Mohammed Daoudi

Papers from this author

Automatic Estimation of Self-Reported Pain by Interpretable Representations of Motion Dynamics

Benjamin Szczapa, Mohammed Daoudi, Stefano Berretti, Pietro Pala, Zakia Hammal, Alberto Del Bimbo

Responsive image

Auto-TLDR; Automatic Pain Intensity Measurement from Facial Points Using Gram Matrices

Slides Poster Similar

We propose an automatic method for pain intensity measurement from video. For each video, pain intensity was measured using the dynamics of facial movement using 66 facial points. Gram matrices formulation was used for facial points trajectory representations on the Riemannian manifold of symmetric positive semi-definite matrices of fixed rank. Curve fitting and temporal alignment were then used to smooth the extracted trajectories. A SVR regression model was then trained to encode the extracted trajectories into ten pain intensity scores consistent with the Visual Analogue Scale for pain intensity measurement. The proposed approach was evaluated using the UNBC McMaster Shoulder Pain Expression database and compared to the state of the art on the same data. Using both 5-folds cross-validation and leave-one-subject-out cross-validation, our results are competitive with respect to state of the art methods.

Hybrid Approach for 3D Head Reconstruction: Using Neural Networks and Visual Geometry

Oussema Bouafif, Bogdan Khomutenko, Mohammed Daoudi

Responsive image

Auto-TLDR; Recovering 3D Head Geometry from a Single Image using Deep Learning and Geometric Techniques

Slides Poster Similar

Recovering the 3D geometric structure of a face from a single input image is a challenging active research area in computer vision. In this paper, we present a novel method for reconstructing 3D heads from a single or multiple image(s) using a hybrid approach based on deep learning and geometric techniques. We propose an encoder-decoder network based on the U-net architecture and trained on synthetic data only. It predicts both pixel-wise normal vectors and landmarks maps from a single input photo. Landmarks are used for the pose computation and the initialization of the optimization problem, which, in turn, reconstructs the 3D head geometry by using a parametric morphable model and normal vector fields. State-of-the-art results are achieved through qualitative and quantitative evaluation tests on both single and multi-view settings. Despite the fact that the model was trained only on synthetic data, it successfully recovers 3D geometry and precise poses for real-world images.