Object Segmentation Tracking from Generic Video Cues

Amirhossein Kardoost, Sabine Müller, Joachim Weickert, Margret Keuper

Responsive image

Auto-TLDR; A Light-Weight Variational Framework for Video Object Segmentation in Videos

Slides Poster

We propose a light-weight variational framework for online tracking of object segmentations in videos based on optical flow and image boundaries. While high-end computer vision methods on this task rely on sequence specific training of dedicated CNN architectures, we show the potential of a variational model, based on generic video information from motion and color. Such cues are usually required for tasks such as robot navigation or grasp estimation. We leverage them directly for video object segmentation and thus provide accurate segmentations at potentially very low extra cost. Our simple method can provide competitive results compared to the costly CNN-based methods with parameter tuning. Furthermore, we show that our approach can be combined with state-of-the-art CNN-based segmentations in order to improve over their respective results. We evaluate our method on the datasets DAVIS 16,17 and SegTrack v2.

Similar papers

Video Semantic Segmentation Using Deep Multi-View Representation Learning

Akrem Sellami, Salvatore Tabbone

Responsive image

Auto-TLDR; Deep Multi-view Representation Learning for Video Object Segmentation

Slides Poster Similar

In this paper, we propose a deep learning model based on deep multi-view representation learning, to address the video object segmentation task. The proposed model emphasizes the importance of the inherent correlation between video frames and incorporates a multi-view representation learning based on deep canonically correlated autoencoders. The multi-view representation learning in our model provides an efficient mechanism for capturing inherent correlations by jointly extracting useful features and learning better representation into a joint feature space, i.e., shared representation. To increase the training data and the learning capacity, we train the proposed model with pairs of video frames, i.e., $F_{a}$ and $F_{b}$. During the segmentation phase, the deep canonically correlated autoencoders model encodes useful features by processing multiple reference frames together, which is used to detect the frequently reappearing. Our model enhances the state-of-the-art deep learning-based methods that mainly focus on learning discriminative foreground representations over appearance and motion. Experimental results over two large benchmarks demonstrate the ability of the proposed method to outperform competitive approaches and to reach good performances, in terms of semantic segmentation.

Siamese Dynamic Mask Estimation Network for Fast Video Object Segmentation

Dexiang Hong, Guorong Li, Kai Xu, Li Su, Qingming Huang

Responsive image

Auto-TLDR; Siamese Dynamic Mask Estimation for Video Object Segmentation

Slides Poster Similar

Video object segmentation(VOS) has been a fundamental topic in recent years, and many deep learning-based methods have achieved state-of-the-art performance on multiple benchmarks. However, most of these methods rely on pixel-level matching between the template and the searched frames on the whole image while the targets only occupy a small region. Calculating on the entire image brings lots of additional computation cost. Besides, the whole image may contain some distracting information resulting in many false-positive matching points. To address this issue, motivated by one-stage instance object segmentation methods, we propose an efficient siamese dynamic mask estimation network for fast video object segmentation. The VOS is decoupled into two tasks, i.e. mask feature learning and dynamic kernel prediction. The former is responsible for learning high-quality features to preserve structural geometric information, and the latter learns a dynamic kernel which is used to convolve with the mask feature to generate a mask output. We use Siamese neural network as a feature extractor and directly predict masks after correlation. In this way, we can avoid using pixel-level matching, making our framework more simple and efficient. Experiment results on DAVIS 2016 /2017 datasets show that our proposed methods can run at 35 frames per second on NVIDIA RTX TITAN while preserving competitive accuracy.

Two-Stage Adaptive Object Scene Flow Using Hybrid CNN-CRF Model

Congcong Li, Haoyu Ma, Qingmin Liao

Responsive image

Auto-TLDR; Adaptive object scene flow estimation using a hybrid CNN-CRF model and adaptive iteration

Slides Poster Similar

Scene flow estimation based on stereo sequences is a comprehensive task relevant to disparity and optical flow. Some existing methods are time-consuming and often fail in the presence of reflective surfaces. In this paper, we propose a two-stage adaptive object scene flow estimation method using a hybrid CNN-CRF model (ACOSF), which benefits from high-quality features and the structured modelling capability. Meanwhile, in order to balance the computational efficiency and accuracy, we employ adaptive iteration for energy function optimization, which is flexible and efficient for various scenes. Besides, we utilize high-quality pixel selection to reduce the computation time with only a slight decrease in accuracy. Our method achieves competitive results with the state-of-the-art, which ranks second on the challenging KITTI 2015 scene flow benchmark.

Learning Object Deformation and Motion Adaption for Semi-Supervised Video Object Segmentation

Xiaoyang Zheng, Xin Tan, Jianming Guo, Lizhuang Ma

Responsive image

Auto-TLDR; Semi-supervised Video Object Segmentation with Mask-propagation-based Model

Slides Poster Similar

We propose a novel method to solve the task of semi-supervised video object segmentation in this paper, where the mask annotation is only given at the first frame of the video sequence. A mask-propagation-based model is applied to learn the past and current information for segmentation. Besides, due to the scarcity of training data, image/mask pairs that model object deformation and shape variance are generated for the training phase. In addition, we generate the key flips between two adjacent frames for motion adaptation. The method works in an end-to-end way, without any online fine-tuning on test videos. Extensive experiments demonstrate that our method achieves competitive performance against state-of-the-art algorithms on benchmark datasets, covering cases with single object or multiple objects. We also conduct extensive ablation experiments to analyze the effectiveness of our proposed method.

ACCLVOS: Atrous Convolution with Spatial-Temporal ConvLSTM for Video Object Segmentation

Muzhou Xu, Shan Zong, Chunping Liu, Shengrong Gong, Zhaohui Wang, Yu Xia

Responsive image

Auto-TLDR; Semi-supervised Video Object Segmentation using U-shape Convolution and ConvLSTM

Slides Poster Similar

Semi-supervised video object segmentation aims at segmenting the target of interest throughout a video sequence when only the annotated mask of the first frame is given. A feasible method for segmentation is to capture the spatial-temporal coherence between frames. However, it may suffer from mask drift when the spatial-temporal coherence is unreliable. To relieve this problem, we propose an encoder-decoder-recurrent model for semi-supervised video object segmentation. The model adopts a U-shape architecture that combines atrous convolution and ConvLSTM to establish the coherence in both the spatial and temporal domains. Furthermore, the weight ratio for each block is also reconstructed to make the model more suitable for the VOS task. We evaluate our method on two benchmarks, DAVIS-2017 and Youtube-VOS, where state-of-the-art segmentation accuracy with a real-time inference speed of 21.3 frames per second on a Tesla P100 is obtained.

Revisiting Sequence-To-Sequence Video Object Segmentation with Multi-Task Loss and Skip-Memory

Fatemeh Azimi, Benjamin Bischke, Sebastian Palacio, Federico Raue, Jörn Hees, Andreas Dengel

Responsive image

Auto-TLDR; Sequence-to-Sequence Learning for Video Object Segmentation

Slides Poster Similar

Video Object Segmentation (VOS) is an active research area of the visual domain. One of its fundamental sub-tasks is semi-supervised / one-shot learning: given only the segmentation mask for the first frame, the task is to provide pixel-accurate masks for the object over the rest of the sequence. Despite much progress in the last years, we noticed that many of the existing approaches lose objects in longer sequences, especially when the object is small or briefly occluded. In this work, we build upon a sequence-to-sequence approach that employs an encoder-decoder architecture together with a memory module for exploiting the sequential data. We further improve this approach by proposing a model that manipulates multi-scale spatio-temporal information using memory-equipped skip connections. Furthermore, we incorporate an auxiliary task based on distance classification which greatly enhances the quality of edges in segmentation masks. We compare our approach to the state of the art and show considerable improvement in the contour accuracy metric and the overall segmentation accuracy.

STaRFlow: A SpatioTemporal Recurrent Cell for Lightweight Multi-Frame Optical Flow Estimation

Pierre Godet, Alexandre Boulch, Aurélien Plyer, Guy Le Besnerais

Responsive image

Auto-TLDR; STaRFlow: A lightweight CNN-based algorithm for optical flow estimation

Slides Poster Similar

We present a new lightweight CNN-based algorithm for multi-frame optical flow estimation. Our solution introduces a double recurrence over spatial scale and time through repeated use of a generic "STaR" (SpatioTemporal Recurrent) cell. It includes (i) a temporal recurrence based on conveying learned features rather than optical flow estimates; (ii) an occlusion detection process which is coupled with optical flow estimation and therefore uses a very limited number of extra parameters. The resulting STaRFlow algorithm gives state-of-the-art performances on MPI Sintel and Kitti2015 and involves significantly less parameters than all other methods with comparable results.

Human Segmentation with Dynamic LiDAR Data

Tao Zhong, Wonjik Kim, Masayuki Tanaka, Masatoshi Okutomi

Responsive image

Auto-TLDR; Spatiotemporal Neural Network for Human Segmentation with Dynamic Point Clouds

Slides Similar

Consecutive LiDAR scans and depth images compose dynamic 3D sequences, which contain more abundant spatiotemporal information than a single frame. Similar to the development history of image and video perception, dynamic 3D sequence perception starts to come into sight after inspiring research on static 3D data perception. This work proposes a spatiotemporal neural network for human segmentation with the dynamic LiDAR point clouds. It takes a sequence of depth images as input. It has a two-branch structure, i.e., the spatial segmentation branch and the temporal velocity estimation branch. The velocity estimation branch is designed to capture motion cues from the input sequence and then propagates them to the other branch. So that the segmentation branch segments humans according to both spatial and temporal features. These two branches are jointly learned on a generated dynamic point cloud data set for human recognition. Our works fill in the blank of dynamic point cloud perception with the spherical representation of point cloud and achieves high accuracy. The experiments indicate that the introduction of temporal feature benefits the segmentation of dynamic point cloud perception.

Early Wildfire Smoke Detection in Videos

Taanya Gupta, Hengyue Liu, Bir Bhanu

Responsive image

Auto-TLDR; Semi-supervised Spatio-Temporal Video Object Segmentation for Automatic Detection of Smoke in Videos during Forest Fire

Poster Similar

Recent advances in unmanned aerial vehicles and camera technology have proven useful for the detection of smoke that emerges above the trees during a forest fire. Automatic detection of smoke in videos is of great interest to Fire department. To date, in most parts of the world, the fire is not detected in its early stage and generally it turns catastrophic. This paper introduces a novel technique that integrates spatial and temporal features in a deep learning framework using semi-supervised spatio-temporal video object segmentation and dense optical flow. However, detecting this smoke in the presence of haze and without the labeled data is difficult. Considering the visibility of haze in the sky, a dark channel pre-processing method is used that reduces the amount of haze in video frames and consequently improves the detection results. Online training is performed on a video at the time of testing that reduces the need for ground-truth data. Tests using the publicly available video datasets show that the proposed algorithms outperform previous work and they are robust across different wildfire-threatened locations.

Learning to Segment Dynamic Objects Using SLAM Outliers

Dupont Romain, Mohamed Tamaazousti, Hervé Le Borgne

Responsive image

Auto-TLDR; Automatic Segmentation of Dynamic Objects Using SLAM Outliers Using Consensus Inversion

Slides Poster Similar

We present a method to automatically learn to segment dynamic objects using SLAM outliers. It requires only one monocular sequence per dynamic object for training and consists in localizing dynamic objects using SLAM outliers, creating their masks, and using these masks to train a semantic segmentation network. We integrate the trained network in ORB-SLAM 2 and LDSO. At runtime we remove features on dynamic objects, making the SLAM unaffected by them. We also propose a new stereo dataset and new metrics to evaluate SLAM robustness. Our dataset includes consensus inversions, i.e., situations where the SLAM uses more features on dynamic objects that on the static background. Consensus inversions are challenging for SLAM as they may cause major SLAM failures. Our approach performs better than the State-of-the-Art on the TUM RGB-D dataset in monocular mode and on our dataset in both monocular and stereo modes.

Siamese Fully Convolutional Tracker with Motion Correction

Mathew Francis, Prithwijit Guha

Responsive image

Auto-TLDR; A Siamese Ensemble for Visual Tracking with Appearance and Motion Components

Slides Poster Similar

Visual tracking algorithms use cues like appearance, structure, motion etc. for locating an object in a video. We propose an ensemble tracker with appearance and motion components. A siamese tracker that learns object appearance from a static image and motion vectors computed between consecutive frames with a flow network forms the ensemble. Motion predicted object localization is used to correct the appearance component in the ensemble. Complementary nature of the components bring performance improvement as observed in experiments performed on VOT2018 and VOT2019 datasets.

SynDHN: Multi-Object Fish Tracker Trained on Synthetic Underwater Videos

Mygel Andrei Martija, Prospero Naval

Responsive image

Auto-TLDR; Underwater Multi-Object Tracking in the Wild with Deep Hungarian Network

Slides Poster Similar

In this paper, we seek to extend multi-object tracking research on a relatively less explored domain, that of, underwater multi-object tracking in the wild. Multi-object fish tracking is an important task because it can provide fish monitoring systems with richer information (e.g. multiple views of the same fish) as compared to detections and it can be an invaluable input to fish behavior analysis. However, there is a lack of an annotated benchmark dataset with enough samples for this task. To circumvent the need for manual ground truth tracking annotation, we craft a synthetic dataset. Using this synthetic dataset, we train an integrated detector and tracker called SynDHN. SynDHN uses the Deep Hungarian Network (DHN), which is a differentiable approximation of the Hungarian assignment algorithm. We repurpose DHN to become the tracking component of our algorithm by performing the task of affinity estimation between detector predictions. We consider both spatial and appearance features for affinity estimation. Our results show that despite being trained on a synthetic dataset, SynDHN generalizes well to real underwater video tracking and performs better against our baseline algorithms.

HMFlow: Hybrid Matching Optical Flow Network for Small and Fast-Moving Objects

Suihanjin Yu, Youmin Zhang, Chen Wang, Xiao Bai, Liang Zhang, Edwin Hancock

Responsive image

Auto-TLDR; Hybrid Matching Optical Flow Network with Global Matching Component

Slides Poster Similar

In optical flow estimation task, coarse-to-fine warping strategy is widely used to deal with the large displacement problem and provides efficiency and speed. However, limited by the small search range between the first images and warped second images, current coarse-to-fine optical flow networks fail to capture small and fast-moving objects which has disappeared at coarse resolution levels. To address this problem, we introduce a lightweight but effective Global Matching Component (GMC) to grab global matching features. We propose a new Hybrid Matching Optical Flow Network (HMFlow) by integrating GMC into existing coarse-to-fine networks seamlessly. Besides keeping in high accuracy and small model size, our proposed HMFlow can apply global matching features to guide the network to discover the small and fast-moving objects mismatched by local matching features. We also build a new dataset, named SFChairs, for evaluation. The experimental results show that our proposed network achieves considerable performance, especially at regions with small and fast-moving objects.

Movement-Induced Priors for Deep Stereo

Yuxin Hou, Muhammad Kamran Janjua, Juho Kannala, Arno Solin

Responsive image

Auto-TLDR; Fusing Stereo Disparity Estimation with Movement-induced Prior Information

Slides Poster Similar

We propose a method for fusing stereo disparity estimation with movement-induced prior information. Instead of independent inference frame-by-frame, we formulate the problem as a non-parametric learning task in terms of a temporal Gaussian process prior with a movement-driven kernel for inter-frame reasoning. We present a hierarchy of three Gaussian process kernels depending on the availability of motion information, where our main focus is on a new gyroscope-driven kernel for handheld devices with low-quality MEMS sensors, thus also relaxing the requirement of having full 6D camera poses available. We show how our method can be combined with two state-of-the-art deep stereo methods. The method either work in a plug-and-play fashion with pre-trained deep stereo networks, or further improved by jointly training the kernels together with encoder--decoder architectures, leading to consistent improvement.

Residual Learning of Video Frame Interpolation Using Convolutional LSTM

Keito Suzuki, Masaaki Ikehara

Responsive image

Auto-TLDR; Video Frame Interpolation Using Residual Learning and Convolutional LSTMs

Slides Poster Similar

Video frame interpolation aims to generate interme- diate frames between the original frames. This produces videos with a higher frame r ate and creates smoother motion. Many video frame interpolation methods first estimate the motion vector between the input frames and then synthesizes the intermediate frame based on the motion. However, these methods rely on the accuracy of the motion estimation step and fail to accurately generate the interpolated frame when the estimated motion vectors are inaccurate. Therefore, to avoid the uncertainties caused by motion estimation, this paper proposes a method that directly generates the intermediate frame. Since two consecutive frames are relatively similar, our method takes the average of these two frames and utilizes residual learning to learn the difference between the average of these frames and the ground truth middle frame. In addition, our method uses Convolutional LSTMs and four input frames to better incorporate spatiotemporal information. This neural network can be easily trained end to end without difficult to obtain data such as optical flow. Our experimental results show that the proposed method can perform favorably against other state-of-the-art frame interpolation methods.

5D Light Field Synthesis from a Monocular Video

Kyuho Bae, Andre Ivan, Hajime Nagahara, In Kyu Park

Responsive image

Auto-TLDR; Synthesis of Light Field Video from Monocular Video using Deep Learning

Slides Similar

Commercially available light field cameras have difficulty in capturing 5D (4D + time) light field videos. They can only capture still light filed images or are excessively expensive for normal users to capture the light field video. To tackle this problem, we propose a deep learning-based method for synthesizing a light field video from a monocular video. We propose a new synthetic light field video dataset that renders photorealistic scenes using Unreal Engine because no light field video dataset is available. The proposed deep learning framework synthesizes the light field video with a full set (9x9) of sub-aperture images from a normal monocular video. The proposed network consists of three sub-networks, namely, feature extraction, 5D light field video synthesis, and temporal consistency refinement. Experimental results show that our model can successfully synthesize the light field video for synthetic and real scenes and outperforms the previous frame-by-frame method quantitatively and qualitatively.

Motion U-Net: Multi-Cue Encoder-Decoder Network for Motion Segmentation

Gani Rahmon, Filiz Bunyak, Kannappan Palaniappan

Responsive image

Auto-TLDR; Motion U-Net: A Deep Learning Framework for Robust Moving Object Detection under Challenging Conditions

Slides Poster Similar

Detection of moving objects is a critical first step in many computer vision applications. Several algorithms for motion and change detection were proposed. However, many of these approaches lack the ability to handle challenging real-world scenarios. Recently, deep learning approaches started to produce impressive solutions to computer vision tasks, particularly for detection and segmentation. Many existing deep learning networks proposed for moving object detection rely only on spatial appearance cues. In this paper, we propose a novel multi-cue and multi-stream network, Motion U-Net (MU-Net), which integrates motion, change, and appearance cues using a deep learning framework for robust moving object detection under challenging conditions. The proposed network consists of a two-stream encoder module followed by feature concatenation and a decoder module. Motion and change cues are computed through our tensor-based motion estimation and a multi-modal background subtraction modules. The proposed system was tested and evaluated on the change detection challenge datasets (CDnet-2014) and compared to state-of-the-art methods. On CDnet-2014 dataset, our approach reaches an average overall F-measure of 0.9852 and outperforms all current state-of-the-art methods. The network was also tested on the unseen SBI-2015 dataset and produced promising results.

Self-Supervised Joint Encoding of Motion and Appearance for First Person Action Recognition

Mirco Planamente, Andrea Bottino, Barbara Caputo

Responsive image

Auto-TLDR; A Single Stream Architecture for Egocentric Action Recognition from the First-Person Point of View

Slides Poster Similar

Wearable cameras are becoming more and more popular in several applications, increasing the interest of the research community in developing approaches for recognizing actions from the first-person point of view. An open challenge in egocentric action recognition is that videos lack detailed information about the main actor's pose and thus tend to record only parts of the movement when focusing on manipulation tasks. Thus, the amount of information about the action itself is limited, making crucial the understanding of the manipulated objects and their context. Many previous works addressed this issue with two-stream architectures, where one stream is dedicated to modeling the appearance of objects involved in the action, and another to extracting motion features from optical flow. In this paper, we argue that learning features jointly from these two information channels is beneficial to capture the spatio-temporal correlations between the two better. To this end, we propose a single stream architecture able to do so, thanks to the addition of a self-supervised block that uses a pretext motion prediction task to intertwine motion and appearance knowledge. Experiments on several publicly available databases show the power of our approach.

Revisiting Optical Flow Estimation in 360 Videos

Keshav Bhandari, Ziliang Zong, Yan Yan

Responsive image

Auto-TLDR; LiteFlowNet360: A Domain Adaptation Framework for 360 Video Optical Flow Estimation

Slides Similar

Nowadays 360 video analysis has become a significant research topic in the field since the appearance of high-quality and low-cost 360 wearable devices. In this paper, we propose a novel LiteFlowNet360 architecture for 360 videos optical flow estimation. We design LiteFlowNet360 as a domain adaptation framework from perspective video domain to 360 video domain. We adapt it from simple kernel transformation techniques inspired by Kernel Transformer Network (KTN) to cope with inherent distortion in 360 videos caused by the sphere-to-plane projection. First, we apply an incremental transformation of convolution layers in feature pyramid network and show that further transformation in inference and regularization layers are not important, hence reducing the network growth in terms of size and computation cost. Second, we refine the network by training with augmented data in a supervised manner. We perform data augmentation by projecting the images in a sphere and re-projecting to a plane. Third, we train LiteFlowNet360 in a self-supervised manner using target domain 360 videos. Experimental results show the promising results of 360 video optical flow estimation using the proposed novel architecture.

Real-Time Monocular Depth Estimation with Extremely Light-Weight Neural Network

Mian Jhong Chiu, Wei-Chen Chiu, Hua-Tsung Chen, Jen-Hui Chuang

Responsive image

Auto-TLDR; Real-Time Light-Weight Depth Prediction for Obstacle Avoidance and Environment Sensing with Deep Learning-based CNN

Slides Poster Similar

Obstacle avoidance and environment sensing are crucial applications in autonomous driving and robotics. Among all types of sensors, RGB camera is widely used in these applications as it can offer rich visual contents with relatively low-cost, and using a single image to perform depth estimation has become one of the main focuses in resent research works. However, prior works usually rely on highly complicated computation and power-consuming GPU to achieve such task; therefore, we focus on developing a real-time light-weight system for depth prediction in this paper. Based on the well-known encoder-decoder architecture, we propose a supervised learning-based CNN with detachable decoders that produce depth predictions with different scales. We also formulate a novel log-depth loss function that computes the difference of predicted depth map and ground truth depth map in log space, so as to increase the prediction accuracy for nearby locations. To train our model efficiently, we generate depth map and semantic segmentation with complex teacher models. Via a series of ablation studies and experiments, it is validated that our model can efficiently performs real-time depth prediction with only 0.32M parameters, with the best trained model outperforms previous works on KITTI dataset for various evaluation matrices.

What and How? Jointly Forecasting Human Action and Pose

Yanjun Zhu, Yanxia Zhang, Qiong Liu, Andreas Girgensohn

Responsive image

Auto-TLDR; Forecasting Human Actions and Motion Trajectories with Joint Action Classification and Pose Regression

Slides Poster Similar

Forecasting human actions and motion trajectories addresses the problem of predicting what a person is going to do next and how they will perform it. This is crucial in a wide range of applications such as assisted living and future co-robotic settings. We propose to simultaneously learn actions and action-related human motion dynamics, while existing works perform them independently. In this paper, we present a method to jointly forecast categories of human action and the pose of skeletal joints in the hope that the two tasks can help each other. As a result, our system can predict not only the future actions but also the motion trajectories that will result. To achieve this, we define a task of joint action classification and pose regression. We employ a sequence to sequence encoder-decoder model combined with multi-task learning to forecast future actions and poses progressively before the action happens. Experimental results on two public datasets, IkeaDB and OAD, demonstrate the effectiveness of the proposed method.

A Fine-Grained Dataset and Its Efficient Semantic Segmentation for Unstructured Driving Scenarios

Kai Andreas Metzger, Peter Mortimer, Hans J "Joe" Wuensche

Responsive image

Auto-TLDR; TAS500: A Semantic Segmentation Dataset for Autonomous Driving in Unstructured Environments

Slides Poster Similar

Research in autonomous driving for unstructured environments suffers from a lack of semantically labeled datasets compared to its urban counterpart. Urban and unstructured outdoor environments are challenging due to the varying lighting and weather conditions during a day and across seasons. In this paper, we introduce TAS500, a novel semantic segmentation dataset for autonomous driving in unstructured environments. TAS500 offers fine-grained vegetation and terrain classes to learn drivable surfaces and natural obstacles in outdoor scenes effectively. We evaluate the performance of modern semantic segmentation models with an additional focus on their efficiency. Our experiments demonstrate the advantages of fine-grained semantic classes to improve the overall prediction accuracy, especially along the class boundaries. The dataset, code, and pretrained model are available online.

OmniFlowNet: A Perspective Neural Network Adaptation for Optical Flow Estimation in Omnidirectional Images

Charles-Olivier Artizzu, Haozhou Zhang, Guillaume Allibert, Cédric Demonceaux

Responsive image

Auto-TLDR; OmniFlowNet: A Convolutional Neural Network for Omnidirectional Optical Flow Estimation

Slides Poster Similar

Spherical cameras and the latest image processing techniques open up new horizons. In particular, methods based on Convolutional Neural Networks (CNNs) now give excellent results for optical flow estimation on perspective images. However, these approaches are highly dependent on their architectures and training datasets. This paper proposes to benefit from years of improvement in perspective images optical flow estimation and to apply it to omnidirectional ones without training on new datasets. Our network, OmniFlowNet, is built on a CNN specialized in perspective images. Its convolution operation is adapted to be consistent with the equirectangular projection. Tested on spherical datasets created with Blender and several equirectangular videos realized from real indoor and outdoor scenes, OmniFlowNet shows better performance than its original network.

P2D: A Self-Supervised Method for Depth Estimation from Polarimetry

Marc Blanchon, Desire Sidibe, Olivier Morel, Ralph Seulin, Daniel Braun, Fabrice Meriaudeau

Responsive image

Auto-TLDR; Polarimetric Regularization for Monocular Depth Estimation

Slides Poster Similar

Monocular depth estimation is a recurring subject in the field of computer vision. Its ability to describe scenes via a depth map while reducing the constraints related to the formulation of perspective geometry tends to favor its use. However, despite the constant improvement of algorithms, most methods exploit only colorimetric information. Consequently, robustness to events to which the modality is not sensitive to, like specularity or transparency, is neglected. In response to this phenomenon, we propose using polarimetry as an input for a self-supervised monodepth network. Therefore, we propose exploiting polarization cues to encourage accurate reconstruction of scenes. Furthermore, we include a term of polarimetric regularization to state-of-the-art method to take specific advantage of the data. Our method is evaluated both qualitatively and quantitatively demonstrating that the contribution of this new information as well as an enhanced loss function improves depth estimation results, especially for specular areas.

Online Object Recognition Using CNN-Based Algorithm on High-Speed Camera Imaging

Shigeaki Namiki, Keiko Yokoyama, Shoji Yachida, Takashi Shibata, Hiroyoshi Miyano, Masatoshi Ishikawa

Responsive image

Auto-TLDR; Real-Time Object Recognition with High-Speed Camera Imaging with Population Data Clearing and Data Ensemble

Slides Poster Similar

High-speed camera imaging (e.g., 1,000 fps) is effective to detect and recognize objects moving at high speeds because temporally dense images obtained by a high-speed camera can usually capture the best moment for object detection and recognition. However, the latest recognition algorithms, with their high complexity, are difficult to utilize in real-time applications involving high-speed cameras because a vast amount of images need to be processed with no latency. To tackle this problem, we propose a novel framework for real-time object recognition with high-speed camera imaging. The proposed framework has the key processes of population data cleansing and data ensemble. Population data cleansing improves the recognition accuracy by quantifying the recognizability and by excluding part of the images prior to the recognition process, while data ensemble improves the robustness of object recognition by merging the class probabilities with multiple images of the same object. Experimental results with a real dataset show that our framework is more effective than existing methods.

DAL: A Deep Depth-Aware Long-Term Tracker

Yanlin Qian, Song Yan, Alan Lukežič, Matej Kristan, Joni-Kristian Kamarainen, Jiri Matas

Responsive image

Auto-TLDR; Deep Depth-Aware Long-Term RGBD Tracking with Deep Discriminative Correlation Filter

Slides Poster Similar

The best RGBD trackers provide high accuracy but are slow to run. On the other hand, the best RGB trackers are fast but clearly inferior on the RGBD datasets. In this work, we propose a deep depth-aware long-term tracker that achieves state-of-the-art RGBD tracking performance and is fast to run. We reformulate deep discriminative correlation filter (DCF) to embed the depth information into deep features. Moreover, the same depth-aware correlation filter is used for target re- detection. Comprehensive evaluations show that the proposed tracker achieves state-of-the-art performance on the Princeton RGBD, STC, and the newly-released CDTB benchmarks and runs 20 fps.

A Grid-Based Representation for Human Action Recognition

Soufiane Lamghari, Guillaume-Alexandre Bilodeau, Nicolas Saunier

Responsive image

Auto-TLDR; GRAR: Grid-based Representation for Action Recognition in Videos

Slides Poster Similar

Human action recognition (HAR) in videos is a fundamental research topic in computer vision. It consists mainly in understanding actions performed by humans based on a sequence of visual observations. In recent years, HAR have witnessed significant progress, especially with the emergence of deep learning models. However, most of existing approaches for action recognition rely on information that is not always relevant for the task, and are limited in the way they fuse temporal information. In this paper, we propose a novel method for human action recognition that encodes efficiently the most discriminative appearance information of an action with explicit attention on representative pose features, into a new compact grid representation. Our GRAR (Grid-based Representation for Action Recognition) method is tested on several benchmark datasets that demonstrate that our model can accurately recognize human actions, despite intra-class appearance variations and occlusion challenges.

A Lightweight Network to Learn Optical Flow from Event Data

Zhuoyan Li, Jiawei Shen

Responsive image

Auto-TLDR; A lightweight pyramid network with attention mechanism to learn optical flow from events data

Similar

Existing deep neural networks have found success in estimation of event-based optical flow, but are at the expense of complicated architectures. Moreover, few prior works discuss how to tackle with the noise problem of event camera, which would severely contaminate the data quality and make estimation an ill-posed problem. In this work, we present a lightweight pyramid network with attention mechanism to learn optical flow from events data. Specially, the network is designed according to two-well established principles: Laplacian pyramidal decomposition and channel attention mechanism. By integrating Laplacian pyramidal processing into CNN, the learning problem is simplified into several subproblems at each pyramid level, which can be handled by a relatively shallow network with few parameters. The channel attention block, embedded in each pyramid level, treats channels of feature map unequally and provides extra flexibility in suppressing background noises. The size of the proposed network is about only 5% of previous methods while our method still achieves state-of-the-art performance on the benchmark dataset. The experimental video samples of continuous flow estimation is presented at :https://github.com/xfleezy/blob.

Towards Practical Compressed Video Action Recognition: A Temporal Enhanced Multi-Stream Network

Bing Li, Longteng Kong, Dongming Zhang, Xiuguo Bao, Di Huang, Yunhong Wang

Responsive image

Auto-TLDR; TEMSN: Temporal Enhanced Multi-Stream Network for Compressed Video Action Recognition

Slides Poster Similar

Current compressed video action recognition methods are mainly based on completely received compressed videos. However, in real transmission, the compressed video packets are usually disorderly received and lost due to network jitters or congestion. It is of great significance to recognize actions in early phases with limited packets, e.g. forecasting the potential risks from videos quickly. In this paper, we proposed a Temporal Enhanced Multi-Stream Network (TEMSN) for practical compressed video action recognition. First, we use three compressed modalities as complementary cues and build a multi-stream network to capture the rich information from compressed video packets. Second, we design a temporal enhanced module based on Encoder-Decoder structure applied on each stream to infer the missing packets, and generate more complete action dynamics. Thanks to the rich modalities and temporal enhancement, our approach is able to better modeling the action with limited compressed packets. Experiments on HMDB-51 and UCF-101 dataset validate its effectiveness and efficiency.

Motion-Supervised Co-Part Segmentation

Aliaksandr Siarohin, Subhankar Roy, Stéphane Lathuiliere, Sergey Tulyakov, Elisa Ricci, Nicu Sebe

Responsive image

Auto-TLDR; Self-supervised Co-Part Segmentation Using Motion Information from Videos

Slides Similar

Recent co-part segmentation methods mostly operate in a supervised learning setting, which requires a large amount of annotated data for training. To overcome this limitation, we propose a self-supervised deep learning method for co-part segmentation. Differently from previous works, our approach develops the idea that motion information inferred from videos can be leveraged to discover meaningful object parts. To this end, our method relies on pairs of frames sampled from the same video. The network learns to predict part segments together with a representation of the motion between two frames, which permits reconstruction of the target image. Through extensive experimental evaluation on publicly available video sequences we demonstrate that our approach can produce improved segmentation maps with respect to previous self-supervised co-part segmentation approaches.

Edge-Aware Monocular Dense Depth Estimation with Morphology

Zhi Li, Xiaoyang Zhu, Haitao Yu, Qi Zhang, Yongshi Jiang

Responsive image

Auto-TLDR; Spatio-Temporally Smooth Dense Depth Maps Using Only a CPU

Slides Poster Similar

Dense depth maps play an important role in Computer Vision and AR (Augmented Reality). For CV applications, a dense depth map is the cornerstone of 3D reconstruction allowing real objects to be precisely displayed in the computer. And Dense depth maps can handle correct occlusion relationships between virtual content and real objects for better user experience in AR. However, the complicated computation limits the development of computing dense depth maps. We present a novel algorithm that produces low latency, spatio-temporally smooth dense depth maps using only a CPU. The depth maps exhibit sharp discontinuities at depth edges in low computational complexity ways. Our algorithm obtains the sparse SLAM reconstruction first, then extracts coarse depth edges from a down-sampled RGB image by morphology operations. Next, we thin the depth edges and align them with image edges. Finally, a Warm-Start initialization scheme and an improved optimization solver are adopted to accelerate convergence. We evaluate our proposal quantitatively and the result shows improvements on the accuracy of depth map with respect to other state-of-the-art and baseline techniques.

SAILenv: Learning in Virtual Visual Environments Made Simple

Enrico Meloni, Luca Pasqualini, Matteo Tiezzi, Marco Gori, Stefano Melacci

Responsive image

Auto-TLDR; SAILenv: A Simple and Customized Platform for Visual Recognition in Virtual 3D Environment

Slides Poster Similar

Recently, researchers in Machine Learning algorithms, Computer Vision scientists, engineers and others, showed a growing interest in 3D simulators as a mean to artificially create experimental settings that are very close to those in the real world. However, most of the existing platforms to interface algorithms with 3D environments are often designed to setup navigation-related experiments, to study physical interactions, or to handle ad-hoc cases that are not thought to be customized, sometimes lacking a strong photorealistic appearance and an easy-to-use software interface. In this paper, we present a novel platform, SAILenv, that is specifically designed to be simple and customizable, and that allows researchers to experiment visual recognition in virtual 3D scenes. A few lines of code are needed to interface every algorithm with the virtual world, and non-3D-graphics experts can easily customize the 3D environment itself, exploiting a collection of photorealistic objects. Our framework yields pixel-level semantic and instance labeling, depth, and, to the best of our knowledge, it is the only one that provides motion-related information directly inherited from the 3D engine. The client-server communication operates at a low level, avoiding the overhead of HTTP-based data exchanges. We perform experiments using a state-of-the-art object detector trained on real-world images, showing that it is able to recognize the photorealistic 3D objects of our environment. The computational burden of the optical flow compares favourably with the estimation performed using modern GPU-based convolutional networks or more classic implementations. We believe that the scientific community will benefit from the easiness and high-quality of our framework to evaluate newly proposed algorithms in their own customized realistic conditions.

Extending Single Beam Lidar to Full Resolution by Fusing with Single Image Depth Estimation

Yawen Lu, Yuxing Wang, Devarth Parikh, Guoyu Lu

Responsive image

Auto-TLDR; Self-supervised LIDAR for Low-Cost Depth Estimation

Slides Similar

Depth estimation is playing an important role in indoor and outdoor scene understanding, autonomous driving, augmented reality and many other tasks. Vehicles and robotics are able to use active illumination sensors such as LIDAR to receive high precision depth estimation. However, high-resolution Lidars are usually too expensive, which limits its massive production on various applications. Though single beam LIDAR enjoys the benefits of low cost, one beam depth sensing is not usually sufficient to perceive the surrounding environment in many scenarios. In this paper, we propose a learning-based framework to explore to replicate similar or even higher performance as costly LIDARs with our designed self-supervised network and a low-cost single-beam LIDAR. After the accurate calibration with a visible camera, the single beam LIDAR can adjust the scale uncertainty of the depth map estimated by the visible camera. The adjusted depth map enjoys the benefits of high resolution and sensing accuracy as high beam LIDAR and maintains low-cost as single beam LIDAR. Thus we can achieve similar sensing effect of high beam LIDAR with more than a 50-100 times cheaper price (e.g., \$80000 Velodyne HDL-64E LIDAR v.s. \$1000 SICK TIM-781 2D LIDAR and normal camera). The proposed approach is verified on our collected dataset and public dataset with superior depth-sensing performance.

Weakly Supervised Geodesic Segmentation of Egyptian Mummy CT Scans

Avik Hati, Matteo Bustreo, Diego Sona, Vittorio Murino, Alessio Del Bue

Responsive image

Auto-TLDR; A Weakly Supervised and Efficient Interactive Segmentation of Ancient Egyptian Mummies CT Scans Using Geodesic Distance Measure and GrabCut

Slides Poster Similar

In this paper, we tackle the task of automatically analyzing 3D volumetric scans obtained from computed tomography (CT) devices. In particular, we address a particular task for which data is very limited: the segmentation of ancient Egyptian mummies CT scans. We aim at digitally unwrapping the mummy and identify different segments such as body, bandages and jewelry. The problem is complex because of the lack of annotated data for the different semantic regions to segment, thus discouraging the use of strongly supervised approaches. We, therefore, propose a weakly supervised and efficient interactive segmentation method to solve this challenging problem. After segmenting the wrapped mummy from its exterior region using histogram analysis and template matching, we first design a voxel distance measure to find an approximate solution for the body and bandage segments. Here, we use geodesic distances since voxel features as well as spatial relationship among voxels is incorporated in this measure. Next, we refine the solution using a GrabCut based segmentation together with a tracking method on the slices of the scan that assigns labels to different regions in the volume, using limited supervision in the form of scribbles drawn by the user. The efficiency of the proposed method is demonstrated using visualizations and validated through quantitative measures and qualitative unwrapping of the mummy.

Leveraging a Weakly Adversarial Paradigm for Joint Learning of Disparity and Confidence Estimation

Matteo Poggi, Fabio Tosi, Filippo Aleotti, Stefano Mattoccia

Responsive image

Auto-TLDR; Joint Training of Deep-Networks for Outlier Detection from Stereo Images

Slides Poster Similar

Deep architectures represent the state-of-the-art for perceiving depth from stereo images. Although these methods are highly accurate, it is crucial to effectively detect any outlier through confidence measures since a wrong perception of even small portions of the sensed scene might lead to catastrophic consequences, for instance, in autonomous driving. Purposely, state-of-the-art confidence estimation methods rely on deep-networks as well. In this paper, arguing that these tasks are two sides of the same coin, we propose a novel paradigm for their joint training. Specifically, inspired by the successful deployment of GANs in other fields, we design two deep architectures: a generator for disparity estimation and a discriminator for distinguishing correct assignments from outliers. The two networks are jointly trained in a new peculiar weakly adversarial manner pushing the former to fix the errors detected by the discriminator while keeping the correct prediction unchanged. Experimental results on standard stereo datasets prove that such joint training paradigm yields significant improvements. Moreover, an additional outcome of our proposal is the ability to detect outliers with better accuracy compared to the state-of-the-art.

Video Object Detection Using Object's Motion Context and Spatio-Temporal Feature Aggregation

Jaekyum Kim, Junho Koh, Byeongwon Lee, Seungji Yang, Jun Won Choi

Responsive image

Auto-TLDR; Video Object Detection Using Spatio-Temporal Aggregated Features and Gated Attention Network

Slides Poster Similar

The deep learning technique has recently led to significant improvement in object-detection accuracy. Numerous object detection schemes have been designed to process each frame independently. However, in many applications, object detection is performed using video data, which consists of a sequence of two-dimensional (2D) image frames. Thus, the object detection accuracy can be improved by exploiting the temporal context of the video sequence. In this paper, we propose a novel video object detection method that exploits both the motion context of the object and spatio-temporal aggregated features in the video sequence to enhance the object detection performance. First, the motion of the object is captured by the correlation between the spatial feature maps of two adjacent frames. Then, the embedding vector, representing the motion context, is obtained by feeding the N correlation maps to long short term memory (LSTM). In addition to generating the motion context vector, the spatial feature maps for N adjacent frames are aggregated to boost the quality of the feature map. The gated attention network is employed to selectively combine only highly correlated feature maps based on their relevance. While most video object detectors are applied to two-stage detectors, our proposed method is applicable to one-stage detectors, which tend to be preferred for practical applications owing to reduced computational complexity. Our numerical evaluation conducted on the ImageNet VID dataset shows that our network offers significant performance gain over baseline algorithms, and it outperforms the existing state-of-the-art one-stage video object detection methods.

FC-DCNN: A Densely Connected Neural Network for Stereo Estimation

Dominik Hirner, Friedrich Fraundorfer

Responsive image

Auto-TLDR; FC-DCNN: A Lightweight Network for Stereo Estimation

Slides Poster Similar

We propose a novel lightweight network for stereo estimation. Our network consists of a fully-convolutional densely connected neural network (FC-DCNN) that computes matching costs between rectified image pairs. Our FC-DCNN method learns expressive features and performs some simple but effective post-processing steps. The densely connected layer structure connects the output of each layer to the input of each subsequent layer. This network structure in addition to getting rid of any fully-connected layers leads to a very lightweight network. The output of this network is used in order to calculate matching costs and create a cost-volume. Instead of using time and memory-inefficient cost-aggregation methods such as semi-global matching or conditional random fields in order to improve the result, we rely on filtering techniques, namely median filter and guided filter. By computing a left-right consistency check we get rid of inconsistent values. Afterwards we use a watershed foreground-background segmentation on the disparity image with removed inconsistencies. This mask is then used to refine the final prediction. We show that our method works well for both challenging indoor and outdoor scenes by evaluating it on the Middlebury, KITTI and ETH3D benchmarks respectively.

Automated Whiteboard Lecture Video Summarization by Content Region Detection and Representation

Bhargava Urala Kota, Alexander Stone, Kenny Davila, Srirangaraj Setlur, Venu Govindaraju

Responsive image

Auto-TLDR; A Framework for Summarizing Whiteboard Lecture Videos Using Feature Representations of Handwritten Content Regions

Poster Similar

Lecture videos are rapidly becoming an invaluable source of information for students across the globe. Given the large number of online courses currently available, it is important to condense the information within these videos into a compact yet representative summary that can be used for search-based applications. We propose a framework to summarize whiteboard lecture videos by finding feature representations of detected handwritten content regions to determine unique content. We investigate multi-scale histogram of gradients and embeddings from deep metric learning for feature representation. We explicitly handle occluded, growing and disappearing handwritten content. Our method is capable of producing two kinds of lecture video summaries - the unique regions themselves or so-called key content and keyframes (which contain all unique content in a video segment). We use weighted spatio-temporal conflict minimization to segment the lecture and produce keyframes from detected regions and features. We evaluate both types of summaries and find that we obtain state-of-the-art peformance in terms of number of summary keyframes while our unique content recall and precision are comparable to state-of-the-art.

ResFPN: Residual Skip Connections in Multi-Resolution Feature Pyramid Networks for Accurate Dense Pixel Matching

Rishav ., René Schuster, Ramy Battrawy, Oliver Wasenmüler, Didier Stricker

Responsive image

Auto-TLDR; Resolution Feature Pyramid Networks for Dense Pixel Matching

Slides Similar

Dense pixel matching is required for many computer vision algorithms such as disparity, optical flow or scene flow estimation. Feature Pyramid Networks (FPN) have proven to be a suitable feature extractor for CNN-based dense matching tasks. FPN generates well localized and semantically strong features at multiple scales. However, the generic FPN is not utilizing its full potential, due to its reasonable but limited localization accuracy. Thus, we present ResFPN – a multiresolution feature pyramid network with multiple residual skip connections, where at any scale, we leverage the information from higher resolution maps for stronger and better localized features. In our ablation study we demonstrate the effectiveness of our novel architecture with clearly higher accuracy than FPN. In addition, we verify the superior accuracy of ResFPN in many different pixel matching applications on established datasets like KITTI, Sintel, and FlyingThings3D.

A Boundary-Aware Distillation Network for Compressed Video Semantic Segmentation

Hongchao Lu

Responsive image

Auto-TLDR; A Boundary-Aware Distillation Network for Video Semantic Segmentation

Slides Poster Similar

In recent years optical flow is often estimated to reuse features so as to accelerate video semantic segmentation. With addition of optical flow network, however, extra cost may incur and accuracy may thus be degraded because of repeated warping operation. In this paper, we propose a boundary-aware distillation network (BDNet) that replaces optical flow network with block motion vectors encoded in compressed video, resulting in negligible computational complexity. In order to make salient features, an auxiliary boundary-aware stream is added to the main stream to jointly estimate silhouette and segmentation of objects. To further correct warped features, a well-trained teacher network is employed to transfer knowledge to the main stream. Both boundary-aware stream and the teacher network are neglected during inference stage, so that video segmentation network enables to get faster without increasing any computational burden. By splitting the task into three components, our BDNet shows almost 10% time saving as well as 1.6% accuracy improvement over baseline on the Cityscapes dataset.

Robust Visual Object Tracking with Two-Stream Residual Convolutional Networks

Ning Zhang, Jingen Liu, Ke Wang, Dan Zeng, Tao Mei

Responsive image

Auto-TLDR; Two-Stream Residual Convolutional Network for Visual Tracking

Slides Poster Similar

The current deep learning based visual tracking approaches have been very successful by learning the target classification and/or estimation model from a large amount of supervised training data in offline mode. However, most of them can still fail in tracking objects due to some more challenging issues such as dense distractor objects, confusing background, motion blurs, and so on. Inspired by the human ``visual tracking'' capability which leverages motion cues to distinguish the target from the background, we propose a Two-Stream Residual Convolutional Network (TS-RCN) for visual tracking, which successfully exploits both appearance and motion features for model update. Our TS-RCN can be integrated with existing deep learning based visual trackers. To further improve the tracking performance, we adopt a ``wider'' residual network ResNeXt as its feature extraction backbone. To the best of our knowledge, TS-RCN is the first end-to-end trainable two-stream visual tracking system, which makes full use of both appearance and motion features of the target. We have extensively evaluated the TS-RCN on most widely used benchmark datasets including VOT2018, VOT2019, and GOT-10K. The experiment results have successfully demonstrated that our two-stream model can greatly outperform the appearance based tracker, and it also achieves state-of-the-art performance. The tracking system can run at up to 38.1 FPS.

GraphBGS: Background Subtraction Via Recovery of Graph Signals

Jhony Heriberto Giraldo Zuluaga, Thierry Bouwmans

Responsive image

Auto-TLDR; Graph BackGround Subtraction using Graph Signals

Slides Poster Similar

Background subtraction is a fundamental pre-processing task in computer vision. This task becomes challenging in real scenarios due to variations in the background for both static and moving camera sequences. Several deep learning methods for background subtraction have been proposed in the literature with competitive performances. However, these models show performance degradation when tested on unseen videos; and they require huge amount of data to avoid overfitting. Recently, graph-based algorithms have been successful approaching unsupervised and semi-supervised learning problems. Furthermore, the theory of graph signal processing and semi-supervised learning have been combined leading to new insights in the field of machine learning. In this paper, concepts of recovery of graph signals are introduced in the problem of background subtraction. We propose a new algorithm called Graph BackGround Subtraction (GraphBGS), which is composed of: instance segmentation, background initialization, graph construction, graph sampling, and a semi-supervised algorithm inspired from the theory of recovery of graph signals. Our algorithm has the advantage of requiring less data than deep learning methods while having competitive results on both: static and moving camera videos. GraphBGS outperforms unsupervised and supervised methods in several challenging conditions on the publicly available Change Detection (CDNet2014), and UCSD background subtraction databases.

PA-FlowNet: Pose-Auxiliary Optical Flow Network for Spacecraft Relative Pose Estimation

Zhi Yu Chen, Po-Heng Chen, Kuan-Wen Chen, Chen-Yu Chan

Responsive image

Auto-TLDR; PA-FlowNet: An End-to-End Pose-auxiliary Optical Flow Network for Space Travel and Landing

Slides Poster Similar

During the process of space travelling and space landing, the spacecraft attitude estimation is the indispensable work for navigation. Since there are not enough satellites for GPS-like localization in space, the computer vision technique is adopted to address the issue. The most crucial task for localization is the extraction of correspondences. In computer vision, optical flow estimation is often used for finding correspondences between images. As the deep neural network being more popular in recent years, FlowNet2 has played a vital role which achieves great success. In this paper, we present PA-FlowNet, an end-to-end pose-auxiliary optical flow network which can use the predicted relative camera pose to improve the performance of optical flow. PA-FlowNet is composed of two sub-networks, the foreground-attention flow network and the pose regression network. The foreground-attention flow network is constructed bybased on FlowNet2 model and modified with the proposed foreground-attention approach. We introduced this approach with the concept of curriculum learning for foreground-background segmentation to avoid backgrounds from resulting in flow prediction error. The pose regression network is used to regress the relative camera pose as an auxiliary for increasing the accuracy of the flow estimation. In addition, to simulate the test environment for spacecraft pose estimation, we construct a 64K moon model and to simulate aerial photography with various attitudes to generate Moon64K dataset in this paper. PA-FlowNet significantly outperforms all existing methods on our the proposed Moon64K dataset. Furthermore, we also predict the relative pose via proposed PA-FlowNet and accomplish the remarkable performance.

Modeling Long-Term Interactions to Enhance Action Recognition

Alejandro Cartas, Petia Radeva, Mariella Dimiccoli

Responsive image

Auto-TLDR; A Hierarchical Long Short-Term Memory Network for Action Recognition in Egocentric Videos

Slides Poster Similar

In this paper, we propose a new approach to understand actions in egocentric videos that exploit the semantics of object interactions at both frame and temporal levels. At the frame level, we use a region-based approach that takes as input a primary region roughly corresponding to the user hands and a set of secondary regions potentially corresponding to the interacting objects and calculates the action score through a CNN formulation. This information is then fed to a Hierarchical Long Short-Term Memory Network (HLSTM) that captures temporal dependencies between actions within and across shots. Ablation studies thoroughly validate the proposed approach, showing in particular that both levels of the HLSTM architecture contribute to performance improvement. Furthermore, quantitative comparisons show that the proposed approach outperforms the state-of-the-art in terms of action recognition on standard benchmarks, without relying on motion information.

Learning to Take Directions One Step at a Time

Qiyang Hu, Adrian Wälchli, Tiziano Portenier, Matthias Zwicker, Paolo Favaro

Responsive image

Auto-TLDR; Generating a Sequence of Motion Strokes from a Single Image

Slides Poster Similar

We present a method to generate a video sequence given a single image. Because items in an image can be animated in arbitrarily many different ways, we introduce as control signal a sequence of motion strokes. Such control signal can be automatically transferred from other videos, e.g., via bounding box tracking. Each motion stroke provides the direction to the moving object in the input image and we aim to train a network to generate an animation following a sequence of such directions. To address this task we design a novel recurrent architecture, which can be trained easily and effectively thanks to an explicit separation of past, future and current states. As we demonstrate in the experiments, our proposed architecture is capable of generating an arbitrary number of frames from a single image and a sequence of motion strokes. Key components of our architecture are an autoencoding constraint to ensure consistency with the past and a generative adversarial scheme to ensure that images look realistic and are temporally smooth. We demonstrate the effectiveness of our approach on the MNIST, KTH, Human3.6M, Push and Weizmann datasets.

FOANet: A Focus of Attention Network with Application to Myocardium Segmentation

Zhou Zhao, Elodie Puybareau, Nicolas Boutry, Thierry Geraud

Responsive image

Auto-TLDR; FOANet: A Hybrid Loss Function for Myocardium Segmentation of Cardiac Magnetic Resonance Images

Slides Poster Similar

In myocardium segmentation of cardiac magnetic resonance images, ambiguities often appear near the boundaries of the target domains due to tissue similarities. To address this issue, we propose a new architecture, called FOANet, which can be decomposed in three main steps: a localization step, a Gaussian-based contrast enhancement step, and a segmentation step. This architecture is supplied with a hybrid loss function that guides the FOANet to study the transformation relationship between the input image and the corresponding label in a threelevel hierarchy (pixel-, patch- and map-level), which is helpful to improve segmentation and recovery of the boundaries. We demonstrate the efficiency of our approach on two public datasets in terms of regional and boundary segmentations.

RONELD: Robust Neural Network Output Enhancement for Active Lane Detection

Zhe Ming Chng, Joseph Mun Hung Lew, Jimmy Addison Lee

Responsive image

Auto-TLDR; Real-Time Robust Neural Network Output Enhancement for Active Lane Detection

Slides Poster Similar

Accurate lane detection is critical for navigation in autonomous vehicles, particularly the active lane which demarcates the single road space that the vehicle is currently traveling on. Recent state-of-the-art lane detection algorithms utilize convolutional neural networks (CNNs) to train deep learning models on popular benchmarks such as TuSimple and CULane. While each of these models works particularly well on train and test inputs obtained from the same dataset, the performance drops significantly on unseen datasets of different environments. In this paper, we present a real-time robust neural network output enhancement for active lane detection (RONELD) method to identify, track, and optimize active lanes from deep learning probability map outputs. We first adaptively extract lane points from the probability map outputs, followed by detecting curved and straight lanes before using weighted least squares linear regression on straight lanes to fix broken lane edges resulting from fragmentation of edge maps in real images. Lastly, we hypothesize true active lanes through tracking preceding frames. Experimental results demonstrate an up to two-fold increase in accuracy using RONELD on cross-dataset validation tests.

Tracking Fast Moving Objects by Segmentation Network

Ales Zita, Filip Sroubek

Responsive image

Auto-TLDR; Fast Moving Objects Tracking by Segmentation Using Deep Learning

Slides Poster Similar

Tracking Fast Moving Objects (FMO), which appear as blurred streaks in video sequences, is a difficult task for standard trackers, as the object position does not overlap in consecutive video frames and texture information of the objects is blurred. Up-to-date approaches tuned for this task are based on background subtraction with a static background and slow deblurring algorithms. In this article, we present a tracking-by-segmentation approach implemented using modern deep learning methods that perform near real-time tracking on real-world video sequences. We have developed a physically plausible FMO sequence generator to be a robust foundation for our training pipeline and demonstrate straightforward network adaptation for different FMO scenarios with varying foreground.