to obtain a unified 3D shape descriptor is bound to improve the recognition accuracy. Therefore, this paper proposes a fusion network based on multimodal attention mechanism for 3D shape recognition. Considering the limitations of multi-view data, we introduce a soft attention scheme, which can use the global point-cloud features to filter the multi-view features, and then realize the effective fusion of the two features. More specifically, we obtain the enhanced multi-view features by mining the contribution of each multi-view image to the overall shape recognition, and then fuse the point-cloud features and the enhanced multi-view features to obtain a more discriminative 3D shape descriptor. We have performed relevant experiments on the ModelNet40 dataset, and experimental results verify the effectiveness of our method.

ACRM: Attention Cascade R-CNN with Mix-NMS for Metallic Surface Defect Detection

Junting Fang, Xiaoyang Tan, Yuhui Wang

Responsive image

Auto-TLDR; Attention Cascade R-CNN with Mix Non-Maximum Suppression for Robust Metal Defect Detection

Slides Poster Similar

Metallic surface defect detection is of great significance in quality control for production. However, this task is very challenging due to the noise disturbance, large appearance variation, and the ambiguous definition of the defect individual. Traditional image processing methods are unable to detect the damaged region effectively and efficiently. In this paper, we propose a new defect detection method, Attention Cascade R-CNN with Mix-NMS (ACRM), to classify and locate defects robustly. Three submodules are developed to achieve this goal: 1) a lightweight attention block is introduced, which can improve the ability in capture global and local feature both in the spatial and channel dimension; 2) we firstly apply the cascade R-CNN to our task, which exploits multiple detectors to sequentially refine the detection result robustly; 3) we introduce a new method named Mix Non-Maximum Suppression (Mix-NMS), which can significantly improve its ability in filtering the redundant detection result in our task. Extensive experiments on a real industrial dataset show that ACRM achieves state-of-the-art results compared to the existing methods, demonstrating the effectiveness and robustness of our detection method.

Learning a Dynamic High-Resolution Network for Multi-Scale Pedestrian Detection

Mengyuan Ding, Shanshan Zhang, Jian Yang

Responsive image

Auto-TLDR; Learningable Dynamic HRNet for Pedestrian Detection

Slides Poster Similar

Pedestrian detection is a canonical instance of object detection in computer vision. In practice, scale variation is one of the key challenges, resulting in unbalanced performance across different scales. Recently, the High-Resolution Network (HRNet) has become popular because high-resolution feature representations are more friendly to small objects. However, when we apply HRNet for pedestrian detection, we observe that it improves for small pedestrians on one hand, but hurts the performance for larger ones on the other hand. To overcome this problem, we propose a learnable Dynamic HRNet (DHRNet) aiming to generate different network paths adaptive to different scales. Specifically, we construct a parallel multi-branch architecture and add a soft conditional gate module allowing for dynamic feature fusion. Both branches share all the same parameters except the soft gate module. Experimental results on CityPersons and Caltech benchmarks indicate that our proposed dynamic HRNet is more capable of dealing with pedestrians of various scales, and thus improves the performance across different scales consistently.

MagnifierNet: Learning Efficient Small-Scale Pedestrian Detector towards Multiple Dense Regions

Qi Cheng, Mingqin Chen, Yingjie Wu, Fei Chen, Shiping Lin

Responsive image

Auto-TLDR; MagnifierNet: A Simple but Effective Small-Scale Pedestrian Detection Towards Multiple Dense Regions

Slides Poster Similar

Despite the success of pedestrian detection, there is still a significant gap in the performance of the detection of pedestrians at different scales. Detecting small-scale pedestrians is extremely challenging due to the low resolution of their convolution features which is essential for downstream classifiers. To address this issue, we observed pedestrian datasets and found that pedestrians often gather together in crowded public places. Then we propose MagnifierNet, a simple but effective small-scale pedestrian detector towards multiple dense regions. MagnifierNet uses our proposed sweep-line based grouping algorithm to find dense regions based on the number of pedestrians in the grouped region. And we adopt a new definition of small-scale pedestrians through grid search and KL-divergence. Besides, our grouping method can also be used as a new strategy for pedestrian data augmentation. The ablation study demonstrates that MagnifierNet improves the representation of small-scale pedestrians. We validate the effectiveness of MagnifierNet on CityPersons and KITTI datasets. Experimental results show that MagnifierNet achieves the best small-scale pedestrian detection performance on CityPersons benchmark without any external data, and also achieves competitive performance for detecting small-scale pedestrians on KITTI dataset without bells and whistles.

Detective: An Attentive Recurrent Model for Sparse Object Detection

Amine Kechaou, Manuel Martinez, Monica Haurilet, Rainer Stiefelhagen

Responsive image

Auto-TLDR; Detective: An attentive object detector that identifies objects in images in a sequential manner

Slides Poster Similar

In this work, we present Detective – an attentive object detector that identifies objects in images in a sequential manner. Our network is based on an encoder-decoder architecture, where the encoder is a convolutional neural network, and the decoder is a convolutional recurrent neural network coupled with an attention mechanism. At each iteration, our decoder focuses on the relevant parts of the image using an attention mechanism, and then estimates the object’s class and the bounding box coordinates. Current object detection models generate dense predictions and rely on post-processing to remove duplicate predictions. Detective is a sparse object detector that generates a single bounding box per object instance. However, training a sparse object detector is challenging, as it requires the model to reason at the instance level and not just at the class and spatial levels. We propose a training mechanism based on the Hungarian Algorithm and a loss that balances the localization and classification tasks. This allows Detective to achieve promising results on the PASCAL VOC object detection dataset. Our experiments demonstrate that sparse object detection is possible and has a great potential for future developments in applications where the order of the objects to be predicted is of interest.

Hierarchical Head Design for Object Detectors

Shivang Agarwal, Frederic Jurie

Responsive image

Auto-TLDR; Hierarchical Anchor for SSD Detector

Slides Poster Similar

The notion of anchor plays a major role in modern detection algorithms such as the Faster-RCNN or the SSD detector. Anchors relate the features of the last layers of the detector with bounding boxes containing objects in images. Despite their importance, the literature on object detection has not paid real attention to them. The motivation of this paper comes from the observations that (i) each anchor learns to classify and regress candidate objects independently (ii) insufficient examples are available for each anchor in case of small-scale datasets. This paper addresses these questions by proposing a novel hierarchical head for the SSD detector. The new design has the added advantage of no extra weights, as compared to the original design at inference time, while improving detectors performance for small size training sets. Improved performance on PASCAL-VOC and state-of-the-art performance on FlickrLogos-47 validate the method. We also show when the proposed design does not give additional performance gain over the original design.

Manual-Label Free 3D Detection Via an Open-Source Simulator

Zhen Yang, Chi Zhang, Zhaoxiang Zhang, Huiming Guo

Responsive image

Auto-TLDR; DA-VoxelNet: A Novel Domain Adaptive VoxelNet for LIDAR-based 3D Object Detection

Slides Poster Similar

LiDAR based 3D object detectors typically need a large amount of detailed-labeled point cloud data for training, but these detailed labels are commonly expensive to acquire. In this paper, we propose a manual-label free 3D detection algorithm that leverages the CARLA simulator to generate a large amount of self-labeled training samples and introduces a novel Domain Adaptive VoxelNet (DA-VoxelNet) that can cross the distribution gap from the synthetic data to the real scenario. The self-labeled training samples are generated by a set of high quality 3D models embedded in a CARLA simulator and a proposed LiDAR-guided sampling algorithm. Then a DA-VoxelNet that integrates both a sample-level DA module and an anchor-level DA module is proposed to enable the detector trained by the synthetic data to adapt to real scenario. Experimental results show that the proposed unsupervised DA 3D detector on KITTI evaluation set can achieve 76.66% and 56.64% mAP on BEV mode and 3D mode respectively. The results reveal a promising perspective of training a LIDAR-based 3D detector without any hand-tagged label.

6D Pose Estimation with Correlation Fusion

Yi Cheng, Hongyuan Zhu, Ying Sun, Cihan Acar, Wei Jing, Yan Wu, Liyuan Li, Cheston Tan, Joo-Hwee Lim

Responsive image

Auto-TLDR; Intra- and Inter-modality Fusion for 6D Object Pose Estimation with Attention Mechanism

Slides Poster Similar

6D object pose estimation is widely applied in robotic tasks such as grasping and manipulation. Prior methods using RGB-only images are vulnerable to heavy occlusion and poor illumination, so it is important to complement them with depth information. However, existing methods using RGB-D data cannot adequately exploit consistent and complementary information between RGB and depth modalities. In this paper, we present a novel method to effectively consider the correlation within and across both modalities with attention mechanism to learn discriminative and compact multi-modal features. Then, effective fusion strategies for intra- and inter-correlation modules are explored to ensure efficient information flow between RGB and depth. To our best knowledge, this is the first work to explore effective intra- and inter-modality fusion in 6D pose estimation. The experimental results show that our method can achieve the state-of-the-art performance on LineMOD and YCBVideo dataset. We also demonstrate that the proposed method can benefit a real-world robot grasping task by providing accurate object pose estimation.

Joint Supervised and Self-Supervised Learning for 3D Real World Challenges

Antonio Alliegro, Davide Boscaini, Tatiana Tommasi

Responsive image

Auto-TLDR; Self-supervision for 3D Shape Classification and Segmentation in Point Clouds

Slides Similar

Point cloud processing and 3D shape understanding are very challenging tasks for which deep learning techniques have demonstrated great potentials. Still further progresses are essential to allow artificial intelligent agents to interact with the real world. In many practical conditions the amount of annotated data may be limited and integrating new sources of knowledge becomes crucial to support autonomous learning. Here we consider several scenarios involving synthetic and real world point clouds where supervised learning fails due to data scarcity and large domain gaps. We propose to enrich standard feature representations by leveraging self-supervision through a multi-task model that can solve a 3D puzzle while learning the main task of shape classification or part segmentation. An extensive analysis investigating few-shot, transfer learning and cross-domain settings shows the effectiveness of our approach with state-of-the-art results for 3D shape classification and part segmentation.

Improving Visual Relation Detection Using Depth Maps

Sahand Sharifzadeh, Sina Moayed Baharlou, Max Berrendorf, Rajat Koner, Volker Tresp

Responsive image

Auto-TLDR; Exploiting Depth Maps for Visual Relation Detection

Slides Poster Similar

State-of-the-art visual relation detection methods mostly rely on object information extracted from RGB images such as 2D bounding boxes, feature maps, and predicted class probabilities. Depth maps can additionally provide valuable information on object relations, e.g. helping to detect not only spatial relations, such as standing behind, but also non-spatial relations, such as holding. In this work, we study the effect of using different object information with a focus on depth maps. To enable this study, we release a new synthetic dataset of depth maps, VG-Depth, as an extension to Visual Genome (VG). We also note that given the highly imbalanced distribution of relations in VG, typical evaluation metrics for visual relation detection cannot reveal improvements of under-represented relations. To address this problem, we propose using an additional metric, calling it Macro Recall@K, and demonstrate its remarkable performance on VG. Finally, our experiments confirm that by effective utilization of depth maps within a simple, yet competitive framework, the performance of visual relation detection can be improved by a margin of up to 8%.

Tiny Object Detection in Aerial Images

Jinwang Wang, Wen Yang, Haowen Guo, Ruixiang Zhang, Gui-Song Xia

Responsive image

Auto-TLDR; Tiny Object Detection in Aerial Images Using Multiple Center Points Based Learning Network

Slides Similar

Object detection in Earth Vision has achieved great progress in recent years. However, tiny object detection in aerial images remains a very challenging problem since the tiny objects contain a small number of pixels and are easily confused with the background. To advance tiny object detection research in aerial images, we present a new dataset for Tiny Object Detection in Aerial Images (AI-TOD). Specifically, AI-TOD comes with 700,621 object instances for eight categories across 28,036 aerial images. Compared to existing object detection datasets in aerial images, the mean size of objects in AI-TOD is about 12.8 pixels, which is much smaller than others. To build a benchmark for tiny object detection in aerial images, we evaluate the state-of-the-art object detectors on our AI-TOD dataset. Experimental results show that direct application of these approaches on AI-TOD produces suboptimal object detection results, thus new specialized detectors for tiny object detection need to be designed. Therefore, we propose a multiple center points based learning network (M-CenterNet) to improve the localization performance of tiny object detection, and experimental results show the significant performance gain over the competitors.

FeatureNMS: Non-Maximum Suppression by Learning Feature Embeddings

Niels Ole Salscheider

Responsive image

Auto-TLDR; FeatureNMS: Non-Maximum Suppression for Multiple Object Detection

Slides Poster Similar

Most state of the art object detectors output multiple detections per object. The duplicates are removed in a post-processing step called Non-Maximum Suppression. Classical Non-Maximum Suppression has shortcomings in scenes that contain objects with high overlap: The idea of this heuristic is that a high bounding box overlap corresponds to a high probability of having a duplicate. We propose FeatureNMS to solve this problem. FeatureNMS recognizes duplicates not only based on the intersection over union between bounding boxes, but also based on the difference of feature vectors. These feature vectors can encode more information like visual appearance. Our approach outperforms classical NMS and derived approaches and achieves state of the art performance.

Mutually Guided Dual-Task Network for Scene Text Detection

Mengbiao Zhao, Wei Feng, Fei Yin, Xu-Yao Zhang, Cheng-Lin Liu

Responsive image

Auto-TLDR; A dual-task network for word-level and line-level text detection

Slides Similar

Scene text detection has been studied extensively. Existing methods detect either words or text lines and use either word-level or line-level annotated data for training. In this paper, we propose a dual-task network that can perform word-level and line-level text detection simultaneously and use training data of both levels of annotation to boost the performance. The dual-task network has two detection heads for word-level and line-level text detection, respectively. Then we propose a mutual guidance scheme for the joint training of the two tasks with two modules: line filtering module utilizes the output of the text line detector to filter out the non-text regions for the word detector, and word enhancing module provides prior positions of words for the text line detector depending on the output of the word detector. Experimental results of word-level and line-level text detection demonstrate the effectiveness of the proposed dual-task network and mutual guidance scheme, and the results of our method are competitive with state-of-the-art methods.

Cascade Saliency Attention Network for Object Detection in Remote Sensing Images

Dayang Yu, Rong Zhang, Shan Qin

Responsive image

Auto-TLDR; Cascade Saliency Attention Network for Object Detection in Remote Sensing Images

Slides Poster Similar

Object detection in remote sensing images is a challenging task due to objects in the bird-view perspective appearing with arbitrary orientations. Though considerable progress has been made, there still exist challenges with the interference from complex backgrounds, dense arrangement, and large-scale variations. In this paper, we propose an oriented detector named Cascade Saliency Attention Network (CSAN), designed for comprehensively suppressing interference in remote sensing images. Specifically, we first combine context and pixel attention on feature maps to enhance saliency of objects for suppressing interference from backgrounds. Then, in cascade network, we apply instance segmentation on ROI to increase saliency of the central object, thus preventing object features from mutual interference in dense arrangement. Additionally, to alleviate large-scale variations, we devise a multi-scale merge module during FPN merging process to learn richer scale representations. Experimental results on DOTA and HRSC2016 datasets outperform other state-of-the-art object detection methods and verify the effectiveness of our method.

EDD-Net: An Efficient Defect Detection Network

Tianyu Guo, Linlin Zhang, Runwei Ding, Ge Yang

Responsive image

Auto-TLDR; EfficientNet: Efficient Network for Mobile Phone Surface defect Detection

Slides Poster Similar

As the most commonly used communication tool, the mobile phone has become an indispensable part of our daily life. The surface of the mobile phone as the main window of human-phone interaction directly affects the user experience. It is necessary to detect surface defects on the production line in order to ensure the high quality of the mobile phone. However, the existing mobile phone surface defect detection is mainly done manually, and currently there are few automatic defect detection methods to replace human eyes. How to quickly and accurately detect the surface defects of mobile phone is an urgent problem to be solved. Hence, an efficient defect detection network (EDD-Net) is proposed. Firstly, EfficientNet is used as the backbone network. Then, according to the small-scale of mobile phone surface defects, a feature pyramid module named GCSA-BiFPN is proposed to obtain more discriminative features. Finally, the box/class prediction network is used to achieve effective defect detection. We also build a mobile phone surface oil stain defect (MPSOSD) dataset to alleviate the lack of dataset in this field. The performance on the relevant datasets shows that the network we proposed is effective and has practical significance for industrial production.

Hybrid Cascade Point Search Network for High Precision Bar Chart Component Detection

Junyu Luo, Jinpeng Wang, Chin-Yew Lin

Responsive image

Auto-TLDR; Object Detection of Chart Components in Chart Images Using Point-based and Region-Based Object Detection Framework

Slides Poster Similar

Charts are commonly used for data visualization. One common form of chart distribution is in its image form. To enable machine comprehension of chart images, precise detection of chart components in chart images is a critical step. Existing image object detection methods do not perform well in chart component detection which requires high boundary detection precision. And traditional rule-based approaches lack enough generalization ability. In order to address this problem, we design a novel two-stage object detection framework that combines point-based and region-based ideas, by simulating the process that human creating bounding boxes for objects. The experiment on our labeled ChartDet dataset shows our method greatly improves the performance of chart object detection. We further extend our method to a general object detection task and get comparable performance.

Mutual-Supervised Feature Modulation Network for Occluded Pedestrian Detection

Ye He, Chao Zhu, Xu-Cheng Yin

Responsive image

Auto-TLDR; A Mutual-Supervised Feature Modulation Network for Occluded Pedestrian Detection

Similar

State-of-the-art pedestrian detectors have achieved significant progress on non-occluded pedestrians, yet they are still struggling under heavy occlusions. The recent occlusion handling strategy of popular two-stage approaches is to build a two-branch architecture with the help of additional visible body annotations. Nonetheless, these methods still have some weaknesses. Either the two branches are trained independently with only score-level fusion, which cannot guarantee the detectors to learn robust enough pedestrian features. Or the attention mechanisms are exploited to only emphasize on the visible body features. However, the visible body features of heavily occluded pedestrians are concentrated on a relatively small area, which will easily cause missing detections. To address the above issues, we propose in this paper a novel Mutual-Supervised Feature Modulation (MSFM) network, to better handle occluded pedestrian detection. The key MSFM module in our network calculates the similarity loss of full body boxes and visible body boxes corresponding to the same pedestrian, so that the full-body detector could learn more complete and robust pedestrian features with the assist of contextual features from the occluding parts. To facilitate the MSFM module, we also propose a novel two-branch architecture, consisting of a standard full body detection branch and an extra visible body classification branch. These two branches are trained in a mutual-supervised way with full body annotations and visible body annotations, respectively. To verify the effectiveness of our proposed method, extensive experiments are conducted on two challenging pedestrian datasets: Caltech and CityPersons, and our approach achieves superior performances compared to other state-of-the-art methods on both datasets, especially in heavy occlusion cases.

SyNet: An Ensemble Network for Object Detection in UAV Images

Berat Mert Albaba, Sedat Ozer

Responsive image

Auto-TLDR; SyNet: Combining Multi-Stage and Single-Stage Object Detection for Aerial Images

Poster Similar

Recent advances in camera equipped drone applications and their widespread use increased the demand on vision based object detection algorithms for aerial images. Object detection process is inherently a challenging task as a generic computer vision problem, however, since the use of object detection algorithms on UAVs (or on drones) is relatively a new area, it remains as a more challenging problem to detect objects in aerial images. There are several reasons for that including: (i) the lack of large drone datasets including large object variance, (ii) the large orientation and scale variance in drone images when compared to the ground images, and (iii) the difference in texture and shape features between the ground and the aerial images. Deep learning based object detection algorithms can be classified under two main categories: (a) single-stage detectors and (b) multi-stage detectors. Both single-stage and multi-stage solutions have their advantages and disadvantages over each other. However, a technique to combine the good sides of each of those solutions could yield even a stronger solution than each of those solutions individually. In this paper, we propose an ensemble network, SyNet, that combines a multi-stage method with a single-stage one with the motivation of decreasing the high false negative rate of multi-stage detectors and increasing the quality of the single-stage detector proposals. As building blocks, CenterNet and Cascade R-CNN with pretrained feature extractors are utilized along with an ensembling strategy. We report the state of the art results obtained by our proposed solution on two different datasets: namely MS-COCO and visDrone with \%52.1 $mAP_{IoU = 0.75}$ is obtained on MS-COCO $val2017$ dataset and \%26.2 $mAP_{IoU = 0.75}$ is obtained on VisDrone $test-set$. Our code is available at: https://github.com/mertalbaba/SyNet}{https://github.com/mer talbaba/SyNet

CenterRepp: Predict Central Representative Point Set's Distribution for Detection

Yulin He, Limeng Zhang, Wei Chen, Xin Luo, Chen Li, Xiaogang Jia

Responsive image

Auto-TLDR; CRPDet: CenterRepp Detector for Object Detection

Slides Poster Similar

Object detection has long been an important issue in the discipline of scene understanding. Existing researches mainly focus on the object itself, ignoring its surrounding environment. In fact, the surrounding environment provides abundant information to help detectors classify and locate objects. This paper proposes CRPDet, viz. CenterRepp Detector, a framework for object detection. The main function of CRPDet is accomplished by the CenterRepp module, which takes into account the surrounding environment by predicting the distribution of the central representative points. CenterRepp converts labeled object frames into the mean and standard variance of the sampling points’ distribution. This helps increase the receptive field of objects, breaking the limitation of object frames. CenterRepp defines a position-fixed center point with significant weights, avoiding to sample all points in the surroundings. Experiments on the COCO test-dev detection benchmark demonstrates that our proposed CRPDet has comparable performance with state-of-the-art detectors, achieving 39.4 mAP with 51 FPS tested under single size input.