Self-Supervised Detection and Pose Estimation of Logistical Objects in 3D Sensor Data

Nikolas Müller, Jonas Stenzel, Jian-Jia Chen

Responsive image

Auto-TLDR; A self-supervised and fully automated deep learning approach for object pose estimation using simulated 3D data

Slides Poster

Localization of objects in cluttered scenes with machine learning methods is a fairly young research area. Despite the high potential of object localization for full process automation in Industry 4.0 and logistical environments, 3D data sets for such applications to train machine learning models are not openly available and less publications have been made on that topic. To the authors knowledge, this is the first publication that describes a self-supervised and fully automated deep learning approach for object pose estimation using simulated 3D data. The solution covers the simulated generation of training data, the detection of objects in point clouds using a fully convolutional feedforward network and the computation of the pose for each detected object instance.

Similar papers

HPERL: 3D Human Pose Estimastion from RGB and LiDAR

Michael Fürst, Shriya T.P. Gupta, René Schuster, Oliver Wasenmüler, Didier Stricker

Responsive image

Auto-TLDR; 3D Human Pose Estimation Using RGB and LiDAR Using Weakly-Supervised Approach

Slides Poster Similar

In-the-wild human pose estimation has a huge potential for various fields, ranging from animation and action recognition to intention recognition and prediction for autonomous driving. The current state-of-the-art is focused only on RGB and RGB-D approaches for predicting the 3D human pose. However, not using precise LiDAR depth information limits the performance and leads to very inaccurate absolute pose estimation. With LiDAR sensors becoming more affordable and common on robots and autonomous vehicle setups, we propose an end-to-end architecture using RGB and LiDAR to predict the absolute 3D human pose with unprecedented precision. Additionally, we introduce a weakly-supervised approach to generate 3D predictions using 2D pose annotations from PedX. This allows for many new opportunities in the field of 3D human pose estimation.

PointSpherical: Deep Shape Context for Point Cloud Learning in Spherical Coordinates

Hua Lin, Bin Fan, Yongcheng Liu, Yirong Yang, Zheng Pan, Jianbo Shi, Chunhong Pan, Huiwen Xie

Responsive image

Auto-TLDR; Spherical Hierarchical Modeling of 3D Point Cloud

Slides Poster Similar

We propose Spherical Hierarchical modeling of 3D point cloud. Inspired by Shape Context, we design a receptive field on each 3D point by placing a spherical coordinate on it. We sample points using the furthest point method and creating overlapping balls of points. For each ball, we divide the space into radial, polar angular and azimuthal angular bins on which we form a Spherical Hierarchy. We apply 1x1 CNN convolution on points to start the initial feature extraction. Repeated 3D CNN and max pooling over the Spherical bins propagate contextual information until all the information is condensed in the center bin. Extensive experiments on five datasets strongly evidence that our method outperform current models on various Point Cloud Learning tasks, including 2D/3D shape classification, 3D part segmentation and 3D semantic segmentation.

MixedFusion: 6D Object Pose Estimation from Decoupled RGB-Depth Features

Hangtao Feng, Lu Zhang, Xu Yang, Zhiyong Liu

Responsive image

Auto-TLDR; MixedFusion: Combining Color and Point Clouds for 6D Pose Estimation

Slides Poster Similar

Estimating the 6D pose of objects is an important process for intelligent systems to achieve interaction with the real-world. As the RGB-D sensors become more accessible, the fusion-based methods have prevailed, since the point clouds provide complementary geometric information with RGB values. However, Due to the difference in feature space between color image and depth image, the network structures that directly perform point-to-point matching fusion do not effectively fuse the features of the two. In this paper, we propose a simple but effective approach, named MixedFusion. Different from the prior works, we argue that the spatial correspondence of color and point clouds could be decoupled and reconnected, thus enabling a more flexible fusion scheme. By performing the proposed method, more informative points can be mixed and fused with rich color features. Extensive experiments are conducted on the challenging LineMod and YCB-Video datasets, show that our method significantly boosts the performance without introducing extra overheads. Furthermore, when the minimum tolerance of metric narrows, the proposed approach performs better for the high-precision demands.

S-VoteNet: Deep Hough Voting with Spherical Proposal for 3D Object Detection

Yanxian Chen, Huimin Ma, Xi Li, Xiong Luo

Responsive image

Auto-TLDR; S-VoteNet: 3D Object Detection with Spherical Bounded Box Prediction

Slides Poster Similar

Current 3D object detection methods adopt an analogous box prediction structure with the 2D methods, which predict center and size of the object simultaneously in a box regression procedure, leading to the poor performance of 3D detector to a great extent. In this work, we propose S-VoteNet, which converts the prediction of 3D bounding box into two parts: center prediction and size prediction. By introducing a novel spherical proposal, S-VoteNet uses vote groups to predict the center and radius of object rather than all parameters of 3D bounding box. The prediction of radius is used to constrain the object size, and the radius-based spherical center loss is applied to measure the geometric distance between the proposal and ground-truth. To make better use of the geometric information provided by point cloud, S-VoteNet gathers seed points whose corresponding votes are within the vote groups for seed group generation. Seed groups are then consumed for box size regression and orientation estimation. By decoupling the localization and size estimation, our method effectively reduces the regression pressure of the 3D detector. Experimental results on SUN RGB-D 3D detection benchmark demonstrate that our S-VoteNet achieves state-of-the-art performance by using only point cloud as input.

RISEdb: A Novel Indoor Localization Dataset

Carlos Sanchez Belenguer, Erik Wolfart, Álvaro Casado Coscollá, Vitor Sequeira

Responsive image

Auto-TLDR; Indoor Localization Using LiDAR SLAM and Smartphones: A Benchmarking Dataset

Slides Poster Similar

In this paper we introduce a novel public dataset for developing and benchmarking indoor localization systems. We have selected and 3D mapped a set of representative indoor environments including a large office building, a conference room, a workshop, an exhibition area and a restaurant. Our acquisition pipeline is based on a portable LiDAR SLAM backpack to map the buildings and to accurately track the pose of the user as it moves freely inside them. We introduce the calibration procedures that enable us to acquire and geo-reference live data coming from different independent sensors rigidly attached to the backpack. This has allowed us to collect long sequences of spherical and stereo images, together with all the sensor readings coming from a consumer smartphone and locate them inside the map with centimetre accuracy. The dataset addresses many of the limitations of existing indoor localization datasets regarding the scale and diversity of the mapped buildings; the number of acquired sequences under varying conditions; the accuracy of the ground-truth trajectory; the availability of a detailed 3D model and the availability of different sensor types. It enables the benchmarking of existing and the development of new indoor localization approaches, in particular for deep learning based systems that require large amounts of labeled training data.

PC-Net: A Deep Network for 3D Point Clouds Analysis

Zhuo Chen, Tao Guan, Yawei Luo, Yuesong Wang

Responsive image

Auto-TLDR; PC-Net: A Hierarchical Neural Network for 3D Point Clouds Analysis

Slides Poster Similar

Due to the irregularity and sparsity of 3D point clouds, applying convolutional neural networks directly on them can be nontrivial. In this work, we propose a simple but effective approach for 3D Point Clouds analysis, named PC-Net. PC-Net directly learns on point sets and is equipped with three new operations: first, we apply a novel scale-aware neighbor search for adaptive neighborhood extracting; second, for each neighboring point, we learn a local spatial feature as a complement to their associated features; finally, at the end we use a distance re-weighted pooling to aggregate all the features from local structure. With this module, we design hierarchical neural network for point cloud understanding. For both classification and segmentation tasks, our architecture proves effective in the experiments and our models demonstrate state-of-the-art performance over existing deep learning methods on popular point cloud benchmarks.

Human Segmentation with Dynamic LiDAR Data

Tao Zhong, Wonjik Kim, Masayuki Tanaka, Masatoshi Okutomi

Responsive image

Auto-TLDR; Spatiotemporal Neural Network for Human Segmentation with Dynamic Point Clouds

Slides Similar

Consecutive LiDAR scans and depth images compose dynamic 3D sequences, which contain more abundant spatiotemporal information than a single frame. Similar to the development history of image and video perception, dynamic 3D sequence perception starts to come into sight after inspiring research on static 3D data perception. This work proposes a spatiotemporal neural network for human segmentation with the dynamic LiDAR point clouds. It takes a sequence of depth images as input. It has a two-branch structure, i.e., the spatial segmentation branch and the temporal velocity estimation branch. The velocity estimation branch is designed to capture motion cues from the input sequence and then propagates them to the other branch. So that the segmentation branch segments humans according to both spatial and temporal features. These two branches are jointly learned on a generated dynamic point cloud data set for human recognition. Our works fill in the blank of dynamic point cloud perception with the spherical representation of point cloud and achieves high accuracy. The experiments indicate that the introduction of temporal feature benefits the segmentation of dynamic point cloud perception.

Yolo+FPN: 2D and 3D Fused Object Detection with an RGB-D Camera

Ya Wang

Responsive image

Auto-TLDR; Yolo+FPN: Combining 2D and 3D Object Detection for Real-Time Object Detection

Slides Poster Similar

In this paper we propose a new deep neural network system, called Yolo+FPN, which fuses both 2D and 3D object detection algorithms to achieve better real-time object detection results and faster inference speed, to be used on real robots. Finding an optimized fusion strategy to efficiently combine 3D object detection with 2D detection information is useful and challenging for both indoor and outdoor robots. In order to satisfy real-time requirements, a trade-off between accuracy and efficiency is needed. We not only have improved training and test accuracies and lower mean losses on the KITTI object detection benchmark, but also achieve better average precision on 3D detection of all classes in three levels of difficulty. Also, we implemented Yolo+FPN system using an RGB-D camera, and compared the speed of 2D and 3D object detection using different GPUs. For the real implementation of both indoor and outdoor scenes, we focus on person detection, which is the most challenging and important among the three classes.

Towards Efficient 3D Point Cloud Scene Completion Via Novel Depth View Synthesis

Haiyan Wang, Liang Yang, Xuejian Rong, Ying-Li Tian

Responsive image

Auto-TLDR; 3D Point Cloud Completion with Depth View Synthesis and Depth View synthesis

Poster Similar

3D point cloud completion has been a long-standing challenge at scale, and corresponding per-point supervised training strategies suffered from the cumbersome annotations. 2D supervision has recently emerged as a promising alternative for 3D tasks, but specific approaches for 3D point cloud completion still remain to be explored. To overcome these limitations, we propose an end-to-end method that directly lifts a single depth map to a completed point cloud. With one depth map as input, a multi-way novel depth view synthesis network (NDVNet) is designed to infer coarsely completed depth maps under various viewpoints. Meanwhile, a geometric depth perspective rendering module is introduced to utilize the raw input depth map to generate a re-projected depth map for each view. Therefore, the two parallelly generated depth maps for each view are further concatenated and refined by a depth completion network (DCNet). The final completed point cloud is fused from all refined depth views. Experimental results demonstrate the effectiveness of our proposed approach composed of aforementioned components, to produce high-quality state-of-the-art results on the popular SUNCG benchmark.

NetCalib: A Novel Approach for LiDAR-Camera Auto-Calibration Based on Deep Learning

Shan Wu, Amnir Hadachi, Damien Vivet, Yadu Prabhakar

Responsive image

Auto-TLDR; Automatic Calibration of LiDAR and Cameras using Deep Neural Network

Slides Poster Similar

A fusion of LiDAR and cameras have been widely used in many robotics applications such as classification, segmentation, object detection, and autonomous driving. It is essential that the LiDAR sensor can measure distances accurately, which is a good complement to the cameras. Hence, calibrating sensors before deployment is a mandatory step. The conventional methods include checkerboards, specific patterns, or human labeling, which is trivial and human-labor extensive if we do the same calibration process every time. The main propose of this research work is to build a deep neural network that is capable of automatically finding the geometric transformation between LiDAR and cameras. The results show that our model manages to find the transformations from randomly sampled artificial errors. Besides, our work is open-sourced for the community to fully utilize the advances of the methodology for developing more the approach, initiating collaboration, and innovation in the topic.

Enhanced Vote Network for 3D Object Detection in Point Clouds

Min Zhong, Gang Zeng

Responsive image

Auto-TLDR; A Vote Feature Enhancement Network for 3D Bounding Box Prediction

Slides Poster Similar

In this work, we aim to estimate 3D bounding boxes by voting to object centers and then groups and aggregates the votes to generate 3D box proposals and semantic classes of objects. However, due to the sparse and unstructured nature of the point clouds, we face some challenges when directly predicting bounding box from the vote feature: the sparse vote feature may lack some necessary semantic and context information. To address the challenges, we propose a vote feature enhancement network that aims to encode semantic-aware information and aggravate global context for the vote feature. Specifically, we learn the point-wise semantic information and supplement it to the vote feature, and we also encode the pairwise relations to collect the global context. Experiments on two large datasets of real 3D scans, ScanNet and SUN RGB-D, demonstrate that our method can achieve excellent 3D detection results.

Ghost Target Detection in 3D Radar Data Using Point Cloud Based Deep Neural Network

Mahdi Chamseddine, Jason Rambach, Oliver Wasenmüler, Didier Stricker

Responsive image

Auto-TLDR; Point Based Deep Learning for Ghost Target Detection in 3D Radar Point Clouds

Slides Poster Similar

Ghost targets are targets that appear at wrong locations in radar data and are caused by the presence of multiple indirect reflections between the target and the sensor. In this work, we introduce the first point based deep learning approach for ghost target detection in 3D radar point clouds. This is done by extending the PointNet network architecture by modifying its input to include radar point features beyond location and introducing skip connetions. We compare different input modalities and analyze the effects of the changes we introduced. We also propose an approach for automatic labeling of ghost targets 3D radar data using lidar as reference. The algorithm is trained and tested on real data in various driving scenarios and the tests show promising results in classifying real and ghost radar targets.

Directional Graph Networks with Hard Weight Assignments

Miguel Dominguez, Raymond Ptucha

Responsive image

Auto-TLDR; Hard Directional Graph Networks for Point Cloud Analysis

Slides Poster Similar

Point cloud analysis is an important field for 3D scene understanding. It has applications in self driving cars and robotics (via LIDAR sensors), 3D graphics, and computer-aided design. Neural networks have recently achieved strong results on point cloud analysis problems such as classification and segmentation. Each point cloud network has the challenge of defining a convolution that can learn useful features on unstructured points. Some recent point cloud convolutions create separate weight matrices for separate directions like a CNN, but apply every weight matrix to every neighbor with soft assignments. This increases computational complexity and makes relatively small neighborhood aggregations expensive to compute. We propose Hard Directional Graph Networks (HDGN), a point cloud model that both learns directional weight matrices and assigns a single matrix to each neighbor, achieving directional convolutions at lower computational cost. HDGN's directional modeling achieves state-of-the-art results on multiple point cloud vision benchmarks.

Cross-Regional Attention Network for Point Cloud Completion

Hang Wu, Yubin Miao

Responsive image

Auto-TLDR; Learning-based Point Cloud Repair with Graph Convolution

Slides Poster Similar

Point clouds obtained from real word scanning are always incomplete and ununiformly distributed, which would cause structural losses in 3D shape representations. Therefore, a learning-based method is introduced in this paper to repair partial point clouds and restore the complete shapes of target objects. First, we design an encoder that takes both local features and global features into consideration. Second, we establish a graph to connect the local features together, and then implement graph convolution with multi-head attention on it. The graph enables each local feature vector to search across the regions and selectively absorb other local features based on the its own features and global features. Third, we design a coarse decoder to collect cross-region features from the graph and generate coarse point clouds with low resolution, and a folding-based decoder to generate fine point clouds with high resolution. Our network is trained on six categories of objects in the ModelNet dataset, and its performance is compared with several existing methods, the results show that our network is able to generate dense complete point cloud with the highest accuracy.

Progressive Scene Segmentation Based on Self-Attention Mechanism

Yunyi Pan, Yuan Gan, Kun Liu, Yan Zhang

Responsive image

Auto-TLDR; Two-Stage Semantic Scene Segmentation with Self-Attention

Slides Poster Similar

Semantic scene segmentation is vital for a large variety of applications as it enables understanding of 3D data. Nowadays, various approaches based upon point clouds ignore the mathematical distribution of points and treat the points equally. The methods following this direction neglect the imbalance problem of samples that naturally exists in scenes. To avoid these issues, we propose a two-stage semantic scene segmentation framework based on self-attention mechanism and achieved state-of-the-art performance on 3D scene understanding tasks. We split the whole task into two small ones which efficiently relief the sample imbalance issue. In addition, we have designed a new self-attention block which could be inserted into submanifold convolution networks to model the long-range dependencies that exists among points. The proposed network consists of an encoder and a decoder, with the spatial-wise and channel-wise attention modules inserted. The two-stage network shares a U-Net architecture and is an end-to-end trainable framework which could predict the semantic label for the scene point clouds fed into it. Experiments on standard benchmarks of 3D scenes implies that our network could perform at par or better than the existing state-of-the-art methods.

RefiNet: 3D Human Pose Refinement with Depth Maps

Andrea D'Eusanio, Stefano Pini, Guido Borghi, Roberto Vezzani, Rita Cucchiara

Responsive image

Auto-TLDR; RefiNet: A Multi-stage Framework for 3D Human Pose Estimation

Slides Similar

Human Pose Estimation is a fundamental task for many applications in the Computer Vision community and it has been widely investigated in the 2D domain, i.e. intensity images. Therefore, most of the available methods for this task are mainly based on 2D Convolutional Neural Networks and huge manually-annotated RGB datasets, achieving stunning results. In this paper, we propose RefiNet, a multi-stage framework that regresses an extremely-precise 3D human pose estimation from a given 2D pose and a depth map. The framework consists of three different modules, each one specialized in a particular refinement and data representation, i.e. depth patches, 3D skeleton and point clouds. Moreover, we collect a new dataset, namely Baracca, acquired with RGB, depth and thermal cameras and specifically created for the automotive context. Experimental results confirm the quality of the refinement procedure that largely improves the human pose estimations of off-the-shelf 2D methods.

PointDrop: Improving Object Detection from Sparse Point Clouds Via Adversarial Data Augmentation

Wenxin Ma, Jian Chen, Qing Du, Wei Jia

Responsive image

Auto-TLDR; PointDrop: Improving Robust 3D Object Detection to Sparse Point Clouds

Slides Poster Similar

Current 3D object detection methods achieve accurate and efficient results on the standard point cloud dataset. However, in real-world applications, due to the expensive cost of obtaining the annotated 3D object detection data, we expect to directly apply the model trained on the standard dataset to real-world scenarios. This strategy may fail because the point cloud samples obtained in the real-world scenarios may be much sparser due to various reasons (occlusion, low reflectivity of objects and fewer laser beams) and existing methods do not consider the limitations of their models on sparse point clouds. To improve the robustness of an object detector to sparser point clouds, we propose PointDrop, which learns to drop the features of some key points in the point clouds to generate challenging sparse samples for data augmentation. Moreover, PointDrop is able to adjust the difficulty of the generated samples based on the capacity of the detector and thus progressively improve the performance of the detector. We create two sparse point clouds datasets from the KITTI dataset to evaluate our method, and the experimental results show that PointDrop significantly improves the robustness of the detector to sparse point clouds.

FatNet: A Feature-Attentive Network for 3D Point Cloud Processing

Chaitanya Kaul, Nick Pears, Suresh Manandhar

Responsive image

Auto-TLDR; Feature-Attentive Neural Networks for Point Cloud Classification and Segmentation

Slides Similar

The application of deep learning to 3D point clouds is challenging due to its lack of order. Inspired by the point embeddings of PointNet and the edge embeddings of DGCNNs, we propose three improvements to the task of point cloud analysis. First, we introduce a novel feature-attentive neural network layer, a FAT layer, that combines both global point-based features and local edge-based features in order to generate better embeddings. Second, we find that applying the same attention mechanism across two different forms of feature map aggregation, max pooling and average pooling, gives better performance than either alone. Third, we observe that residual feature reuse in this setting propagates information more effectively between the layers, and makes the network easier to train. Our architecture achieves state-of-the-art results on the task of point cloud classification, as demonstrated on the ModelNet40 dataset, and an extremely competitive performance on the ShapeNet part segmentation challenge.

CASNet: Common Attribute Support Network for Image Instance and Panoptic Segmentation

Xiaolong Liu, Yuqing Hou, Anbang Yao, Yurong Chen, Keqiang Li

Responsive image

Auto-TLDR; Common Attribute Support Network for instance segmentation and panoptic segmentation

Slides Poster Similar

Instance segmentation and panoptic segmentation is being paid more and more attention in recent years. In comparison with bounding box based object detection and semantic segmentation, instance segmentation can provide more analytical results at pixel level. Given the insight that pixels belonging to one instance have one or more common attributes of current instance, we bring up an one-stage instance segmentation network named Common Attribute Support Network (CASNet), which realizes instance segmentation by predicting and clustering common attributes. CASNet is designed in the manner of fully convolutional and can implement training and inference from end to end. And CASNet manages predicting the instance without overlaps and holes, which problem exists in most of current instance segmentation algorithms. Furthermore, it can be easily extended to panoptic segmentation through minor modifications with little computation overhead. CASNet builds a bridge between semantic and instance segmentation from finding pixel class ID to obtaining class and instance ID by operations on common attribute. Through experiment for instance and panoptic segmentation, CASNet gets mAP 32.8\% and PQ 59.0\% on Cityscapes validation dataset by joint training, and mAP 36.3\% and PQ 66.1\% by separated training mode. For panoptic segmentation, CASNet gets state-of-the-art performance on the Cityscapes validation dataset.

Joint Supervised and Self-Supervised Learning for 3D Real World Challenges

Antonio Alliegro, Davide Boscaini, Tatiana Tommasi

Responsive image

Auto-TLDR; Self-supervision for 3D Shape Classification and Segmentation in Point Clouds

Slides Similar

Point cloud processing and 3D shape understanding are very challenging tasks for which deep learning techniques have demonstrated great potentials. Still further progresses are essential to allow artificial intelligent agents to interact with the real world. In many practical conditions the amount of annotated data may be limited and integrating new sources of knowledge becomes crucial to support autonomous learning. Here we consider several scenarios involving synthetic and real world point clouds where supervised learning fails due to data scarcity and large domain gaps. We propose to enrich standard feature representations by leveraging self-supervision through a multi-task model that can solve a 3D puzzle while learning the main task of shape classification or part segmentation. An extensive analysis investigating few-shot, transfer learning and cross-domain settings shows the effectiveness of our approach with state-of-the-art results for 3D shape classification and part segmentation.

Manual-Label Free 3D Detection Via an Open-Source Simulator

Zhen Yang, Chi Zhang, Zhaoxiang Zhang, Huiming Guo

Responsive image

Auto-TLDR; DA-VoxelNet: A Novel Domain Adaptive VoxelNet for LIDAR-based 3D Object Detection

Slides Poster Similar

LiDAR based 3D object detectors typically need a large amount of detailed-labeled point cloud data for training, but these detailed labels are commonly expensive to acquire. In this paper, we propose a manual-label free 3D detection algorithm that leverages the CARLA simulator to generate a large amount of self-labeled training samples and introduces a novel Domain Adaptive VoxelNet (DA-VoxelNet) that can cross the distribution gap from the synthetic data to the real scenario. The self-labeled training samples are generated by a set of high quality 3D models embedded in a CARLA simulator and a proposed LiDAR-guided sampling algorithm. Then a DA-VoxelNet that integrates both a sample-level DA module and an anchor-level DA module is proposed to enable the detector trained by the synthetic data to adapt to real scenario. Experimental results show that the proposed unsupervised DA 3D detector on KITTI evaluation set can achieve 76.66% and 56.64% mAP on BEV mode and 3D mode respectively. The results reveal a promising perspective of training a LIDAR-based 3D detector without any hand-tagged label.

Enhancing Deep Semantic Segmentation of RGB-D Data with Entangled Forests

Matteo Terreran, Elia Bonetto, Stefano Ghidoni

Responsive image

Auto-TLDR; FuseNet: A Lighter Deep Learning Model for Semantic Segmentation

Slides Poster Similar

Semantic segmentation is a problem which is getting more and more attention in the computer vision community. Nowadays, deep learning methods represent the state of the art to solve this problem, and the trend is to use deeper networks to get higher performance. The drawback with such models is a higher computational cost, which makes it difficult to integrate them on mobile robot platforms. In this work we want to explore how to obtain lighter deep learning models without compromising performance. To do so we will consider the features used in the Entangled Random Forest algorithm and we will study the best strategies to integrate these within FuseNet deep network. Such new features allow us to shrink the network size without loosing performance, obtaining hence a lighter model which achieves state-of-the-art performance on the semantic segmentation task and represents an interesting alternative for mobile robotics applications, where computational power and energy are limited.

Deep Space Probing for Point Cloud Analysis

Yirong Yang, Bin Fan, Yongcheng Liu, Hua Lin, Jiyong Zhang, Xin Liu, 蔡鑫宇 蔡鑫宇, Shiming Xiang, Chunhong Pan

Responsive image

Auto-TLDR; SPCNN: Space Probing Convolutional Neural Network for Point Cloud Analysis

Slides Poster Similar

3D points distribute in a continuous 3D space irregularly, thus directly adapting 2D image convolution to 3D points is not an easy job. Previous works often artificially divide the space into regular grids, yet it could be suboptimal to learn geometry. In this paper, we propose SPCNN, namely, Space Probing Convolutional Neural Network, which naturally generalizes image CNN to deal with point clouds. The key idea of SPCNN is learning to probe the 3D space in an adaptive manner. Specifically, we define a pool of learnable convolutional weights, and let each point in the local region learn to choose a suitable convolutional weight from the pool. This is achieved by constructing a geometry guided index-mapping function that implicitly establishes a correspondence between convolutional weights and some local regions in the neighborhood (Fig. 1). In this way, the index-mapping function learns to adaptively partition nearby space for local geometry pattern recognition. With this convolution as a basic operator, SPCNN, a hierarchical architecture can be developed for effective point cloud analysis. Extensive experiments on challenging benchmarks across three tasks demonstrate that SPCNN achieves the state-of-the-art or has competitive performance.

3D Semantic Labeling of Photogrammetry Meshes Based on Active Learning

Mengqi Rong, Shuhan Shen, Zhanyi Hu

Responsive image

Auto-TLDR; 3D Semantic Expression of Urban Scenes Based on Active Learning

Slides Poster Similar

As different urban scenes are similar but still not completely consistent, coupled with the complexity of labeling directly in 3D, high-level understanding of 3D scenes has always been a tricky problem. In this paper, we propose a procedural approach for 3D semantic expression of urban scenes based on active learning. We first start with a small labeled image set to fine-tune a semantic segmentation network and then project its probability map onto a 3D mesh model for fusion, finally outputs a 3D semantic mesh model in which each facet has a semantic label and a heat model showing each facet’s confidence. Our key observation is that our algorithm is iterative, in each iteration, we use the output semantic model as a supervision to select several valuable images for annotation to co-participate in the fine-tuning for overall improvement. In this way, we reduce the workload of labeling but not the quality of 3D semantic model. Using urban areas from two different cities, we show the potential of our method and demonstrate its effectiveness.

CARRADA Dataset: Camera and Automotive Radar with Range-Angle-Doppler Annotations

Arthur Ouaknine, Alasdair Newson, Julien Rebut, Florence Tupin, Patrick Pérez

Responsive image

Auto-TLDR; CARRADA: A dataset of synchronized camera and radar recordings with range-angle-Doppler annotations for autonomous driving

Slides Poster Similar

High quality perception is essential for autonomous driving (AD) systems. To reach the accuracy and robustness that are required by such systems, several types of sensors must be combined. Currently, mostly cameras and laser scanners (lidar) are deployed to build a representation of the world around the vehicle. While radar sensors have been used for a long time in the automotive industry, they are still under-used for AD despite their appealing characteristics (notably, their ability to measure the relative speed of obstacles and to operate even in adverse weather conditions). To a large extent, this situation is due to the relative lack of automotive datasets with real radar signals that are both raw and annotated. In this work, we introduce CARRADA, a dataset of synchronized camera and radar recordings with range-angle-Doppler annotations. We also present a semi-automatic annotation approach, which was used to annotate the dataset, and a radar semantic segmentation baseline, which we evaluate on several metrics. Both our code and dataset will be released.

Joint Semantic-Instance Segmentation of 3D Point Clouds: Instance Separation and Semantic Fusion

Min Zhong, Gang Zeng

Responsive image

Auto-TLDR; Joint Semantic Segmentation and Instance Separation of 3D Point Clouds

Slides Poster Similar

This paper introduces an approach for jointly addressing semantic segmentation (SS) and instance segmentation (IS) of 3D point clouds. Two novel modules are designed to model the interplay between SS and IS. Specifically, we develop an Instance Separation Module that supplements the position-invariance semantic feature with the instance-specific centroid position to help separate different instances. To fuse the semantic information within a single instance, an attention-based Semantic Fusion Module is proposed to encode attention maps in the instance embedding space, which are applied to fuse semantic information in the semantic feature space. The proposed method is thoroughly evaluated on the S3DIS dataset. Compared with the excellent method ASIS, our approach achieves significant improvements across all evaluation metrics in both IS and SS.

PS^2-Net: A Locally and Globally Aware Network for Point-Based Semantic Segmentation

Na Zhao, Tat Seng Chua, Gim Hee Lee

Responsive image

Auto-TLDR; PS2-Net: A Local and Globally Aware Deep Learning Framework for Semantic Segmentation on 3D Point Clouds

Slides Poster Similar

In this paper, we present the PS^2-Net - a locally and globally aware deep learning framework for semantic segmentation on 3D scene-level point clouds. In order to deeply incorporate local structures and global context to support 3D scene segmentation, our network is built on four repeatedly stacked encoders, where each encoder has two basic components: EdgeConv that captures local structures and NetVLAD that models global context. Different from existing start-of-the-art methods for point-based scene semantic segmentation that either violate or do not achieve permutation invariance, our PS2-Net is designed to be permutation invariant which is an essential property of any deep network used to process unordered point clouds. We further provide theoretical proof to guarantee the permutation invariance property of our network. We perform extensive experiments on two large-scale 3D indoor scene datasets and demonstrate that our PS2-Net is able to achieve state-of-the-art performances as compared to existing approaches.

A Two-Step Approach to Lidar-Camera Calibration

Yingna Su, Yaqing Ding, Jian Yang, Hui Kong

Responsive image

Auto-TLDR; Closed-Form Calibration of Lidar-camera System for Ego-motion Estimation and Scene Understanding

Slides Poster Similar

Autonomous vehicles and robots are typically equipped with Lidar and camera. Hence, calibrating the Lidar-camera system is of extreme importance for ego-motion estimation and scene understanding. In this paper, we propose a two-step approach (coarse + fine) for the external calibration between a camera and a multiple-line Lidar. First, a new closed-form solution is proposed to obtain the initial calibration parameters. We compare our solution with the state-of-the-art SVD-based algorithm, and show the benefits of both the efficiency and stability. With the initial calibration parameters, the ICP-based calibration framework is used to register the point clouds which extracted from the camera and Lidar coordinate frames, respectively. Our method has been applied to two Lidar-camera systems: an HDL-64E Lidar-camera system, and a VLP-16 Lidar-camera system. Experimental results demonstrate that our method achieves promising performance and higher accuracy than two open-source methods.

A Plane-Based Approach for Indoor Point Clouds Registration

Ketty Favre, Muriel Pressigout, Luce Morin, Eric Marchand

Responsive image

Auto-TLDR; A plane-based registration approach for indoor environments based on LiDAR data

Slides Poster Similar

Iterative Closest Point (ICP) is one of the mostly used algorithms for 3D point clouds registration. This classical approach can be impacted by the large number of points contained in a point cloud. Planar structures, which are less numerous than points, can be used in well-structured man-made environment. In this paper we propose a registration method inspired by the ICP algorithm in a plane-based registration approach for indoor environments. This method is based solely on data acquired with a LiDAR sensor. A new metric based on plane characteristics is introduced to find the best plane correspondences. The optimal transformation is estimated through a two-step minimization approach, successively performing robust plane-to-plane minimization and non-linear robust point-to-plane registration. Experiments on the Autonomous Systems Lab (ASL) dataset show that the proposed method enables to successfully register 100% of the scans from the three indoor sequences. Experiments also show that the proposed method is more robust in large motion scenarios than other state-of-the-art algorithms.

Object-Oriented Map Exploration and Construction Based on Auxiliary Task Aided DRL

Junzhe Xu, Jianhua Zhang, Shengyong Chen, Honghai Liu

Responsive image

Auto-TLDR; Auxiliary Task Aided Deep Reinforcement Learning for Environment Exploration by Autonomous Robots

Similar

Environment exploration by autonomous robots through deep reinforcement learning (DRL) based methods has attracted more and more attention. However, existing methods usually focus on robot navigation to single or multiple fixed goals, while ignoring the perception and construction of external environments. In this paper, we propose a novel environment exploration task based on DRL, which requires a robot fast and completely perceives all objects of interest, and reconstructs their poses in a global environment map, as much as the robot can do. To this end, we design an auxiliary task aided DRL model, which is integrated with the auxiliary object detection and 6-DoF pose estimation components. The outcome of auxiliary tasks can improve the learning speed and robustness of DRL, as well as the accuracy of object pose estimation. Comprehensive experimental results on the indoor simulation platform AI2-THOR have shown the effectiveness and robustness of our method.

Effective Deployment of CNNs for 3DoF Pose Estimation and Grasping in Industrial Settings

Daniele De Gregorio, Riccardo Zanella, Gianluca Palli, Luigi Di Stefano

Responsive image

Auto-TLDR; Automated Deep Learning for Robotic Grasping Applications

Slides Poster Similar

In this paper we investigate how to effectively deploy deep learning in practical industrial settings, such as robotic grasping applications. When a deep-learning based solution is proposed, usually lacks of any simple method to generate the training data. In the industrial field, where automation is the main goal, not bridging this gap is one of the main reasons why deep learning is not as widespread as it is in the academic world. For this reason, in this work we developed a system composed by a 3-DoF Pose Estimator based on Convolutional Neural Networks (CNNs) and an effective procedure to gather massive amounts of training images in the field with minimal human intervention. By automating the labeling stage, we also obtain very robust systems suitable for production-level usage. An open source implementation of our solution is provided, alongside with the dataset used for the experimental evaluation.

Derivation of Geometrically and Semantically Annotated UAV Datasets at Large Scales from 3D City Models

Sidi Wu, Lukas Liebel, Marco Körner

Responsive image

Auto-TLDR; Large-Scale Dataset of Synthetic UAV Imagery for Geometric and Semantic Annotation

Slides Poster Similar

While in high demand for the development of deep learning approaches, extensive datasets of annotated UAV imagery are still scarce today. Manual annotation, however, is time-consuming and, thus, has limited the potential for creating large-scale datasets. We tackle this challenge by presenting a procedure for the automatic creation of simulated UAV image sequences in urban areas and pixel-level annotations from publicly available data sources. We synthesize photo-realistic UAV imagery from Goole Earth Studio and derive annotations from an open CityGML model that not only provides geometric but also semantic information. The first dataset we exemplarily created using our approach contains 144000 images of Berlin, Germany, with four types of annotations, namely semantic labels as well as depth, surface normals, and edge maps. In the future, a complete pipeline regarding all the technical problems will be provided, together with more accurate models to refine some of the empirical settings currently, to automatically generate a large-scale dataset with reliable ground-truth annotations over the whole city of Berlin. The dataset, as well as the source code, will be published by then. Different methods will also be facilitated to test the usability of the dataset. We believe our dataset can be used for, and not limited to, tasks like pose estimation, geo-localization, monocular depth estimation, edge detection, building/surface classification, and plane segmentation. A potential research pipeline for geo-localization based on the synthetic dataset is provided.

Sensor-Independent Pedestrian Detection for Personal Mobility Vehicles in Walking Space Using Dataset Generated by Simulation

Takahiro Shimizu, Kenji Koide, Shuji Oishi, Masashi Yokozuka, Atsuhiko Banno, Motoki Shino

Responsive image

Auto-TLDR; CosPointPillars: A 3D Object Detection Method for Pedestrian Detection in Walking Spaces

Slides Poster Similar

Autonomous driving of a personal mobility vehicle such as a wheelchair in a walking space is necessary in the future as a means of transportation for the elderly and the physically handicapped. To realize this, accurate pedestrian detection is indispensable. As existing 3D object detection methods are trained with a roadway dataset, they are widely used for object detection in roadways. These methods have two major issues in the detection of objects in walking spaces. The first issue is that they are largely affected by the difference of the LIDAR models. To eliminate this issue, we propose a 3D object detection method, CosPointPillars. CosPointPillars does not take the reflection intensities of LIDAR point cloud, which cause a sensor model dependency, as input. Furthermore, CosPointPillars utilizes a cosine estimation network (CEN) to retain the detection accuracy. The second issue is that networks trained with a roadway dataset cannot sufficiently detect pedestrians (who are major traffic participants in walking spaces) located within a short distance; this is because the roadway dataset hardly includes nearby pedestrians. To solve this issue, we generated a new walking space dataset called SimDataset, which includes nearby pedestrians as a training dataset in the simulations. An experiment on the KITTI showed that the CEN helps in pedestrian detection in sparse point clouds. Furthermore, an experiment on a real walking space showed that SimDataset is suitable for pedestrian detection in such cases.

Uncertainty Guided Recognition of Tiny Craters on the Moon

Thorsten Wilhelm, Christian Wöhler

Responsive image

Auto-TLDR; Accurately Detecting Tiny Craters in Remote Sensed Images Using Deep Neural Networks

Slides Poster Similar

Accurately detecting craters in remotely sensed images is an important task when analysing the properties of planetary bodies. Commonly, only large craters in the range of several kilometres are detected. In this work we provide the first example of automatically detecting tiny craters in the range of several meters with the help of a deep neural network by using only a small set of annotated craters. Additionally, we propose a novel way to group overlapping detections and replace the commonly used non-maximum suppression with a probabilistic treatment. As a result, we receive valuable uncertainty estimates of the detections and the aggregated detections are shown to be vastly superior.

In Depth Semantic Scene Completion

David Gillsjö, Kalle Åström

Responsive image

Auto-TLDR; Bayesian Convolutional Neural Network for Semantic Scene Completion

Slides Poster Similar

For autonomous agents moving around in our world, mapping of the environment is essential. This is their only perception of their surrounding, what is not measured is unknown. Humans have learned from experience what to expect in certain environments, for example in indoor offices or supermarkets. This work studies Semantic Scene Completion which aims to predict a 3D semantic segmentation of our surroundings, even though some areas are occluded. For this we construct a Bayesian Convolutional Neural Network (BCNN), which is not only able to perform the segmentation, but also predict model uncertainty. This is an important feature not present in standard CNNs. We show on the MNIST dataset that the Bayesian approach performs equal or better to the standard CNN when processing digits unseen in the training phase when looking at accuracy, precision and recall. With the added benefit of having better calibrated scores and the ability to express model uncertainty. We then show results for the Semantic Scene Completion task where a category is introduced at test time on the SUNCG dataset. In this more complex task the Bayesian approach outperforms the standard CNN. Showing better Intersection over Union score and excels in Average Precision and separation scores.

Vehicle Lane Merge Visual Benchmark

Kai Cordes, Hellward Broszio

Responsive image

Auto-TLDR; A Benchmark for Automated Cooperative Maneuvering Using Multi-view Video Streams and Ground Truth Vehicle Description

Slides Poster Similar

Automated driving is regarded as the most promising technology for improving road safety in the future. In this context, connected vehicles have an important role regarding their ability to perform cooperative maneuvers for challenging traffic situations. We propose a benchmark for automated cooperative maneuvers. The targeted cooperative maneuver is the vehicle lane merge where a vehicle on the acceleration lane merges into the traffic of a motorway. The benchmark enables the evaluation of vehicle localization approaches as well as the study of cooperative maneuvers. It consists of temporally synchronized multi-view video streams, highly accurate camera calibration, and ground truth vehicle descriptions, including position, heading, speed, and shape. For benchmark generation, the lane merge maneuver is performed by human drivers on a test track, resulting in 120 lane merge data sets with various traffic situations and video recording conditions.

Extending Single Beam Lidar to Full Resolution by Fusing with Single Image Depth Estimation

Yawen Lu, Yuxing Wang, Devarth Parikh, Guoyu Lu

Responsive image

Auto-TLDR; Self-supervised LIDAR for Low-Cost Depth Estimation

Slides Similar

Depth estimation is playing an important role in indoor and outdoor scene understanding, autonomous driving, augmented reality and many other tasks. Vehicles and robotics are able to use active illumination sensors such as LIDAR to receive high precision depth estimation. However, high-resolution Lidars are usually too expensive, which limits its massive production on various applications. Though single beam LIDAR enjoys the benefits of low cost, one beam depth sensing is not usually sufficient to perceive the surrounding environment in many scenarios. In this paper, we propose a learning-based framework to explore to replicate similar or even higher performance as costly LIDARs with our designed self-supervised network and a low-cost single-beam LIDAR. After the accurate calibration with a visible camera, the single beam LIDAR can adjust the scale uncertainty of the depth map estimated by the visible camera. The adjusted depth map enjoys the benefits of high resolution and sensing accuracy as high beam LIDAR and maintains low-cost as single beam LIDAR. Thus we can achieve similar sensing effect of high beam LIDAR with more than a 50-100 times cheaper price (e.g., \$80000 Velodyne HDL-64E LIDAR v.s. \$1000 SICK TIM-781 2D LIDAR and normal camera). The proposed approach is verified on our collected dataset and public dataset with superior depth-sensing performance.

6D Pose Estimation with Correlation Fusion

Yi Cheng, Hongyuan Zhu, Ying Sun, Cihan Acar, Wei Jing, Yan Wu, Liyuan Li, Cheston Tan, Joo-Hwee Lim

Responsive image

Auto-TLDR; Intra- and Inter-modality Fusion for 6D Object Pose Estimation with Attention Mechanism

Slides Poster Similar

6D object pose estimation is widely applied in robotic tasks such as grasping and manipulation. Prior methods using RGB-only images are vulnerable to heavy occlusion and poor illumination, so it is important to complement them with depth information. However, existing methods using RGB-D data cannot adequately exploit consistent and complementary information between RGB and depth modalities. In this paper, we present a novel method to effectively consider the correlation within and across both modalities with attention mechanism to learn discriminative and compact multi-modal features. Then, effective fusion strategies for intra- and inter-correlation modules are explored to ensure efficient information flow between RGB and depth. To our best knowledge, this is the first work to explore effective intra- and inter-modality fusion in 6D pose estimation. The experimental results show that our method can achieve the state-of-the-art performance on LineMOD and YCBVideo dataset. We also demonstrate that the proposed method can benefit a real-world robot grasping task by providing accurate object pose estimation.

Light3DPose: Real-Time Multi-Person 3D Pose Estimation from Multiple Views

Alessio Elmi, Davide Mazzini, Pietro Tortella

Responsive image

Auto-TLDR; 3D Pose Estimation of Multiple People from a Few calibrated Camera Views using Deep Learning

Slides Poster Similar

We present an approach to perform 3D pose estimation of multiple people from a few calibrated camera views. Our architecture, leveraging the recently proposed unprojection layer, aggregates feature-maps from a 2D pose estimator backbone into a comprehensive representation of the 3D scene. Such intermediate representation is then elaborated by a fully-convolutional volumetric network and a decoding stage to extract 3D skeletons with sub-voxel accuracy. Our method achieves state of the art MPJPE on the CMU Panoptic dataset using a few unseen views and obtains competitive results even with a single input view. We also assess the transfer learning capabilities of the model by testing it against the publicly available Shelf dataset obtaining good performance metrics. The proposed method is inherently efficient: as a pure bottom-up approach, it is computationally independent of the number of people in the scene. Furthermore, even though the computational burden of the 2D part scales linearly with the number of input views, the overall architecture is able to exploit a very lightweight 2D backbone which is orders of magnitude faster than the volumetric counterpart, resulting in fast inference time. The system can run at 6 FPS, processing up to 10 camera views on a single 1080Ti GPU.

Hybrid Approach for 3D Head Reconstruction: Using Neural Networks and Visual Geometry

Oussema Bouafif, Bogdan Khomutenko, Mohammed Daoudi

Responsive image

Auto-TLDR; Recovering 3D Head Geometry from a Single Image using Deep Learning and Geometric Techniques

Slides Poster Similar

Recovering the 3D geometric structure of a face from a single input image is a challenging active research area in computer vision. In this paper, we present a novel method for reconstructing 3D heads from a single or multiple image(s) using a hybrid approach based on deep learning and geometric techniques. We propose an encoder-decoder network based on the U-net architecture and trained on synthetic data only. It predicts both pixel-wise normal vectors and landmarks maps from a single input photo. Landmarks are used for the pose computation and the initialization of the optimization problem, which, in turn, reconstructs the 3D head geometry by using a parametric morphable model and normal vector fields. State-of-the-art results are achieved through qualitative and quantitative evaluation tests on both single and multi-view settings. Despite the fact that the model was trained only on synthetic data, it successfully recovers 3D geometry and precise poses for real-world images.

Distinctive 3D Local Deep Descriptors

Fabio Poiesi, Davide Boscaini

Responsive image

Auto-TLDR; DIPs: Local Deep Descriptors for Point Cloud Regression

Slides Poster Similar

We present a simple but yet effective method for learning distinctive 3D local deep descriptors (DIPs) that can be used to register point clouds without requiring an initial alignment. Point cloud patches are extracted, canonicalised with respect to their estimated local reference frame and encoded into rotation-invariant compact descriptors by a PointNet-based deep neural network. DIPs can effectively generalise across different sensor modalities because they are learnt end-to-end from locally and randomly sampled points. Moreover, because DIPs encode only local geometric information, they are robust to clutter, occlusions and missing regions. We evaluate and compare DIPs against alternative hand-crafted and deep descriptors on several indoor and outdoor datasets reconstructed using different sensors. Results show that DIPs (i) achieve comparable results to the state-of-the-art on RGB-D indoor scenes (3DMatch dataset), (ii) outperform state-of-the-art by a large margin on laser-scanner outdoor scenes (ETH dataset), and (iii) generalise to indoor scenes reconstructed with the Visual-SLAM system of Android ARCore.

Cost Volume Refinement for Depth Prediction

João L. Cardoso, Nuno Goncalves, Michael Wimmer

Responsive image

Auto-TLDR; Refining the Cost Volume for Depth Prediction from Light Field Cameras

Slides Poster Similar

Light-field cameras are becoming more popular in the consumer market. Their data redundancy allows, in theory, to accurately refocus images after acquisition and to predict the depth of each point visible from the camera. Combined, these two features allow for the generation of full-focus images, which is impossible in traditional cameras. Multiple methods for depth prediction from light fields (or stereo) have been proposed over the years. A large subset of these methods relies on cost-volume estimates -- 3D objects where each layer represents a heuristic of whether each point in the image is at a certain distance from the camera. Generally, this volume is used to regress a disparity map, which is then refined for better results. In this paper, we argue that refining the cost volumes is superior to refining the disparity maps in order to further increase the accuracy of depth predictions. We propose a set of cost-volume refinement algorithms and show their effectiveness.

Vehicle Classification from Profile Measures

Marco Patanè, Andrea Fusiello

Responsive image

Auto-TLDR; SliceNets: Convolutional Neural Networks for 3D Object Classification of Planar Slices

Slides Similar

This paper proposes two novel convolutional neural networks for 3D object classification, tailored to process point clouds that are composed of planar slices (profiles). In particular, the application that we are targeting is the classification of vehicles by scanning them along planes perpendicular to the driving direction, within the context of Electronic Toll Collection. Depending on sensors configurations, the distance between slices can be measured or not, thus resulting in two types of point clouds, namely metric and non-metric. In the latter case, two coordinates are indeed metric but the third one is merely a temporal index. Our networks, named SliceNets, extract metric information from the spatial coordinates and neighborhood information from the third one (either metric or temporal), thus being able to handle both types of point clouds. Experiments on two datasets collected in the field show the effectiveness of our networks in comparison with state-of-the-art ones.

Two-Stage Adaptive Object Scene Flow Using Hybrid CNN-CRF Model

Congcong Li, Haoyu Ma, Qingmin Liao

Responsive image

Auto-TLDR; Adaptive object scene flow estimation using a hybrid CNN-CRF model and adaptive iteration

Slides Poster Similar

Scene flow estimation based on stereo sequences is a comprehensive task relevant to disparity and optical flow. Some existing methods are time-consuming and often fail in the presence of reflective surfaces. In this paper, we propose a two-stage adaptive object scene flow estimation method using a hybrid CNN-CRF model (ACOSF), which benefits from high-quality features and the structured modelling capability. Meanwhile, in order to balance the computational efficiency and accuracy, we employ adaptive iteration for energy function optimization, which is flexible and efficient for various scenes. Besides, we utilize high-quality pixel selection to reduce the computation time with only a slight decrease in accuracy. Our method achieves competitive results with the state-of-the-art, which ranks second on the challenging KITTI 2015 scene flow benchmark.

Multi-Camera Sports Players 3D Localization with Identification Reasoning

Yukun Yang, Ruiheng Zhang, Wanneng Wu, Yu Peng, Xu Min

Responsive image

Auto-TLDR; Probabilistic and Identified Occupancy Map for Sports Players 3D Localization

Slides Poster Similar

Multi-camera sports players 3D localization is always a challenging task due to heavy occlusions in crowded sports scene. Traditional methods can only provide players locations without identification information. Existing methods of localization may cause ambiguous detection and unsatisfactory precision and recall, especially when heavy occlusions occur. To solve this problem, we propose a generic localization method by providing distinguishable results that have the probabilities of locations being occupied by players with unique ID labels. We design the algorithms with a multi-dimensional Bayesian model to create a Probabilistic and Identified Occupancy Map (PIOM). By using this model, we jointly apply deep learning-based object segmentation and identification to obtain sports players probable positions and their likely identification labels. This approach not only provides players 3D locations but also gives their ID information that are distinguishable from others. Experimental results demonstrate that our method outperforms the previous localization approaches with reliable and distinguishable outcomes.

Partially Supervised Multi-Task Network for Single-View Dietary Assessment

Ya Lu, Thomai Stathopoulou, Stavroula Mougiakakou

Responsive image

Auto-TLDR; Food Volume Estimation from a Single Food Image via Geometric Understanding and Semantic Prediction

Slides Poster Similar

Food volume estimation is an essential step in the pipeline of dietary assessment and demands the precise depth estimation of the food surface and table plane. Existing methods based on computer vision require either multi-image input or additional depth maps, reducing convenience of implementation and practical significance. Despite the recent advances in unsupervised depth estimation from a single image, the achieved performance in the case of large texture-less areas needs to be improved. In this paper, we propose a network architecture that jointly performs geometric understanding (i.e., depth prediction and 3D plane estimation) and semantic prediction on a single food image, enabling a robust and accurate food volume estimation regardless of the texture characteristics of the target plane. For the training of the network, only monocular videos with semantic ground truth are required, while the depth map and 3D plane ground truth are no longer needed. Experimental results on two separate food image databases demonstrate that our method performs robustly on texture-less scenarios and is superior to unsupervised networks and structure from motion based approaches, while it achieves comparable performance to fully-supervised methods.

Do We Really Need Scene-Specific Pose Encoders?

Yoli Shavit, Ron Ferens

Responsive image

Auto-TLDR; Pose Regression Using Deep Convolutional Networks for Visual Similarity

Slides Similar

Visual pose regression models estimate the camera pose from a query image with a single forward pass. Current models learn pose encoding from an image using deep convolutional networks which are trained per scene. The resulting encoding is typically passed to a multi-layer perceptron in order to regress the pose. In this work, we propose that scene-specific pose encoders are not required for pose regression and that encodings trained for visual similarity can be used instead. In order to test our hypothesis, we take a shallow architecture of several fully connected layers and train it with pre-computed encodings from a generic image retrieval model. We find that these encodings are not only sufficient to regress the camera pose, but that, when provided to a branching fully connected architecture, a trained model can achieve competitive results and even surpass current state-of-the-art pose regressors in some cases. Moreover, we show that for outdoor localization, the proposed architecture is the only pose regressor, to date, consistently localizing in under 2 meters and 5 degrees.

FourierNet: Compact Mask Representation for Instance Segmentation Using Differentiable Shape Decoders

Hamd Ul Moqeet Riaz, Nuri Benbarka, Andreas Zell

Responsive image

Auto-TLDR; FourierNet: A Single shot, anchor-free, fully convolutional instance segmentation method that predicts a shape vector

Slides Poster Similar

We present FourierNet, a single shot, anchor-free, fully convolutional instance segmentation method that predicts a shape vector. Consequently, this shape vector is converted into the masks' contour points using a fast numerical transform. Compared to previous methods, we introduce a new training technique, where we utilize a differentiable shape decoder, which manages the automatic weight balancing of the shape vector's coefficients. We used the Fourier series as a shape encoder because of its coefficient interpretability and fast implementation. FourierNet shows promising results compared to polygon representation methods, achieving 30.6 mAP on the MS COCO 2017 benchmark. At lower image resolutions, it runs at 26.6 FPS with 24.3 mAP. It reaches 23.3 mAP using just eight parameters to represent the mask (note that at least four parameters are needed for bounding box prediction only). Qualitative analysis shows that suppressing a reasonable proportion of higher frequencies of Fourier series, still generates meaningful masks. These results validate our understanding that lower frequency components hold higher information for the segmentation task, and therefore, we can achieve a compressed representation. Code is available at: github.com/cogsys-tuebingen/FourierNet.