Two-Stage Adaptive Object Scene Flow Using Hybrid CNN-CRF Model

Congcong Li, Haoyu Ma, Qingmin Liao

Responsive image

Auto-TLDR; Adaptive object scene flow estimation using a hybrid CNN-CRF model and adaptive iteration

Slides Poster

Scene flow estimation based on stereo sequences is a comprehensive task relevant to disparity and optical flow. Some existing methods are time-consuming and often fail in the presence of reflective surfaces. In this paper, we propose a two-stage adaptive object scene flow estimation method using a hybrid CNN-CRF model (ACOSF), which benefits from high-quality features and the structured modelling capability. Meanwhile, in order to balance the computational efficiency and accuracy, we employ adaptive iteration for energy function optimization, which is flexible and efficient for various scenes. Besides, we utilize high-quality pixel selection to reduce the computation time with only a slight decrease in accuracy. Our method achieves competitive results with the state-of-the-art, which ranks second on the challenging KITTI 2015 scene flow benchmark.

Similar papers

Deeply-Fused Attentive Network for Stereo Matching

Zuliu Yang, Xindong Ai, Weida Yang, Yong Zhao, Qifei Dai, Fuchi Li

Responsive image

Auto-TLDR; DF-Net: Deep Learning-based Network for Stereo Matching

Slides Poster Similar

In this paper, we propose a novel learning-based network for stereo matching called DF-Net, which makes three main contributions that are experimentally shown to have practical merit. Firstly, we further increase the accuracy by using the deeply fused spatial pyramid pooling (DF-SPP) module, which can acquire the continuous multi-scale context information in both parallel and cascade manners. Secondly, we introduce channel attention block to dynamically boost the informative features. Finally, we propose a stacked encoder-decoder structure with 3D attention gate for cost regularization. More precisely, the module fuses the coding features to their next encoder-decoder structure under the supervision of attention gate with long-range skip connection, and thus exploit deep and hierarchical context information for disparity prediction. The performance on SceneFlow and KITTI datasets shows that our model is able to generate better results against several state-of-the-art algorithms.

Movement-Induced Priors for Deep Stereo

Yuxin Hou, Muhammad Kamran Janjua, Juho Kannala, Arno Solin

Responsive image

Auto-TLDR; Fusing Stereo Disparity Estimation with Movement-induced Prior Information

Slides Poster Similar

We propose a method for fusing stereo disparity estimation with movement-induced prior information. Instead of independent inference frame-by-frame, we formulate the problem as a non-parametric learning task in terms of a temporal Gaussian process prior with a movement-driven kernel for inter-frame reasoning. We present a hierarchy of three Gaussian process kernels depending on the availability of motion information, where our main focus is on a new gyroscope-driven kernel for handheld devices with low-quality MEMS sensors, thus also relaxing the requirement of having full 6D camera poses available. We show how our method can be combined with two state-of-the-art deep stereo methods. The method either work in a plug-and-play fashion with pre-trained deep stereo networks, or further improved by jointly training the kernels together with encoder--decoder architectures, leading to consistent improvement.

STaRFlow: A SpatioTemporal Recurrent Cell for Lightweight Multi-Frame Optical Flow Estimation

Pierre Godet, Alexandre Boulch, Aurélien Plyer, Guy Le Besnerais

Responsive image

Auto-TLDR; STaRFlow: A lightweight CNN-based algorithm for optical flow estimation

Slides Poster Similar

We present a new lightweight CNN-based algorithm for multi-frame optical flow estimation. Our solution introduces a double recurrence over spatial scale and time through repeated use of a generic "STaR" (SpatioTemporal Recurrent) cell. It includes (i) a temporal recurrence based on conveying learned features rather than optical flow estimates; (ii) an occlusion detection process which is coupled with optical flow estimation and therefore uses a very limited number of extra parameters. The resulting STaRFlow algorithm gives state-of-the-art performances on MPI Sintel and Kitti2015 and involves significantly less parameters than all other methods with comparable results.

Extending Single Beam Lidar to Full Resolution by Fusing with Single Image Depth Estimation

Yawen Lu, Yuxing Wang, Devarth Parikh, Guoyu Lu

Responsive image

Auto-TLDR; Self-supervised LIDAR for Low-Cost Depth Estimation

Slides Similar

Depth estimation is playing an important role in indoor and outdoor scene understanding, autonomous driving, augmented reality and many other tasks. Vehicles and robotics are able to use active illumination sensors such as LIDAR to receive high precision depth estimation. However, high-resolution Lidars are usually too expensive, which limits its massive production on various applications. Though single beam LIDAR enjoys the benefits of low cost, one beam depth sensing is not usually sufficient to perceive the surrounding environment in many scenarios. In this paper, we propose a learning-based framework to explore to replicate similar or even higher performance as costly LIDARs with our designed self-supervised network and a low-cost single-beam LIDAR. After the accurate calibration with a visible camera, the single beam LIDAR can adjust the scale uncertainty of the depth map estimated by the visible camera. The adjusted depth map enjoys the benefits of high resolution and sensing accuracy as high beam LIDAR and maintains low-cost as single beam LIDAR. Thus we can achieve similar sensing effect of high beam LIDAR with more than a 50-100 times cheaper price (e.g., \$80000 Velodyne HDL-64E LIDAR v.s. \$1000 SICK TIM-781 2D LIDAR and normal camera). The proposed approach is verified on our collected dataset and public dataset with superior depth-sensing performance.

Suppressing Features That Contain Disparity Edge for Stereo Matching

Xindong Ai, Zuliu Yang, Weida Yang, Yong Zhao, Zhengzhong Yu, Fuchi Li

Responsive image

Auto-TLDR; SDE-Attention: A Novel Attention Mechanism for Stereo Matching

Slides Poster Similar

Existing networks for stereo matching usually use 2-D CNN as the feature extractor. However, objects are usually continuous in spatial, if an extracted feature contains disparity edge (the representation of this feature on original image contains disparity edge), then this feature usually not occur inside the region of an object. We propose a novel attention mechanism to suppress features containing disparity edge, named SDE-Attention (SDEA). We notice that features containing disparity edge are usually continuous in one image and discontinuous in another, which means that they usually have a greater difference in two feature maps of the same layer than features that don’t contain disparity edge. SDEA calculate the weight matrix of the intermediate feature map according to this trait, then the weight matrix is multiplied to the intermediate feature map. We test SDEA on PSMNet, experimental results show that our method has a significant improvement in accuracy and our network achieves state-of-the-art performance among the published networks.

Learning Stereo Matchability in Disparity Regression Networks

Jingyang Zhang, Yao Yao, Zixin Luo, Shiwei Li, Tianwei Shen, Tian Fang, Long Quan

Responsive image

Auto-TLDR; Deep Stereo Matchability for Weakly Matchable Regions

Slides Similar

Learning-based stereo matching has recently achieved promising results, yet still suffers difficulties in establishing reliable matches in weakly matchable regions that are textureless, non-Lambertian, or occluded. In this paper, we address this challenge by proposing a stereo matching network that considers pixel-wise matchability. Specifically, the network jointly regresses disparity and matchability maps from 3D probability volume through expectation and entropy operations. Next, a learned attenuation is applied as the robust loss function to alleviate the influence of weakly matchable pixels in the training. Finally, a matchability-aware disparity refinement is introduced to improve the depth inference in weakly matchable regions. The proposed deep stereo matchability (DSM) framework can improve the matching result or accelerate the computation while still guaranteeing the quality. Moreover, the DSM framework is portable to many recent stereo networks. Extensive experiments are conducted on Scene Flow and KITTI stereo datasets to demonstrate the effectiveness of the proposed framework over the state-of-the-art learning-based stereo methods.

FC-DCNN: A Densely Connected Neural Network for Stereo Estimation

Dominik Hirner, Friedrich Fraundorfer

Responsive image

Auto-TLDR; FC-DCNN: A Lightweight Network for Stereo Estimation

Slides Poster Similar

We propose a novel lightweight network for stereo estimation. Our network consists of a fully-convolutional densely connected neural network (FC-DCNN) that computes matching costs between rectified image pairs. Our FC-DCNN method learns expressive features and performs some simple but effective post-processing steps. The densely connected layer structure connects the output of each layer to the input of each subsequent layer. This network structure in addition to getting rid of any fully-connected layers leads to a very lightweight network. The output of this network is used in order to calculate matching costs and create a cost-volume. Instead of using time and memory-inefficient cost-aggregation methods such as semi-global matching or conditional random fields in order to improve the result, we rely on filtering techniques, namely median filter and guided filter. By computing a left-right consistency check we get rid of inconsistent values. Afterwards we use a watershed foreground-background segmentation on the disparity image with removed inconsistencies. This mask is then used to refine the final prediction. We show that our method works well for both challenging indoor and outdoor scenes by evaluating it on the Middlebury, KITTI and ETH3D benchmarks respectively.

HMFlow: Hybrid Matching Optical Flow Network for Small and Fast-Moving Objects

Suihanjin Yu, Youmin Zhang, Chen Wang, Xiao Bai, Liang Zhang, Edwin Hancock

Responsive image

Auto-TLDR; Hybrid Matching Optical Flow Network with Global Matching Component

Slides Poster Similar

In optical flow estimation task, coarse-to-fine warping strategy is widely used to deal with the large displacement problem and provides efficiency and speed. However, limited by the small search range between the first images and warped second images, current coarse-to-fine optical flow networks fail to capture small and fast-moving objects which has disappeared at coarse resolution levels. To address this problem, we introduce a lightweight but effective Global Matching Component (GMC) to grab global matching features. We propose a new Hybrid Matching Optical Flow Network (HMFlow) by integrating GMC into existing coarse-to-fine networks seamlessly. Besides keeping in high accuracy and small model size, our proposed HMFlow can apply global matching features to guide the network to discover the small and fast-moving objects mismatched by local matching features. We also build a new dataset, named SFChairs, for evaluation. The experimental results show that our proposed network achieves considerable performance, especially at regions with small and fast-moving objects.

Leveraging a Weakly Adversarial Paradigm for Joint Learning of Disparity and Confidence Estimation

Matteo Poggi, Fabio Tosi, Filippo Aleotti, Stefano Mattoccia

Responsive image

Auto-TLDR; Joint Training of Deep-Networks for Outlier Detection from Stereo Images

Slides Poster Similar

Deep architectures represent the state-of-the-art for perceiving depth from stereo images. Although these methods are highly accurate, it is crucial to effectively detect any outlier through confidence measures since a wrong perception of even small portions of the sensed scene might lead to catastrophic consequences, for instance, in autonomous driving. Purposely, state-of-the-art confidence estimation methods rely on deep-networks as well. In this paper, arguing that these tasks are two sides of the same coin, we propose a novel paradigm for their joint training. Specifically, inspired by the successful deployment of GANs in other fields, we design two deep architectures: a generator for disparity estimation and a discriminator for distinguishing correct assignments from outliers. The two networks are jointly trained in a new peculiar weakly adversarial manner pushing the former to fix the errors detected by the discriminator while keeping the correct prediction unchanged. Experimental results on standard stereo datasets prove that such joint training paradigm yields significant improvements. Moreover, an additional outcome of our proposal is the ability to detect outliers with better accuracy compared to the state-of-the-art.

ResFPN: Residual Skip Connections in Multi-Resolution Feature Pyramid Networks for Accurate Dense Pixel Matching

Rishav ., René Schuster, Ramy Battrawy, Oliver Wasenmüler, Didier Stricker

Responsive image

Auto-TLDR; Resolution Feature Pyramid Networks for Dense Pixel Matching

Slides Similar

Dense pixel matching is required for many computer vision algorithms such as disparity, optical flow or scene flow estimation. Feature Pyramid Networks (FPN) have proven to be a suitable feature extractor for CNN-based dense matching tasks. FPN generates well localized and semantically strong features at multiple scales. However, the generic FPN is not utilizing its full potential, due to its reasonable but limited localization accuracy. Thus, we present ResFPN – a multiresolution feature pyramid network with multiple residual skip connections, where at any scale, we leverage the information from higher resolution maps for stronger and better localized features. In our ablation study we demonstrate the effectiveness of our novel architecture with clearly higher accuracy than FPN. In addition, we verify the superior accuracy of ResFPN in many different pixel matching applications on established datasets like KITTI, Sintel, and FlyingThings3D.

P2D: A Self-Supervised Method for Depth Estimation from Polarimetry

Marc Blanchon, Desire Sidibe, Olivier Morel, Ralph Seulin, Daniel Braun, Fabrice Meriaudeau

Responsive image

Auto-TLDR; Polarimetric Regularization for Monocular Depth Estimation

Slides Poster Similar

Monocular depth estimation is a recurring subject in the field of computer vision. Its ability to describe scenes via a depth map while reducing the constraints related to the formulation of perspective geometry tends to favor its use. However, despite the constant improvement of algorithms, most methods exploit only colorimetric information. Consequently, robustness to events to which the modality is not sensitive to, like specularity or transparency, is neglected. In response to this phenomenon, we propose using polarimetry as an input for a self-supervised monodepth network. Therefore, we propose exploiting polarization cues to encourage accurate reconstruction of scenes. Furthermore, we include a term of polarimetric regularization to state-of-the-art method to take specific advantage of the data. Our method is evaluated both qualitatively and quantitatively demonstrating that the contribution of this new information as well as an enhanced loss function improves depth estimation results, especially for specular areas.

Attention Stereo Matching Network

Doudou Zhang, Jing Cai, Yanbing Xue, Zan Gao, Hua Zhang

Responsive image

Auto-TLDR; ASM-Net: Attention Stereo Matching with Disparity Refinement

Slides Poster Similar

Despite great progress, previous stereo matching algorithms still lack the ability to match textureless regions and slender structure areas. To tackle this problem, we propose ASM-Net, an attention stereo matching network. Attention module and disparity refinement module are constructed in the ASMNet. The attention module can improve correlation information between two images by channels and spatial attention.The feature-guided disparity refinement module learns more geometry information in different feature levels to refine the coarse prediction resolution constantly. The proposed approach was evaluated on several benchmark datasets. Experiments show that the proposed method achieves competitive results on KITTI and Scene-Flow datasets while running in real-time at 14ms.

Object Segmentation Tracking from Generic Video Cues

Amirhossein Kardoost, Sabine Müller, Joachim Weickert, Margret Keuper

Responsive image

Auto-TLDR; A Light-Weight Variational Framework for Video Object Segmentation in Videos

Slides Poster Similar

We propose a light-weight variational framework for online tracking of object segmentations in videos based on optical flow and image boundaries. While high-end computer vision methods on this task rely on sequence specific training of dedicated CNN architectures, we show the potential of a variational model, based on generic video information from motion and color. Such cues are usually required for tasks such as robot navigation or grasp estimation. We leverage them directly for video object segmentation and thus provide accurate segmentations at potentially very low extra cost. Our simple method can provide competitive results compared to the costly CNN-based methods with parameter tuning. Furthermore, we show that our approach can be combined with state-of-the-art CNN-based segmentations in order to improve over their respective results. We evaluate our method on the datasets DAVIS 16,17 and SegTrack v2.

PA-FlowNet: Pose-Auxiliary Optical Flow Network for Spacecraft Relative Pose Estimation

Zhi Yu Chen, Po-Heng Chen, Kuan-Wen Chen, Chen-Yu Chan

Responsive image

Auto-TLDR; PA-FlowNet: An End-to-End Pose-auxiliary Optical Flow Network for Space Travel and Landing

Slides Poster Similar

During the process of space travelling and space landing, the spacecraft attitude estimation is the indispensable work for navigation. Since there are not enough satellites for GPS-like localization in space, the computer vision technique is adopted to address the issue. The most crucial task for localization is the extraction of correspondences. In computer vision, optical flow estimation is often used for finding correspondences between images. As the deep neural network being more popular in recent years, FlowNet2 has played a vital role which achieves great success. In this paper, we present PA-FlowNet, an end-to-end pose-auxiliary optical flow network which can use the predicted relative camera pose to improve the performance of optical flow. PA-FlowNet is composed of two sub-networks, the foreground-attention flow network and the pose regression network. The foreground-attention flow network is constructed bybased on FlowNet2 model and modified with the proposed foreground-attention approach. We introduced this approach with the concept of curriculum learning for foreground-background segmentation to avoid backgrounds from resulting in flow prediction error. The pose regression network is used to regress the relative camera pose as an auxiliary for increasing the accuracy of the flow estimation. In addition, to simulate the test environment for spacecraft pose estimation, we construct a 64K moon model and to simulate aerial photography with various attitudes to generate Moon64K dataset in this paper. PA-FlowNet significantly outperforms all existing methods on our the proposed Moon64K dataset. Furthermore, we also predict the relative pose via proposed PA-FlowNet and accomplish the remarkable performance.

NetCalib: A Novel Approach for LiDAR-Camera Auto-Calibration Based on Deep Learning

Shan Wu, Amnir Hadachi, Damien Vivet, Yadu Prabhakar

Responsive image

Auto-TLDR; Automatic Calibration of LiDAR and Cameras using Deep Neural Network

Slides Poster Similar

A fusion of LiDAR and cameras have been widely used in many robotics applications such as classification, segmentation, object detection, and autonomous driving. It is essential that the LiDAR sensor can measure distances accurately, which is a good complement to the cameras. Hence, calibrating sensors before deployment is a mandatory step. The conventional methods include checkerboards, specific patterns, or human labeling, which is trivial and human-labor extensive if we do the same calibration process every time. The main propose of this research work is to build a deep neural network that is capable of automatically finding the geometric transformation between LiDAR and cameras. The results show that our model manages to find the transformations from randomly sampled artificial errors. Besides, our work is open-sourced for the community to fully utilize the advances of the methodology for developing more the approach, initiating collaboration, and innovation in the topic.

A Lightweight Network to Learn Optical Flow from Event Data

Zhuoyan Li, Jiawei Shen

Responsive image

Auto-TLDR; A lightweight pyramid network with attention mechanism to learn optical flow from events data

Similar

Existing deep neural networks have found success in estimation of event-based optical flow, but are at the expense of complicated architectures. Moreover, few prior works discuss how to tackle with the noise problem of event camera, which would severely contaminate the data quality and make estimation an ill-posed problem. In this work, we present a lightweight pyramid network with attention mechanism to learn optical flow from events data. Specially, the network is designed according to two-well established principles: Laplacian pyramidal decomposition and channel attention mechanism. By integrating Laplacian pyramidal processing into CNN, the learning problem is simplified into several subproblems at each pyramid level, which can be handled by a relatively shallow network with few parameters. The channel attention block, embedded in each pyramid level, treats channels of feature map unequally and provides extra flexibility in suppressing background noises. The size of the proposed network is about only 5% of previous methods while our method still achieves state-of-the-art performance on the benchmark dataset. The experimental video samples of continuous flow estimation is presented at :https://github.com/xfleezy/blob.

OmniFlowNet: A Perspective Neural Network Adaptation for Optical Flow Estimation in Omnidirectional Images

Charles-Olivier Artizzu, Haozhou Zhang, Guillaume Allibert, Cédric Demonceaux

Responsive image

Auto-TLDR; OmniFlowNet: A Convolutional Neural Network for Omnidirectional Optical Flow Estimation

Slides Poster Similar

Spherical cameras and the latest image processing techniques open up new horizons. In particular, methods based on Convolutional Neural Networks (CNNs) now give excellent results for optical flow estimation on perspective images. However, these approaches are highly dependent on their architectures and training datasets. This paper proposes to benefit from years of improvement in perspective images optical flow estimation and to apply it to omnidirectional ones without training on new datasets. Our network, OmniFlowNet, is built on a CNN specialized in perspective images. Its convolution operation is adapted to be consistent with the equirectangular projection. Tested on spherical datasets created with Blender and several equirectangular videos realized from real indoor and outdoor scenes, OmniFlowNet shows better performance than its original network.

A Two-Step Approach to Lidar-Camera Calibration

Yingna Su, Yaqing Ding, Jian Yang, Hui Kong

Responsive image

Auto-TLDR; Closed-Form Calibration of Lidar-camera System for Ego-motion Estimation and Scene Understanding

Slides Poster Similar

Autonomous vehicles and robots are typically equipped with Lidar and camera. Hence, calibrating the Lidar-camera system is of extreme importance for ego-motion estimation and scene understanding. In this paper, we propose a two-step approach (coarse + fine) for the external calibration between a camera and a multiple-line Lidar. First, a new closed-form solution is proposed to obtain the initial calibration parameters. We compare our solution with the state-of-the-art SVD-based algorithm, and show the benefits of both the efficiency and stability. With the initial calibration parameters, the ICP-based calibration framework is used to register the point clouds which extracted from the camera and Lidar coordinate frames, respectively. Our method has been applied to two Lidar-camera systems: an HDL-64E Lidar-camera system, and a VLP-16 Lidar-camera system. Experimental results demonstrate that our method achieves promising performance and higher accuracy than two open-source methods.

Enhancing Depth Quality of Stereo Vision Using Deep Learning-Based Prior Information of the Driving Environment

Weifu Li, Vijay John, Seiichi Mita

Responsive image

Auto-TLDR; A Novel Post-processing Mathematical Framework for Stereo Vision

Slides Poster Similar

Generation of high density depth values of the driving environment is indispensable for autonomous driving. Stereo vision is one of the practical and effective methods to generate these depth values. However, the accuracy of the stereo vision is limited by texture-less regions, such as sky and road areas, and repeated patterns in the image. To overcome these problems, we propose to enhance the stereo generated depth by incorporating prior information of the driving environment. Prior information, generated by deep learning-based U-Net model, is utilized in a novel post-processing mathematical framework to refine the stereo generated depth. The proposed mathematical framework is formulated as an optimization problem, which refines the errors due to texture-less regions and repeated patterns. Owing to its mathematical formulation, the post-processing framework is not a black-box and is explainable, and can be readily utilized for depth maps generated by any stereo vision algorithm. The proposed framework is qualitatively validated on the acquired dataset and KITTI dataset. The results obtained show that the proposed framework improves the stereo depth generation accuracy

Real-Time Monocular Depth Estimation with Extremely Light-Weight Neural Network

Mian Jhong Chiu, Wei-Chen Chiu, Hua-Tsung Chen, Jen-Hui Chuang

Responsive image

Auto-TLDR; Real-Time Light-Weight Depth Prediction for Obstacle Avoidance and Environment Sensing with Deep Learning-based CNN

Slides Poster Similar

Obstacle avoidance and environment sensing are crucial applications in autonomous driving and robotics. Among all types of sensors, RGB camera is widely used in these applications as it can offer rich visual contents with relatively low-cost, and using a single image to perform depth estimation has become one of the main focuses in resent research works. However, prior works usually rely on highly complicated computation and power-consuming GPU to achieve such task; therefore, we focus on developing a real-time light-weight system for depth prediction in this paper. Based on the well-known encoder-decoder architecture, we propose a supervised learning-based CNN with detachable decoders that produce depth predictions with different scales. We also formulate a novel log-depth loss function that computes the difference of predicted depth map and ground truth depth map in log space, so as to increase the prediction accuracy for nearby locations. To train our model efficiently, we generate depth map and semantic segmentation with complex teacher models. Via a series of ablation studies and experiments, it is validated that our model can efficiently performs real-time depth prediction with only 0.32M parameters, with the best trained model outperforms previous works on KITTI dataset for various evaluation matrices.

Human Segmentation with Dynamic LiDAR Data

Tao Zhong, Wonjik Kim, Masayuki Tanaka, Masatoshi Okutomi

Responsive image

Auto-TLDR; Spatiotemporal Neural Network for Human Segmentation with Dynamic Point Clouds

Slides Similar

Consecutive LiDAR scans and depth images compose dynamic 3D sequences, which contain more abundant spatiotemporal information than a single frame. Similar to the development history of image and video perception, dynamic 3D sequence perception starts to come into sight after inspiring research on static 3D data perception. This work proposes a spatiotemporal neural network for human segmentation with the dynamic LiDAR point clouds. It takes a sequence of depth images as input. It has a two-branch structure, i.e., the spatial segmentation branch and the temporal velocity estimation branch. The velocity estimation branch is designed to capture motion cues from the input sequence and then propagates them to the other branch. So that the segmentation branch segments humans according to both spatial and temporal features. These two branches are jointly learned on a generated dynamic point cloud data set for human recognition. Our works fill in the blank of dynamic point cloud perception with the spherical representation of point cloud and achieves high accuracy. The experiments indicate that the introduction of temporal feature benefits the segmentation of dynamic point cloud perception.

Learning Non-Rigid Surface Reconstruction from Spatio-Temporal Image Patches

Matteo Pedone, Abdelrahman Mostafa, Janne Heikkilä

Responsive image

Auto-TLDR; Dense Spatio-Temporal Depth Maps of Deformable Objects from Video Sequences

Slides Poster Similar

We present a method to reconstruct a dense spatio-temporal depth map of a non-rigidly deformable object directly from a video sequence. The estimation of depth is performed locally on spatio-temporal patches of the video, and then the full depth video of the entire shape is recovered by combining them together. Since the geometric complexity of a local spatio-temporal patch of a deforming non-rigid object is often simple enough to be faithfully represented with a parametric model, we artificially generate a database of small deforming rectangular meshes rendered with different material properties and light conditions, along with their corresponding depth videos, and use such data to train a convolutional neural network. We tested our method on both synthetic and Kinect data and experimentally observed that the reconstruction error is significantly lower than the one obtained using other approaches like conventional non-rigid structure from motion.

MixedFusion: 6D Object Pose Estimation from Decoupled RGB-Depth Features

Hangtao Feng, Lu Zhang, Xu Yang, Zhiyong Liu

Responsive image

Auto-TLDR; MixedFusion: Combining Color and Point Clouds for 6D Pose Estimation

Slides Poster Similar

Estimating the 6D pose of objects is an important process for intelligent systems to achieve interaction with the real-world. As the RGB-D sensors become more accessible, the fusion-based methods have prevailed, since the point clouds provide complementary geometric information with RGB values. However, Due to the difference in feature space between color image and depth image, the network structures that directly perform point-to-point matching fusion do not effectively fuse the features of the two. In this paper, we propose a simple but effective approach, named MixedFusion. Different from the prior works, we argue that the spatial correspondence of color and point clouds could be decoupled and reconnected, thus enabling a more flexible fusion scheme. By performing the proposed method, more informative points can be mixed and fused with rich color features. Extensive experiments are conducted on the challenging LineMod and YCB-Video datasets, show that our method significantly boosts the performance without introducing extra overheads. Furthermore, when the minimum tolerance of metric narrows, the proposed approach performs better for the high-precision demands.

Partially Supervised Multi-Task Network for Single-View Dietary Assessment

Ya Lu, Thomai Stathopoulou, Stavroula Mougiakakou

Responsive image

Auto-TLDR; Food Volume Estimation from a Single Food Image via Geometric Understanding and Semantic Prediction

Slides Poster Similar

Food volume estimation is an essential step in the pipeline of dietary assessment and demands the precise depth estimation of the food surface and table plane. Existing methods based on computer vision require either multi-image input or additional depth maps, reducing convenience of implementation and practical significance. Despite the recent advances in unsupervised depth estimation from a single image, the achieved performance in the case of large texture-less areas needs to be improved. In this paper, we propose a network architecture that jointly performs geometric understanding (i.e., depth prediction and 3D plane estimation) and semantic prediction on a single food image, enabling a robust and accurate food volume estimation regardless of the texture characteristics of the target plane. For the training of the network, only monocular videos with semantic ground truth are required, while the depth map and 3D plane ground truth are no longer needed. Experimental results on two separate food image databases demonstrate that our method performs robustly on texture-less scenarios and is superior to unsupervised networks and structure from motion based approaches, while it achieves comparable performance to fully-supervised methods.

Revisiting Optical Flow Estimation in 360 Videos

Keshav Bhandari, Ziliang Zong, Yan Yan

Responsive image

Auto-TLDR; LiteFlowNet360: A Domain Adaptation Framework for 360 Video Optical Flow Estimation

Slides Similar

Nowadays 360 video analysis has become a significant research topic in the field since the appearance of high-quality and low-cost 360 wearable devices. In this paper, we propose a novel LiteFlowNet360 architecture for 360 videos optical flow estimation. We design LiteFlowNet360 as a domain adaptation framework from perspective video domain to 360 video domain. We adapt it from simple kernel transformation techniques inspired by Kernel Transformer Network (KTN) to cope with inherent distortion in 360 videos caused by the sphere-to-plane projection. First, we apply an incremental transformation of convolution layers in feature pyramid network and show that further transformation in inference and regularization layers are not important, hence reducing the network growth in terms of size and computation cost. Second, we refine the network by training with augmented data in a supervised manner. We perform data augmentation by projecting the images in a sphere and re-projecting to a plane. Third, we train LiteFlowNet360 in a self-supervised manner using target domain 360 videos. Experimental results show the promising results of 360 video optical flow estimation using the proposed novel architecture.

Generalized Shortest Path-Based Superpixels for Accurate Segmentation of Spherical Images

Rémi Giraud, Rodrigo Borba Pinheiro, Yannick Berthoumieu

Responsive image

Auto-TLDR; SPS: Spherical Shortest Path-based Superpixels

Slides Poster Similar

Most of existing superpixel methods are designed to segment standard planar images as pre-processing for computer vision pipelines. Nevertheless, the increasing number of applications based on wide angle capture devices, mainly generating 360° spherical images, have enforced the need for dedicated superpixel approaches. In this paper, we introduce a new superpixel method for spherical images called SphSPS (for Spherical Shortest Path-based Superpixels). Our approach respects the spherical geometry and generalizes the notion of shortest path between a pixel and a superpixel center on the 3D spherical acquisition space. We show that the feature information on such path can be efficiently integrated into our clustering framework and jointly improves the respect of object contours and the shape regularity. To relevantly evaluate this last aspect in the spherical space, we also generalize a planar global regularity metric. Finally, the proposed SphSPS method obtains significantly better performances than both planar and spherical recent superpixel approaches on the reference 360 o spherical panorama segmentation dataset.

Multi-Scale Residual Pyramid Attention Network for Monocular Depth Estimation

Jing Liu, Xiaona Zhang, Zhaoxin Li, Tianlu Mao

Responsive image

Auto-TLDR; Multi-scale Residual Pyramid Attention Network for Monocular Depth Estimation

Slides Poster Similar

Monocular depth estimation is a challenging problem in computer vision and is crucial for understanding 3D scene geometry. Recently, deep convolutional neural networks (DCNNs) based methods have improved the estimation accuracy significantly. However, existing methods fail to consider complex textures and geometries in scenes, thereby resulting in loss of local details, distorted object boundaries, and blurry reconstruction. In this paper, we proposed an end-to-end Multi-scale Residual Pyramid Attention Network (MRPAN) to mitigate these problems.First,we propose a Multi-scale Attention Context Aggregation (MACA) module, which consists of Spatial Attention Module (SAM) and Global Attention Module (GAM). By considering the position and scale correlation of pixels from spatial and global perspectives, the proposed module can adaptively learn the similarity between pixels so as to obtain more global context information of the image and recover the complex structure in the scene. Then we proposed an improved Residual Refinement Module (RRM) to further refine the scene structure, giving rise to deeper semantic information and retain more local details. Experimental results show that our method achieves more promisin performance in object boundaries and local details compared with other state-of-the-art methods.

Domain Siamese CNNs for Sparse Multispectral Disparity Estimation

David-Alexandre Beaupre, Guillaume-Alexandre Bilodeau

Responsive image

Auto-TLDR; Multispectral Disparity Estimation between Thermal and Visible Images using Deep Neural Networks

Slides Poster Similar

Multispectral disparity estimation is a difficult task for many reasons: it as all the same challenges as traditional visible-visible disparity estimation (occlusions, repetitive patterns, textureless surfaces), in addition of having very few common visual information between images (e.g. color information vs. thermal information). In this paper, we propose a new CNN architecture able to do disparity estimation between images from different spectrum, namely thermal and visible in our case. Our proposed model takes two patches as input and proceeds to do domain feature extraction for each of them. Features from both domains are then merged with two fusion operations, namely correlation and concatenation. These merged vectors are then forwarded to their respective classification heads, which are responsible for classifying the inputs as being same or not. Using two merging operations gives more robustness to our feature extraction process, which leads to more precise disparity estimation. Our method was tested using the publicly available LITIV 2014 and LITIV 2018 datasets, and showed best results when compared to other state of the art methods.

Siamese Fully Convolutional Tracker with Motion Correction

Mathew Francis, Prithwijit Guha

Responsive image

Auto-TLDR; A Siamese Ensemble for Visual Tracking with Appearance and Motion Components

Slides Poster Similar

Visual tracking algorithms use cues like appearance, structure, motion etc. for locating an object in a video. We propose an ensemble tracker with appearance and motion components. A siamese tracker that learns object appearance from a static image and motion vectors computed between consecutive frames with a flow network forms the ensemble. Motion predicted object localization is used to correct the appearance component in the ensemble. Complementary nature of the components bring performance improvement as observed in experiments performed on VOT2018 and VOT2019 datasets.

Edge-Aware Monocular Dense Depth Estimation with Morphology

Zhi Li, Xiaoyang Zhu, Haitao Yu, Qi Zhang, Yongshi Jiang

Responsive image

Auto-TLDR; Spatio-Temporally Smooth Dense Depth Maps Using Only a CPU

Slides Poster Similar

Dense depth maps play an important role in Computer Vision and AR (Augmented Reality). For CV applications, a dense depth map is the cornerstone of 3D reconstruction allowing real objects to be precisely displayed in the computer. And Dense depth maps can handle correct occlusion relationships between virtual content and real objects for better user experience in AR. However, the complicated computation limits the development of computing dense depth maps. We present a novel algorithm that produces low latency, spatio-temporally smooth dense depth maps using only a CPU. The depth maps exhibit sharp discontinuities at depth edges in low computational complexity ways. Our algorithm obtains the sparse SLAM reconstruction first, then extracts coarse depth edges from a down-sampled RGB image by morphology operations. Next, we thin the depth edges and align them with image edges. Finally, a Warm-Start initialization scheme and an improved optimization solver are adopted to accelerate convergence. We evaluate our proposal quantitatively and the result shows improvements on the accuracy of depth map with respect to other state-of-the-art and baseline techniques.

Calibration and Absolute Pose Estimation of Trinocular Linear Camera Array for Smart City Applications

Martin Ahrnbom, Mikael Nilsson, Håkan Ardö, Kalle Åström, Oksana Yastremska-Kravchenko, Aliaksei Laureshyn

Responsive image

Auto-TLDR; Trinocular Linear Camera Array Calibration for Traffic Surveillance Applications

Slides Poster Similar

A method for calibrating a Trinocular Linear Camera Array (TLCA) for traffic surveillance applications, such as towards smart cities, is presented. A TLCA-specific parametrization guarantees that the calibration finds a model where all the cameras are on a straight line. The method uses both a chequerboard close to the camera, as well as measured 3D points far from the camera: points measured in world coordinates, as well as their corresponding 2D points found manually in the images. Superior calibration accuracy can be obtained compared to standard methods using only a single data source, largely due to the use of chequerboards, while the line constraint in the parametrization allows for joint rectification. The improved triangulation accuracy, from 8-12 cm to around 6 cm when calibrating with 30-50 points in our experiment, allowing better road user analysis. The method is demonstrated by a proof-of-concept application where a point cloud is generated from multiple disparity maps, visualizing road user detections in 3D.

Attention Based Coupled Framework for Road and Pothole Segmentation

Shaik Masihullah, Ritu Garg, Prerana Mukherjee, Anupama Ray

Responsive image

Auto-TLDR; Few Shot Learning for Road and Pothole Segmentation on KITTI and IDD

Slides Poster Similar

In this paper, we propose a novel attention based coupled framework for road and pothole segmentation. In many developing countries as well as in rural areas, the drivable areas are neither well-defined, nor well-maintained. Under such circumstances, an Advance Driver Assistant System (ADAS) is needed to assess the drivable area and alert about the potholes ahead to ensure vehicle safety. Moreover, this information can also be used in structured environments for assessment and maintenance of road health. We demonstrate few shot learning approach for pothole detection to leverage accuracy even with fewer training samples. We report the exhaustive experimental results for road segmentation on KITTI and IDD datasets. We also present pothole segmentation on IDD.

A Plane-Based Approach for Indoor Point Clouds Registration

Ketty Favre, Muriel Pressigout, Luce Morin, Eric Marchand

Responsive image

Auto-TLDR; A plane-based registration approach for indoor environments based on LiDAR data

Slides Poster Similar

Iterative Closest Point (ICP) is one of the mostly used algorithms for 3D point clouds registration. This classical approach can be impacted by the large number of points contained in a point cloud. Planar structures, which are less numerous than points, can be used in well-structured man-made environment. In this paper we propose a registration method inspired by the ICP algorithm in a plane-based registration approach for indoor environments. This method is based solely on data acquired with a LiDAR sensor. A new metric based on plane characteristics is introduced to find the best plane correspondences. The optimal transformation is estimated through a two-step minimization approach, successively performing robust plane-to-plane minimization and non-linear robust point-to-plane registration. Experiments on the Autonomous Systems Lab (ASL) dataset show that the proposed method enables to successfully register 100% of the scans from the three indoor sequences. Experiments also show that the proposed method is more robust in large motion scenarios than other state-of-the-art algorithms.

3D Semantic Labeling of Photogrammetry Meshes Based on Active Learning

Mengqi Rong, Shuhan Shen, Zhanyi Hu

Responsive image

Auto-TLDR; 3D Semantic Expression of Urban Scenes Based on Active Learning

Slides Poster Similar

As different urban scenes are similar but still not completely consistent, coupled with the complexity of labeling directly in 3D, high-level understanding of 3D scenes has always been a tricky problem. In this paper, we propose a procedural approach for 3D semantic expression of urban scenes based on active learning. We first start with a small labeled image set to fine-tune a semantic segmentation network and then project its probability map onto a 3D mesh model for fusion, finally outputs a 3D semantic mesh model in which each facet has a semantic label and a heat model showing each facet’s confidence. Our key observation is that our algorithm is iterative, in each iteration, we use the output semantic model as a supervision to select several valuable images for annotation to co-participate in the fine-tuning for overall improvement. In this way, we reduce the workload of labeling but not the quality of 3D semantic model. Using urban areas from two different cities, we show the potential of our method and demonstrate its effectiveness.

5D Light Field Synthesis from a Monocular Video

Kyuho Bae, Andre Ivan, Hajime Nagahara, In Kyu Park

Responsive image

Auto-TLDR; Synthesis of Light Field Video from Monocular Video using Deep Learning

Slides Similar

Commercially available light field cameras have difficulty in capturing 5D (4D + time) light field videos. They can only capture still light filed images or are excessively expensive for normal users to capture the light field video. To tackle this problem, we propose a deep learning-based method for synthesizing a light field video from a monocular video. We propose a new synthetic light field video dataset that renders photorealistic scenes using Unreal Engine because no light field video dataset is available. The proposed deep learning framework synthesizes the light field video with a full set (9x9) of sub-aperture images from a normal monocular video. The proposed network consists of three sub-networks, namely, feature extraction, 5D light field video synthesis, and temporal consistency refinement. Experimental results show that our model can successfully synthesize the light field video for synthetic and real scenes and outperforms the previous frame-by-frame method quantitatively and qualitatively.

Visual Saliency Oriented Vehicle Scale Estimation

Qixin Chen, Tie Liu, Jiali Ding, Zejian Yuan, Yuanyuan Shang

Responsive image

Auto-TLDR; Regularized Intensity Matching for Vehicle Scale Estimation with salient object detection

Slides Poster Similar

Vehicle scale estimation with a single camera is a typical application for intelligent transportation and it faces the challenges from visual computing while intensity-based method and descriptor-based method should be balanced. This paper proposed a vehicle scale estimation method based on salient object detection to resolve this problem. The regularized intensity matching method is proposed in Lie Algebra to achieve robust and accurate scale estimation, and descriptor matching and intensity matching are combined to minimize the proposed loss function. The visual attention mechanism is designed to select image patches with texture and remove the occluded image patches. Then the weights are assigned to pixels from the selected image patches which alleviates the influence of noise-corrupted pixels. The experiments show that the proposed method significantly outperforms state-of-the-art methods with regard to the robustness and accuracy of vehicle scale estimation.

Future Urban Scenes Generation through Vehicles Synthesis

Alessandro Simoni, Luca Bergamini, Andrea Palazzi, Simone Calderara, Rita Cucchiara

Responsive image

Auto-TLDR; Predicting the Future of an Urban Scene with a Novel View Synthesis Paradigm

Slides Poster Similar

In this work we propose a deep learning pipeline to predict the visual future appearance of an urban scene. Despite recent advances, generating the entire scene in an end-to-end fashion is still far from being achieved. Instead, here we follow a two stages approach, where interpretable information is included in the loop and each actor is modelled independently. We leverage a per-object novel view synthesis paradigm; i.e. generating a synthetic representation of an object undergoing a geometrical roto-translation in the 3D space. Our model can be easily conditioned with constraints (e.g. input trajectories) provided by state-of-the-art tracking methods or by the user itself. This allows us to generate a set of diverse realistic futures starting from the same input in a multi-modal fashion. We visually and quantitatively show the superiority of this approach over traditional end-to-end scene-generation methods on CityFlow, a challenging real world dataset.

Feature Point Matching in Cross-Spectral Images with Cycle Consistency Learning

Ryosuke Furuta, Naoaki Noguchi, Xueting Wang, Toshihiko Yamasaki

Responsive image

Auto-TLDR; Unsupervised Learning for General Feature Point Matching in Cross-Spectral Settings

Slides Poster Similar

Feature point matching is an important problem because its applications cover a wide range of tasks in computer vision. Deep learning-based methods for learning local features have recently shown superior performance. However, it is not easy to collect the training data in these methods, especially in cross-spectral settings such as the correspondence between RGB and near-infrared images. In this paper, we propose an unsupervised learning method for general feature point matching. Because we train a convolutional neural network as a feature extractor in order to satisfy the cycle consistency of the correspondences between an input image pair, the proposed method does not require supervision and works even in cross-spectral settings. In our experiments, we apply the proposed method to stereo matching, which is a dense feature point matching problem. The experimental results, which simulate cross-spectral settings with three different settings, i.e., RGB stereo, RGB vs gray-scale, and anaglyph (red vs cyan), show that our proposed method outperforms the compared methods, which employ handcrafted features for stereo matching, by a significant margin.

Content-Sensitive Superpixels Based on Adaptive Regrowth

Xiaopeng Li, Junlin Xiong

Responsive image

Auto-TLDR; Adaptive Regrowth for Content-Sensitive Superpixels

Slides Poster Similar

In this paper, we propose an efficient method to produce content-sensitive superpixels. Our method produces regular superpixels in relatively homogeneous regions and captures object boundaries in content-dense regions. Compared with the existing content-sensitive superpixel methods,a new adaptive regrowth strategy with an explicit boundary constraint is proposed.The boundary constraint limits the shapes and the sizes of superpixels to ensure semantic consistency. The adaptive regrowth strategy generates more superpixels to capture small objects in content-dense regions. Experiments on the BSDS500 benchmark show that our method outperforms the state-of-the-art superpixel methods in terms of content sensitivity and several standard evaluation metrics.

Learning Knowledge-Rich Sequential Model for Planar Homography Estimation in Aerial Video

Pu Li, Xiaobai Liu

Responsive image

Auto-TLDR; Sequential Estimation of Planar Homographic Transformations over Aerial Videos

Slides Poster Similar

This paper presents an unsupervised approach that leverages raw aerial videos to learn to estimate planar homographic transformation between consecutive video frames. Previous learning-based estimators work on pairs of images to estimate their planar homographic transformations but suffer from severe over-fitting issues, especially when applying over aerial videos. To address this concern, we develop a sequential estimator that directly processes a sequence of video frames and estimates their pairwise planar homographic transformations in batches. We also incorporate a set of spatial-temporal knowledge to regularize the learning of such a sequence-to-sequence model. We collect a set of challenging aerial videos and compare the proposed method to the alternative algorithms. Empirical studies suggest that our sequential model achieves significant improvement over alternative image-based methods and the knowledge-rich regularization further boosts our system performance. Our codes and dataset could be found at https://github.com/Paul-LiPu/DeepVideoHomography

Hybrid Approach for 3D Head Reconstruction: Using Neural Networks and Visual Geometry

Oussema Bouafif, Bogdan Khomutenko, Mohammed Daoudi

Responsive image

Auto-TLDR; Recovering 3D Head Geometry from a Single Image using Deep Learning and Geometric Techniques

Slides Poster Similar

Recovering the 3D geometric structure of a face from a single input image is a challenging active research area in computer vision. In this paper, we present a novel method for reconstructing 3D heads from a single or multiple image(s) using a hybrid approach based on deep learning and geometric techniques. We propose an encoder-decoder network based on the U-net architecture and trained on synthetic data only. It predicts both pixel-wise normal vectors and landmarks maps from a single input photo. Landmarks are used for the pose computation and the initialization of the optimization problem, which, in turn, reconstructs the 3D head geometry by using a parametric morphable model and normal vector fields. State-of-the-art results are achieved through qualitative and quantitative evaluation tests on both single and multi-view settings. Despite the fact that the model was trained only on synthetic data, it successfully recovers 3D geometry and precise poses for real-world images.

Visual Localization for Autonomous Driving: Mapping the Accurate Location in the City Maze

Dongfang Liu, Yiming Cui, Xiaolei Guo, Wei Ding, Baijian Yang, Yingjie Chen

Responsive image

Auto-TLDR; Feature Voting for Robust Visual Localization in Urban Settings

Slides Poster Similar

Accurate localization is a foundational capacity, required for autonomous vehicles to accomplish other tasks such as navigation or path planning. It is a common practice for vehicles to use GPS to acquire location information. However, the application of GPS can result in severe challenges when vehicles run within the inner city where different kinds of structures may shadow the GPS signal and lead to inaccurate location results. To address the localization challenges of urban settings, we propose a novel feature voting technique for visual localization. Different from the conventional front-view-based method, our approach employs views from three directions (front, left, and right) and thus significantly improves the robustness of location prediction. In our work, we craft the proposed feature voting method into three state-of-the-art visual localization networks and modify their architectures properly so that they can be applied for vehicular operation. Extensive field test results indicate that our approach can predict location robustly even in challenging inner-city settings. Our research sheds light on using the visual localization approach to help autonomous vehicles to find accurate location information in a city maze, within a desirable time constraint.

Vehicle Lane Merge Visual Benchmark

Kai Cordes, Hellward Broszio

Responsive image

Auto-TLDR; A Benchmark for Automated Cooperative Maneuvering Using Multi-view Video Streams and Ground Truth Vehicle Description

Slides Poster Similar

Automated driving is regarded as the most promising technology for improving road safety in the future. In this context, connected vehicles have an important role regarding their ability to perform cooperative maneuvers for challenging traffic situations. We propose a benchmark for automated cooperative maneuvers. The targeted cooperative maneuver is the vehicle lane merge where a vehicle on the acceleration lane merges into the traffic of a motorway. The benchmark enables the evaluation of vehicle localization approaches as well as the study of cooperative maneuvers. It consists of temporally synchronized multi-view video streams, highly accurate camera calibration, and ground truth vehicle descriptions, including position, heading, speed, and shape. For benchmark generation, the lane merge maneuver is performed by human drivers on a test track, resulting in 120 lane merge data sets with various traffic situations and video recording conditions.

Video Semantic Segmentation Using Deep Multi-View Representation Learning

Akrem Sellami, Salvatore Tabbone

Responsive image

Auto-TLDR; Deep Multi-view Representation Learning for Video Object Segmentation

Slides Poster Similar

In this paper, we propose a deep learning model based on deep multi-view representation learning, to address the video object segmentation task. The proposed model emphasizes the importance of the inherent correlation between video frames and incorporates a multi-view representation learning based on deep canonically correlated autoencoders. The multi-view representation learning in our model provides an efficient mechanism for capturing inherent correlations by jointly extracting useful features and learning better representation into a joint feature space, i.e., shared representation. To increase the training data and the learning capacity, we train the proposed model with pairs of video frames, i.e., $F_{a}$ and $F_{b}$. During the segmentation phase, the deep canonically correlated autoencoders model encodes useful features by processing multiple reference frames together, which is used to detect the frequently reappearing. Our model enhances the state-of-the-art deep learning-based methods that mainly focus on learning discriminative foreground representations over appearance and motion. Experimental results over two large benchmarks demonstrate the ability of the proposed method to outperform competitive approaches and to reach good performances, in terms of semantic segmentation.

Better Prior Knowledge Improves Human-Pose-Based Extrinsic Camera Calibration

Olivier Moliner, Sangxia Huang, Kalle Åström

Responsive image

Auto-TLDR; Improving Human-pose-based Extrinsic Calibration for Multi-Camera Systems

Slides Poster Similar

Accurate extrinsic calibration of wide baseline multi-camera systems enables better understanding of 3D scenes for many applications and is of great practical importance. Classical Structure-from-Motion calibration methods require special calibration equipment so that accurate point correspondences can be detected between different views. In addition, an operator with some training is usually needed to ensure that data is collected in a way that leads to good calibration accuracy. This limits the ease of adoption of such technologies. Recently, methods have been proposed to use human pose estimation models to establish point correspondences, thus removing the need for any special equipment. The challenge with this approach is that human pose estimation algorithms typically produce much less accurate feature points compared to classical patch-based methods. Another problem is that ambient human motion might not be optimal for calibration. We build upon prior works and introduce several novel ideas to improve the accuracy of human-pose-based extrinsic calibration. Our first contribution is a robust reprojection loss based on a better understanding of the sources of pose estimation error. Our second contribution is a 3D human pose likelihood model learned from motion capture data. We demonstrate significant improvements in calibration accuracy by evaluating our method on four publicly available datasets.

Cost Volume Refinement for Depth Prediction

João L. Cardoso, Nuno Goncalves, Michael Wimmer

Responsive image

Auto-TLDR; Refining the Cost Volume for Depth Prediction from Light Field Cameras

Slides Poster Similar

Light-field cameras are becoming more popular in the consumer market. Their data redundancy allows, in theory, to accurately refocus images after acquisition and to predict the depth of each point visible from the camera. Combined, these two features allow for the generation of full-focus images, which is impossible in traditional cameras. Multiple methods for depth prediction from light fields (or stereo) have been proposed over the years. A large subset of these methods relies on cost-volume estimates -- 3D objects where each layer represents a heuristic of whether each point in the image is at a certain distance from the camera. Generally, this volume is used to regress a disparity map, which is then refined for better results. In this paper, we argue that refining the cost volumes is superior to refining the disparity maps in order to further increase the accuracy of depth predictions. We propose a set of cost-volume refinement algorithms and show their effectiveness.

HPERL: 3D Human Pose Estimastion from RGB and LiDAR

Michael Fürst, Shriya T.P. Gupta, René Schuster, Oliver Wasenmüler, Didier Stricker

Responsive image

Auto-TLDR; 3D Human Pose Estimation Using RGB and LiDAR Using Weakly-Supervised Approach

Slides Poster Similar

In-the-wild human pose estimation has a huge potential for various fields, ranging from animation and action recognition to intention recognition and prediction for autonomous driving. The current state-of-the-art is focused only on RGB and RGB-D approaches for predicting the 3D human pose. However, not using precise LiDAR depth information limits the performance and leads to very inaccurate absolute pose estimation. With LiDAR sensors becoming more affordable and common on robots and autonomous vehicle setups, we propose an end-to-end architecture using RGB and LiDAR to predict the absolute 3D human pose with unprecedented precision. Additionally, we introduce a weakly-supervised approach to generate 3D predictions using 2D pose annotations from PedX. This allows for many new opportunities in the field of 3D human pose estimation.

Manual-Label Free 3D Detection Via an Open-Source Simulator

Zhen Yang, Chi Zhang, Zhaoxiang Zhang, Huiming Guo

Responsive image

Auto-TLDR; DA-VoxelNet: A Novel Domain Adaptive VoxelNet for LIDAR-based 3D Object Detection

Slides Poster Similar

LiDAR based 3D object detectors typically need a large amount of detailed-labeled point cloud data for training, but these detailed labels are commonly expensive to acquire. In this paper, we propose a manual-label free 3D detection algorithm that leverages the CARLA simulator to generate a large amount of self-labeled training samples and introduces a novel Domain Adaptive VoxelNet (DA-VoxelNet) that can cross the distribution gap from the synthetic data to the real scenario. The self-labeled training samples are generated by a set of high quality 3D models embedded in a CARLA simulator and a proposed LiDAR-guided sampling algorithm. Then a DA-VoxelNet that integrates both a sample-level DA module and an anchor-level DA module is proposed to enable the detector trained by the synthetic data to adapt to real scenario. Experimental results show that the proposed unsupervised DA 3D detector on KITTI evaluation set can achieve 76.66% and 56.64% mAP on BEV mode and 3D mode respectively. The results reveal a promising perspective of training a LIDAR-based 3D detector without any hand-tagged label.