Self-Supervised Joint Encoding of Motion and Appearance for First Person Action Recognition

Mirco Planamente, Andrea Bottino, Barbara Caputo

Responsive image

Auto-TLDR; A Single Stream Architecture for Egocentric Action Recognition from the First-Person Point of View

Slides Poster

Wearable cameras are becoming more and more popular in several applications, increasing the interest of the research community in developing approaches for recognizing actions from the first-person point of view. An open challenge in egocentric action recognition is that videos lack detailed information about the main actor's pose and thus tend to record only parts of the movement when focusing on manipulation tasks. Thus, the amount of information about the action itself is limited, making crucial the understanding of the manipulated objects and their context. Many previous works addressed this issue with two-stream architectures, where one stream is dedicated to modeling the appearance of objects involved in the action, and another to extracting motion features from optical flow. In this paper, we argue that learning features jointly from these two information channels is beneficial to capture the spatio-temporal correlations between the two better. To this end, we propose a single stream architecture able to do so, thanks to the addition of a self-supervised block that uses a pretext motion prediction task to intertwine motion and appearance knowledge. Experiments on several publicly available databases show the power of our approach.

Similar papers

Flow-Guided Spatial Attention Tracking for Egocentric Activity Recognition

Tianshan Liu, Kin-Man Lam

Responsive image

Auto-TLDR; flow-guided spatial attention tracking for egocentric activity recognition

Slides Poster Similar

The popularity of wearable cameras has opened up a new dimension for egocentric activity recognition. While some methods introduce attention mechanisms into deep learning networks to capture fine-grained hand-object interactions, they often neglect exploring the spatio-temporal relationships. Generating spatial attention, without adequately exploiting temporal consistency, will result in potentially sub-optimal performance in the video-based task. In this paper, we propose a flow-guided spatial attention tracking (F-SAT) module, which is based on enhancing motion patterns and inter-frame information, to highlight the discriminative features from regions of interest across a video sequence. A new form of input, namely the optical-flow volume, is presented to provide informative cues from moving parts for spatial attention tracking. The proposed F-SAT module is deployed to a two-branch-based deep architecture, which fuses complementary information for egocentric activity recognition. Experimental results on three egocentric activity benchmarks show that the proposed method achieves state-of-the-art performance.

Modeling Long-Term Interactions to Enhance Action Recognition

Alejandro Cartas, Petia Radeva, Mariella Dimiccoli

Responsive image

Auto-TLDR; A Hierarchical Long Short-Term Memory Network for Action Recognition in Egocentric Videos

Slides Poster Similar

In this paper, we propose a new approach to understand actions in egocentric videos that exploit the semantics of object interactions at both frame and temporal levels. At the frame level, we use a region-based approach that takes as input a primary region roughly corresponding to the user hands and a set of secondary regions potentially corresponding to the interacting objects and calculates the action score through a CNN formulation. This information is then fed to a Hierarchical Long Short-Term Memory Network (HLSTM) that captures temporal dependencies between actions within and across shots. Ablation studies thoroughly validate the proposed approach, showing in particular that both levels of the HLSTM architecture contribute to performance improvement. Furthermore, quantitative comparisons show that the proposed approach outperforms the state-of-the-art in terms of action recognition on standard benchmarks, without relying on motion information.

What and How? Jointly Forecasting Human Action and Pose

Yanjun Zhu, Yanxia Zhang, Qiong Liu, Andreas Girgensohn

Responsive image

Auto-TLDR; Forecasting Human Actions and Motion Trajectories with Joint Action Classification and Pose Regression

Slides Poster Similar

Forecasting human actions and motion trajectories addresses the problem of predicting what a person is going to do next and how they will perform it. This is crucial in a wide range of applications such as assisted living and future co-robotic settings. We propose to simultaneously learn actions and action-related human motion dynamics, while existing works perform them independently. In this paper, we present a method to jointly forecast categories of human action and the pose of skeletal joints in the hope that the two tasks can help each other. As a result, our system can predict not only the future actions but also the motion trajectories that will result. To achieve this, we define a task of joint action classification and pose regression. We employ a sequence to sequence encoder-decoder model combined with multi-task learning to forecast future actions and poses progressively before the action happens. Experimental results on two public datasets, IkeaDB and OAD, demonstrate the effectiveness of the proposed method.

Developing Motion Code Embedding for Action Recognition in Videos

Maxat Alibayev, David Andrea Paulius, Yu Sun

Responsive image

Auto-TLDR; Motion Embedding via Motion Codes for Action Recognition

Slides Poster Similar

We propose a motion embedding strategy via the motion codes that is a vectorized representation of motions based on their salient mechanical attributes. We show that our motion codes can provide robust motion representation. We train a deep neural network model that learns to embed demonstration videos into motion codes. We integrate the extracted features from the motion embedding model into the current state-of-the-art action recognition model. The obtained model achieved higher accuracy than the baseline on a verb classification task from egocentric videos in EPIC-KITCHENS dataset.

Learning Group Activities from Skeletons without Individual Action Labels

Fabio Zappardino, Tiberio Uricchio, Lorenzo Seidenari, Alberto Del Bimbo

Responsive image

Auto-TLDR; Lean Pose Only for Group Activity Recognition

Similar

To understand human behavior we must not just recognize individual actions but model possibly complex group activity and interactions. Hierarchical models obtain the best results in group activity recognition but require fine grained individual action annotations at the actor level. In this paper we show that using only skeletal data we can train a state-of-the art end-to-end system using only group activity labels at the sequence level. Our experiments show that models trained without individual action supervision perform poorly. On the other hand we show that pseudo-labels can be computed from any pre-trained feature extractor with comparable final performance. Finally our carefully designed lean pose only architecture shows highly competitive results versus more complex multimodal approaches even in the self-supervised variant.

TinyVIRAT: Low-Resolution Video Action Recognition

Ugur Demir, Yogesh Rawat, Mubarak Shah

Responsive image

Auto-TLDR; TinyVIRAT: A Progressive Generative Approach for Action Recognition in Videos

Slides Poster Similar

The existing research in action recognition is mostly focused on high-quality videos where the action is distinctly visible. In real-world surveillance environments, the actions in videos are captured at a wide range of resolutions. Most activities occur at a distance with a small resolution and recognizing such activities is a challenging problem. In this work, we focus on recognizing tiny actions in videos. We introduce a benchmark dataset, TinyVIRAT, which contains natural low-resolution activities. The actions in TinyVIRAT videos have multiple labels and they are extracted from surveillance videos which makes them realistic and more challenging. We propose a novel method for recognizing tiny actions in videos which utilizes a progressive generative approach to improve the quality of low-resolution actions. The proposed method also consists of a weakly trained attention mechanism which helps in focusing on the activity regions in the video. We perform extensive experiments to benchmark the proposed TinyVIRAT dataset and observe that the proposed method significantly improves the action recognition performance over baselines. We also evaluate the proposed approach on synthetically resized action recognition datasets and achieve state-of-the-art results when compared with existing methods. The dataset and code will be publicly available.

Knowledge Distillation for Action Anticipation Via Label Smoothing

Guglielmo Camporese, Pasquale Coscia, Antonino Furnari, Giovanni Maria Farinella, Lamberto Ballan

Responsive image

Auto-TLDR; A Multi-Modal Framework for Action Anticipation using Long Short-Term Memory Networks

Slides Poster Similar

Human capability to anticipate near future from visual observations and non-verbal cues is essential for developing intelligent systems that need to interact with people. Several research areas, such as human-robot interaction (HRI), assisted living or autonomous driving need to foresee future events to avoid crashes or help people. Egocentric scenarios are classic examples where action anticipation is applied due to their numerous applications. Such challenging task demands to capture and model domain's hidden structure to reduce prediction uncertainty. Since multiple actions may equally occur in the future, we treat action anticipation as a multi-label problem with missing labels extending the concept of label smoothing. This idea resembles the knowledge distillation process since useful information is injected into the model during training. We implement a multi-modal framework based on long short-term memory (LSTM) networks to summarize past observations and make predictions at different time steps. We perform extensive experiments on EPIC-Kitchens and EGTEA Gaze+ datasets including more than 2500 and 100 action classes, respectively. The experiments show that label smoothing systematically improves performance of state-of-the-art models for action anticipation.

A Grid-Based Representation for Human Action Recognition

Soufiane Lamghari, Guillaume-Alexandre Bilodeau, Nicolas Saunier

Responsive image

Auto-TLDR; GRAR: Grid-based Representation for Action Recognition in Videos

Slides Poster Similar

Human action recognition (HAR) in videos is a fundamental research topic in computer vision. It consists mainly in understanding actions performed by humans based on a sequence of visual observations. In recent years, HAR have witnessed significant progress, especially with the emergence of deep learning models. However, most of existing approaches for action recognition rely on information that is not always relevant for the task, and are limited in the way they fuse temporal information. In this paper, we propose a novel method for human action recognition that encodes efficiently the most discriminative appearance information of an action with explicit attention on representative pose features, into a new compact grid representation. Our GRAR (Grid-based Representation for Action Recognition) method is tested on several benchmark datasets that demonstrate that our model can accurately recognize human actions, despite intra-class appearance variations and occlusion challenges.

3D Attention Mechanism for Fine-Grained Classification of Table Tennis Strokes Using a Twin Spatio-Temporal Convolutional Neural Networks

Pierre-Etienne Martin, Jenny Benois-Pineau, Renaud Péteri, Julien Morlier

Responsive image

Auto-TLDR; Attentional Blocks for Action Recognition in Table Tennis Strokes

Slides Poster Similar

The paper addresses the problem of recognition of actions in video with low inter-class variability such as Table Tennis strokes. Two stream, "twin" convolutional neural networks are used with 3D convolutions both on RGB data and optical flow. Actions are recognized by classification of temporal windows. We introduce 3D attention modules and examine their impact on classification efficiency. In the context of the study of sportsmen performances, a corpus of the particular actions of table tennis strokes is considered. The use of attention blocks in the network speeds up the training step and improves the classification scores up to 5% with our twin model. We visualize the impact on the obtained features and notice correlation between attention and player movements and position. Score comparison of state-of-the-art action classification method and proposed approach with attentional blocks is performed on the corpus. Proposed model with attention blocks outperforms previous model without them and our baseline.

Single View Learning in Action Recognition

Gaurvi Goyal, Nicoletta Noceti, Francesca Odone

Responsive image

Auto-TLDR; Cross-View Action Recognition Using Domain Adaptation for Knowledge Transfer

Slides Poster Similar

Viewpoint is an essential aspect of how an action is visually perceived, with the motion appearing substantially different for some viewpoint pairs. Data driven action recognition algorithms compensate for this by including a variety of viewpoints in their training data, adding to the cost of data acquisition as well as training. We propose a novel methodology that leverages deeply pretrained features to learn actions from a single viewpoint using domain adaptation for knowledge transfer. We demonstrate the effectiveness of this pipeline on 3 different datasets: IXMAS, MoCA and NTU RGBD+, and compare with both classical and deep learning methods. Our method requires low training data and demonstrates unparalleled cross-view action recognition accuracies for single view learning.

Learnable Higher-Order Representation for Action Recognition

Jie Shao, Xiangyang Xue

Responsive image

Auto-TLDR; Learningable Higher-Order Operations for Spatiotemporal Dynamics in Video Recognition

Similar

Capturing spatiotemporal dynamics is an essential topic in video recognition. In this paper, we present learnable higher-order operations as a generic family of building blocks for capturing spatiotemporal dynamics from RGB input video space. Similar to higher-order functions, the weights of higher-order operations are themselves derived from the data with learnable parameters. Classical architectures such as residual learning and network-in-network are first-order operations where weights are directly learned from the data. Higher-order operations make it easier to capture context-sensitive patterns, such as motion. Self-attention models are also higher-order operations, but the attention weights are mostly computed from an affine operation or dot product. The learnable higher-order operations can be more generic and flexible. Experimentally, we show that on the task of video recognition, our higher-order models can achieve results on par with or better than the existing state-of-the-art methods on Something-Something (V1 and V2), Kinetics and Charades datasets.

MFI: Multi-Range Feature Interchange for Video Action Recognition

Sikai Bai, Qi Wang, Xuelong Li

Responsive image

Auto-TLDR; Multi-range Feature Interchange Network for Action Recognition in Videos

Slides Poster Similar

Short-range motion features and long-range dependencies are two complementary and vital cues for action recognition in videos, but it remains unclear how to efficiently and effectively extract these two features. In this paper, we propose a novel network to capture these two features in a unified 2D framework. Specifically, we first construct a Short-range Temporal Interchange (STI) block, which contains a Channels-wise Temporal Interchange (CTI) module for encoding short-range motion features. Then a Graph-based Regional Interchange (GRI) module is built to present long-range dependencies using graph convolution. Finally, we replace original bottleneck blocks in the ResNet with STI blocks and insert several GRI modules between STI blocks, to form a Multi-range Feature Interchange (MFI) Network. Practically, extensive experiments are conducted on three action recognition datasets (i.e., Something-Something V1, HMDB51, and UCF101), which demonstrate that the proposed MFI network achieves impressive results with very limited computing cost.

Activity Recognition Using First-Person-View Cameras Based on Sparse Optical Flows

Peng-Yuan Kao, Yan-Jing Lei, Chia-Hao Chang, Chu-Song Chen, Ming-Sui Lee, Yi-Ping Hung

Responsive image

Auto-TLDR; 3D Convolutional Neural Network for Activity Recognition with FPV Videos

Slides Poster Similar

First-person-view (FPV) cameras are finding wide use in daily life to record activities and sports. In this paper, we propose a succinct and robust 3D convolutional neural network (CNN) architecture accompanied with an ensemble-learning network for activity recognition with FPV videos. The proposed 3D CNN is trained on low-resolution (32x32) sparse optical flows using FPV video datasets consisting of daily activities. According to the experimental results, our network achieves an average accuracy of 90%.

Motion Complementary Network for Efficient Action Recognition

Ke Cheng, Yifan Zhang, Chenghua Li, Jian Cheng, Hanqing Lu

Responsive image

Auto-TLDR; Efficient Motion Complementary Network for Action Recognition

Slides Poster Similar

Both two-stream ConvNet and 3D ConvNet are widely used in action recognition. However, both methods are not efficient for deployment: calculating optical flow is very slow, while 3D convolution is computationally expensive. Our key insight is that the motion information from optical flow maps is complementary to the motion information from 3D ConvNet. Instead of simply combining these two methods, we propose two novel techniques to enhance the performance with less computational cost: \textit{fixed-motion-accumulation} and \textit{balanced-motion-policy}. With these two techniques, we propose a novel framework called Efficient Motion Complementary Network(EMC-Net) that enjoys both high efficiency and high performance. We conduct extensive experiments on Kinetics, UCF101, and Jester datasets. We achieve notably higher performance while consuming 4.7$\times$ less computation than I3D, 11.6$\times$ less computation than ECO, 17.8$\times$ less computation than R(2+1)D. On Kinetics dataset, we achieve 2.6\% better performance than the recent proposed TSM with 1.4$\times$ fewer FLOPs and 10ms faster on K80 GPU.

Learning Dictionaries of Kinematic Primitives for Action Classification

Alessia Vignolo, Nicoletta Noceti, Alessandra Sciutti, Francesca Odone, Giulio Sandini

Responsive image

Auto-TLDR; Action Understanding using Visual Motion Primitives

Slides Poster Similar

This paper proposes a method based on visual motion primitives to address the problem of action understanding. The approach builds in an unsupervised way a dictionary of kinematic primitives from a set of sub-movements obtained by segmenting the velocity profile of an action on the basis of local minima derived directly from the optical flow. The dictionary is then used to describe each sub-movement as a linear combination of atoms using sparse coding. The descriptive capability of the proposed motion representation is experimentally validated on the MoCA dataset, a collection of synchronized multi-view videos and motion capture data of cooking activities. The results show that the approach, despite its simplicity, has a good performance in action classification, especially when the motion primitives are combined over time. Also, the method is proved to be tolerant to view point changes, and can thus support cross-view action recognition. Overall, the method may be seen as a backbone of a general approach to action understanding, with potential applications in robotics.

RMS-Net: Regression and Masking for Soccer Event Spotting

Matteo Tomei, Lorenzo Baraldi, Simone Calderara, Simone Bronzin, Rita Cucchiara

Responsive image

Auto-TLDR; An Action Spotting Network for Soccer Videos

Slides Poster Similar

The recently proposed action spotting task consists in finding the exact timestamp in which an event occurs. This task fits particularly well for soccer videos, where events correspond to salient actions strictly defined by soccer rules (a goal occurs when the ball crosses the goal line). In this paper, we devise a lightweight and modular network for action spotting, which can simultaneously predict the event label and its temporal offset using the same underlying features. We enrich our model with two training strategies: the first one for data balancing and uniform sampling, the second for masking ambiguous frames and keeping the most discriminative visual cues. When tested on the SoccerNet dataset and using standard features, our full proposal exceeds the current state of the art by 3 Average-mAP points. Additionally, it reaches a gain of more than 10 Average-mAP points on the test set when fine-tuned in combination with a strong 2D backbone.

RWF-2000: An Open Large Scale Video Database for Violence Detection

Ming Cheng, Kunjing Cai, Ming Li

Responsive image

Auto-TLDR; Flow Gated Network for Violence Detection in Surveillance Cameras

Slides Poster Similar

In recent years, surveillance cameras are widely deployed in public places, and the general crime rate has been reduced significantly due to these ubiquitous devices. Usually, these cameras provide cues and evidence after crimes were conducted, while they are rarely used to prevent or stop criminal activities in time. It is both time and labor consuming to manually monitor a large amount of video data from surveillance cameras. Therefore, automatically recognizing violent behaviors from video signals becomes essential. In this paper, we summarize several existing video datasets for violence detection and propose a new video dataset with 2,000 videos all captured by surveillance cameras in real-world scenes. Also, we present a new method that utilizes both the merits of 3D-CNNs and optical flow, namely Flow Gated Network. The proposed approach obtains an accuracy of 87.25% on the test set of our proposed RWF-2000 database. The proposed database and source codes of this paper are currently open to access.

Temporally Coherent Embeddings for Self-Supervised Video Representation Learning

Joshua Knights, Ben Harwood, Daniel Ward, Anthony Vanderkop, Olivia Mackenzie-Ross, Peyman Moghadam

Responsive image

Auto-TLDR; Temporally Coherent Embeddings for Self-supervised Video Representation Learning

Slides Poster Similar

This paper presents TCE: Temporally Coherent Embeddings for self-supervised video representation learning. The proposed method exploits inherent structure of unlabeled video data to explicitly enforce temporal coherency in the embedding space, rather than indirectly learning it through ranking or predictive proxy tasks. In the same way that high-level visual information in the world changes smoothly, we believe that nearby frames in learned representations will benefit from demonstrating similar properties. Using this assumption, we train our TCE model to encode videos such that adjacent frames exist close to each other and videos are separated from one another. Using TCE we learn robust representations from large quantities of unlabeled video data. We thoroughly analyse and evaluate our self-supervised learned TCE models on a downstream task of video action recognition using multiple challenging benchmarks (Kinetics400, UCF101, HMDB51). With a simple but effective 2D-CNN backbone and only RGB stream inputs, TCE pre-trained representations outperform all previous self-supervised 2D-CNN and 3D-CNN trained on UCF101. The code and pre-trained models for this paper can be downloaded at: https://github.com/csiro-robotics/TCE

ActionSpotter: Deep Reinforcement Learning Framework for Temporal Action Spotting in Videos

Guillaume Vaudaux-Ruth, Adrien Chan-Hon-Tong, Catherine Achard

Responsive image

Auto-TLDR; ActionSpotter: A Reinforcement Learning Algorithm for Action Spotting in Video

Slides Poster Similar

Action spotting has recently been proposed as an alternative to action detection and key frame extraction. However, the current state-of-the-art method of action spotting requires an expensive ground truth composed of the search sequences employed by human annotators spotting actions - a critical limitation. In this article, we propose to use a reinforcement learning algorithm to perform efficient action spotting using only the temporal segments from the action detection annotations, thus opening an interesting solution for video understanding. Experiments performed on THUMOS14 and ActivityNet datasets show that the proposed method, named ActionSpotter, leads to good results and outperforms state-of-the-art detection outputs redrawn for this application. In particular, the spotting mean Average Precision on THUMOS14 is significantly improved from 59.7% to 65.6% while skipping 23% of video.

Attention-Driven Body Pose Encoding for Human Activity Recognition

Bappaditya Debnath, Swagat Kumar, Marry O'Brien, Ardhendu Behera

Responsive image

Auto-TLDR; Attention-based Body Pose Encoding for Human Activity Recognition

Slides Poster Similar

This article proposes a novel attention-based body pose encoding for human activity recognition. Most of the existing human activity recognition approaches based on 3D pose data often enrich the input data using additional handcrafted representations such as velocity, super normal vectors, pairwise relations, and so on. The enriched data complements the 3D body joint position data and improves the model performance. In this paper, we propose a novel approach that learns enhanced feature representations from a given sequence of 3D body joints. To achieve this, the approach exploits two body pose streams: 1) a spatial stream which encodes the spatial relationship between various body joints at each time point to learn spatial structure involving the spatial distribution of different body joints 2) a temporal stream that learns the temporal variation of individual body joints over the entire sequence duration to present a temporally enhanced representation. Afterwards, these two pose streams are fused with a multi-head attention mechanism. We also capture the contextual information from the RGB video stream using a deep Convolutional Neural Network (CNN) model combined with a multi-head attention and a bidirectional Long Short-Term Memory (LSTM) network. Finally, the RGB video stream is combined with the fused body pose stream to give a novel end-to-end deep model for effective human activity recognition. The proposed model is evaluated on three datasets including the challenging NTU-RGBD dataset and achieves state-of-the-art results.

Temporal Binary Representation for Event-Based Action Recognition

Simone Undri Innocenti, Federico Becattini, Federico Pernici, Alberto Del Bimbo

Responsive image

Auto-TLDR; Temporal Binary Representation for Gesture Recognition

Slides Poster Similar

In this paper we present an event aggregation strategy to convert the output of an event camera into frames processable by traditional Computer Vision algorithms. The proposed method first generates sequences of intermediate binary representations, which are then losslessly transformed into a compact format by simply applying a binary-to-decimal conversion. This strategy allows us to encode temporal information directly into pixel values, which are then interpreted by deep learning models. We apply our strategy, called Temporal Binary Representation, to the task of Gesture Recognition, obtaining state of the art results on the popular DVS128 Gesture Dataset. To underline the effectiveness of the proposed method compared to existing ones, we also collect an extension of the dataset under more challenging conditions on which to perform experiments.

Extracting Action Hierarchies from Action Labels and their Use in Deep Action Recognition

Konstadinos Bacharidis, Antonis Argyros

Responsive image

Auto-TLDR; Exploiting the Information Content of Language Label Associations for Human Action Recognition

Slides Poster Similar

Human activity recognition is a fundamental and challenging task in computer vision. Its solution can support multiple and diverse applications in areas including but not limited to smart homes, surveillance, daily living assistance, Human-Robot Collaboration (HRC), etc. In realistic conditions, the complexity of human activities ranges from simple coarse actions, such as siting or standing up, to more complex activities that consist of multiple actions with subtle variations in appearance and motion patterns. A large variety of existing datasets target specific action classes, with some of them being coarse and others being fine-grained. In all of them, a description of the action and its complexity is manifested in the action label sentence. As the action/activity complexity increases, so is the label sentence size and the amount of action-related semantic information contained in this description. In this paper, we propose an approach to exploit the information content of these action labels to formulate a coarse-to-fine action hierarchy based on linguistic label associations, and investigate the potential benefits and drawbacks. Moreover, in a series of quantitative and qualitative experiments, we show that the exploitation of this hierarchical organization of action classes in different levels of granularity improves the learning speed and overall performance of a range of baseline and mid-range deep architectures for human action recognition (HAR).

Towards Practical Compressed Video Action Recognition: A Temporal Enhanced Multi-Stream Network

Bing Li, Longteng Kong, Dongming Zhang, Xiuguo Bao, Di Huang, Yunhong Wang

Responsive image

Auto-TLDR; TEMSN: Temporal Enhanced Multi-Stream Network for Compressed Video Action Recognition

Slides Poster Similar

Current compressed video action recognition methods are mainly based on completely received compressed videos. However, in real transmission, the compressed video packets are usually disorderly received and lost due to network jitters or congestion. It is of great significance to recognize actions in early phases with limited packets, e.g. forecasting the potential risks from videos quickly. In this paper, we proposed a Temporal Enhanced Multi-Stream Network (TEMSN) for practical compressed video action recognition. First, we use three compressed modalities as complementary cues and build a multi-stream network to capture the rich information from compressed video packets. Second, we design a temporal enhanced module based on Encoder-Decoder structure applied on each stream to infer the missing packets, and generate more complete action dynamics. Thanks to the rich modalities and temporal enhancement, our approach is able to better modeling the action with limited compressed packets. Experiments on HMDB-51 and UCF-101 dataset validate its effectiveness and efficiency.

Precise Temporal Action Localization with Quantified Temporal Structure of Actions

Chongkai Lu, Ruimin Li, Hong Fu, Bin Fu, Yihao Wang, Wai Lun Lo, Zheru Chi

Responsive image

Auto-TLDR; Action progression networks for temporal action detection

Slides Poster Similar

Existing temporal action detection algorithms cannot distinguish complete and incomplete actions while this property is essential in many applications. To tackle this challenge, we proposed the action progression networks (APN), a novel model that predicts action progression of video frames with continuous numbers. Using the progression sequence of test video, on the top of the APN, a complete action searching algorithm (CAS) was designed to detect complete actions only. With the usage of frame-level fine-grained temporal structure modeling and detecting actions according to their whole temporal context, our framework can locate actions precisely and is good at avoiding incomplete action detection. We evaluated our framework on a new dataset (DFMAD-70) collected by ourselves which contains both complete and incomplete actions. Our framework got good temporal localization results with 95.77% average precision when the IoU threshold is 0.5. On the benchmark THUMOS14, an incomplete-ignostic dataset, our framework still obtain competitive performance. The code is available online at https://github.com/MakeCent/Action-Progression-Network

Late Fusion of Bayesian and Convolutional Models for Action Recognition

Camille Maurice, Francisco Madrigal, Frederic Lerasle

Responsive image

Auto-TLDR; Fusion of Deep Neural Network and Bayesian-based Approach for Temporal Action Recognition

Slides Poster Similar

The activities we do in our daily-life are generally carried out as a succession of atomic actions, following a logical order. During a video sequence, actions usually follow a logical order. In this paper, we propose a hybrid approach resulting from the fusion of a deep learning neural network with a Bayesian-based approach. The latter models human-object interactions and transition between actions. The key idea is to combine both approaches in the final prediction. We validate our strategy in two public datasets: CAD-120 and Watch-n-Patch. We show that our fusion approach yields performance gains in accuracy of respectively +4\% and +6\% over a baseline approach. Temporal action recognition performances are clearly improved by the fusion, especially when classes are imbalanced.

SAT-Net: Self-Attention and Temporal Fusion for Facial Action Unit Detection

Zhihua Li, Zheng Zhang, Lijun Yin

Responsive image

Auto-TLDR; Temporal Fusion and Self-Attention Network for Facial Action Unit Detection

Slides Poster Similar

Research on facial action unit detection has shown remarkable performances by using deep spatial learning models in recent years, however, it is far from reaching its full capacity in learning due to the lack of use of temporal information of AUs across time. Since the AU occurrence in one frame is highly likely related to previous frames in a temporal sequence, exploring temporal correlation of AUs across frames becomes a key motivation of this work. In this paper, we propose a novel temporal fusion and AU-supervised self-attention network (a so-called SAT-Net) to address the AU detection problem. First of all, we input the deep features of a sequence into a convolutional LSTM network and fuse the previous temporal information into the feature map of the last frame, and continue to learn the AU occurrence. Second, considering the AU detection problem is a multi-label classification problem that individual label depends only on certain facial areas, we propose a new self-learned attention mask by focusing the detection of each AU on parts of facial areas through the learning of individual attention mask for each AU, thus increasing the AU independence without the loss of any spatial relations. Our extensive experiments show that the proposed framework achieves better results of AU detection over the state-of-the-arts on two benchmark databases (BP4D and DISFA).

Channel-Wise Dense Connection Graph Convolutional Network for Skeleton-Based Action Recognition

Michael Lao Banteng, Zhiyong Wu

Responsive image

Auto-TLDR; Two-stream channel-wise dense connection GCN for human action recognition

Slides Poster Similar

Skeleton-based action recognition task has drawn much attention for many years. Graph Convolutional Network (GCN) has proved its effectiveness in this task. However, how to improve the model's robustness to different human actions and how to make effective use of features produced by the network are main topics needed to be further explored. Human actions are time series sequence, meaning that temporal information is a key factor to model the representation of data. The ranges of body parts involved in small actions (e.g. raise a glass or shake head) and big actions (e.g. walking or jumping) are diverse. It's crucial for the model to generate and utilize more features that can be adaptive to a wider range of actions. Furthermore, feature channels are specific with the action class, the model needs to weigh their importance and pay attention to more related ones. To address these problems, in this work, we propose a two-stream channel-wise dense connection GCN (2s-CDGCN). Specifically, the skeleton data was extracted and processed into spatial and temporal information for better feature representation. A channel-wise attention module was used to select and emphasize the more useful features generated by the network. Moreover, to ensure maximum information flow, dense connection was introduced to the network structure, which enables the network to reuse the skeleton features and generate more information adaptive and related to different human actions. Our model has shown its ability to improve the accuracy of human action recognition task on two large datasets, NTU-RGB+D and Kinetics. Extensive evaluations were conducted to prove the effectiveness of our model.

Subspace Clustering for Action Recognition with Covariance Representations and Temporal Pruning

Giancarlo Paoletti, Jacopo Cavazza, Cigdem Beyan, Alessio Del Bue

Responsive image

Auto-TLDR; Unsupervised Learning for Human Action Recognition from Skeletal Data

Slides Similar

This paper tackles the problem of human action recognition, defined as classifying which action is displayed in a trimmed sequence, from skeletal data. Albeit state-of-the-art approaches designed for this application are all supervised, in this paper we pursue a more challenging direction: Solving the problem with unsupervised learning. To this end, we propose a novel subspace clustering method, which exploits covariance matrix to enhance the action’s discriminability and a timestamp pruning approach that allow us to better handle the temporal dimension of the data. Through a broad experimental validation, we show that our computational pipeline surpasses existing unsupervised approaches but also can result in favorable performances as compared to supervised methods.

Pose-Based Body Language Recognition for Emotion and Psychiatric Symptom Interpretation

Zhengyuan Yang, Amanda Kay, Yuncheng Li, Wendi Cross, Jiebo Luo

Responsive image

Auto-TLDR; Body Language Based Emotion Recognition for Psychiatric Symptoms Prediction

Slides Poster Similar

Inspired by the human ability to infer emotions from body language, we propose an automated framework for body language based emotion recognition starting from regular RGB videos. In collaboration with psychologists, we further extend the framework for psychiatric symptom prediction. Because a specific application domain of the proposed framework may only supply a limited amount of data, the framework is designed to work on a small training set and possess a good transferability. The proposed system in the first stage generates sequences of body language predictions based on human poses estimated from input videos. In the second stage, the predicted sequences are fed into a temporal network for emotion interpretation and psychiatric symptom prediction. We first validate the accuracy and transferability of the proposed body language recognition method on several public action recognition datasets. We then evaluate the framework on a proposed URMC dataset, which consists of conversations between a standardized patient and a behavioral health professional, along with expert annotations of body language, emotions, and potential psychiatric symptoms. The proposed framework outperforms other methods on the URMC dataset.

AttendAffectNet: Self-Attention Based Networks for Predicting Affective Responses from Movies

Thi Phuong Thao Ha, Bt Balamurali, Herremans Dorien, Roig Gemma

Responsive image

Auto-TLDR; AttendAffectNet: A Self-Attention Based Network for Emotion Prediction from Movies

Slides Poster Similar

In this work, we propose different variants of the self-attention based network for emotion prediction from movies, which we call AttendAffectNet. We take both audio and video into account and incorporate the relation among multiple modalities by applying self-attention mechanism in a novel manner into the extracted features for emotion prediction. We compare it to the typically temporal integration of the self-attention based model, which in our case, allows to capture the relation of temporal representations of the movie while considering the sequential dependencies of emotion responses. We demonstrate the effectiveness of our proposed architectures on the extended COGNIMUSE dataset [1], [2] and the MediaEval 2016 Emotional Impact of Movies Task [3], which consist of movies with emotion annotations. Our results show that applying the self-attention mechanism on the different audio-visual features, rather than in the time domain, is more effective for emotion prediction. Our approach is also proven to outperform state-of-the-art models for emotion prediction.

Self-Supervised Learning of Dynamic Representations for Static Images

Siyang Song, Enrique Sanchez, Linlin Shen, Michel Valstar

Responsive image

Auto-TLDR; Facial Action Unit Intensity Estimation and Affect Estimation from Still Images with Multiple Temporal Scale

Slides Poster Similar

Facial actions are spatio-temporal signals by nature, and therefore their modeling is crucially dependent on the availability of temporal information. In this paper, we focus on inferring such temporal dynamics of facial actions when no explicit temporal information is available, i.e. from still images. We present a novel approach to capture multiple scales of such temporal dynamics, with an application to facial Action Unit (AU) intensity estimation and dimensional affect estimation. In particular, 1) we propose a framework that infers a dynamic representation (DR) from a still image, which captures the bi-directional flow of time within a short time-window centered at the input image; 2) we show that we can train our method without the need of explicitly generating target representations, allowing the network to represent dynamics more broadly; and 3) we propose to apply a multiple temporal scale approach that infers DRs for different window lengths (MDR) from a still image. We empirically validate the value of our approach on the task of frame ranking, and show how our proposed MDR attains state of the art results on BP4D for AU intensity estimation and on SEMAINE for dimensional affect estimation, using only still images at test time.

STaRFlow: A SpatioTemporal Recurrent Cell for Lightweight Multi-Frame Optical Flow Estimation

Pierre Godet, Alexandre Boulch, Aurélien Plyer, Guy Le Besnerais

Responsive image

Auto-TLDR; STaRFlow: A lightweight CNN-based algorithm for optical flow estimation

Slides Poster Similar

We present a new lightweight CNN-based algorithm for multi-frame optical flow estimation. Our solution introduces a double recurrence over spatial scale and time through repeated use of a generic "STaR" (SpatioTemporal Recurrent) cell. It includes (i) a temporal recurrence based on conveying learned features rather than optical flow estimates; (ii) an occlusion detection process which is coupled with optical flow estimation and therefore uses a very limited number of extra parameters. The resulting STaRFlow algorithm gives state-of-the-art performances on MPI Sintel and Kitti2015 and involves significantly less parameters than all other methods with comparable results.

Vertex Feature Encoding and Hierarchical Temporal Modeling in a Spatio-Temporal Graph Convolutional Network for Action Recognition

Konstantinos Papadopoulos, Enjie Ghorbel, Djamila Aouada, Bjorn Ottersten

Responsive image

Auto-TLDR; Spatio-Temporal Graph Convolutional Network for Skeleton-Based Action Recognition

Slides Poster Similar

Spatio-temporal Graph Convolutional Networks (ST-GCNs) have shown great performance in the context of skeleton-based action recognition. Nevertheless, ST-GCNs use raw skeleton data as vertex features. Such features have low dimensionality and might not be optimal for action discrimination. Moreover, a single layer of temporal convolution is used to model short-term temporal dependencies but can be insufficient for capturing both long-term. In this paper, we extend the Spatio-Temporal Graph Convolutional Network for skeleton-based action recognition by introducing two novel modules, namely, the Graph Vertex Feature Encoder (GVFE) and the Dilated Hierarchical Temporal Convolutional Network (DH-TCN). On the one hand, the GVFE module learns appropriate vertex features for action recognition by encoding raw skeleton data into a new feature space. On the other hand, the DH-TCN module is capable of capturing both short-term and long-term temporal dependencies using a hierarchical dilated convolutional network. Experiments have been conducted on the challenging NTU RGB-D 60, NTU RGB-D 120 and Kinetics datasets. The obtained results show that our method competes with state-of-the-art approaches while using a smaller number of layers and parameters; thus reducing the required training time and memory.

Attention-Oriented Action Recognition for Real-Time Human-Robot Interaction

Ziyang Song, Ziyi Yin, Zejian Yuan, Chong Zhang, Wanchao Chi, Yonggen Ling, Shenghao Zhang

Responsive image

Auto-TLDR; Attention-Oriented Multi-Level Network for Action Recognition in Interaction Scenes

Slides Poster Similar

Despite the notable progress made in action recognition tasks, not much work has been done in action recognition specifically for human-robot interaction. In this paper, we deeply explore the characteristics of the action recognition task in interaction scenes and propose an attention-oriented multi-level network framework to meet the need for real-time interaction. Specifically, a Pre-Attention network is employed to roughly focus on the interactor in the scene at low resolution firstly and then perform fine-grained pose estimation at high resolution. The other compact CNN receives the extracted skeleton sequence as input for action recognition, utilizing attention-like mechanisms to capture local spatial-temporal patterns and global semantic information effectively. To evaluate our approach, we construct a new action dataset specially for the recognition task in interaction scenes. Experimental results on our dataset and high efficiency (112 fps at 640 x 480 RGBD) on the mobile computing platform (Nvidia Jetson AGX Xavier) demonstrate excellent applicability of our method on action recognition in real-time human-robot interaction.

Vision-Based Multi-Modal Framework for Action Recognition

Djamila Romaissa Beddiar, Mourad Oussalah, Brahim Nini

Responsive image

Auto-TLDR; Multi-modal Framework for Human Activity Recognition Using RGB, Depth and Skeleton Data

Slides Poster Similar

Human activity recognition plays a central role in the development of intelligent systems for video surveillance, public security, health care and home monitoring, where detection and recognition of activities can improve the quality of life and security of humans. Typically, automated, intuitive and real-time systems are required to recognize human activities and identify accurately unusual behaviors in order to prevent dangerous situations. In this work, we explore the combination of three modalities (RGB, depth and skeleton data) to design a robust multi-modal framework for vision-based human activity recognition. Especially, spatial information, body shape/posture and temporal evolution of actions are highlighted using illustrative representations obtained from a combination of dynamic RGB images, dynamic depth images and skeleton data representations. Therefore, each video is represented with three images that summarize the ongoing action. Our framework takes advantage of transfer learning from pre trained models to extract significant features from these newly created images. Next, we fuse extracted features using Canonical Correlation Analysis and train a Long Short-Term Memory network to classify actions from visual descriptive images. Experimental results demonstrated the reliability of our feature-fusion framework that allows us to capture highly significant features and enables us to achieve the state-of-the-art performance on the public UTD-MHAD and NTU RGB+D datasets.

Feature Pyramid Hierarchies for Multi-Scale Temporal Action Detection

Jiayu He, Guohui Li, Jun Lei

Responsive image

Auto-TLDR; Temporal Action Detection using Pyramid Hierarchies and Multi-scale Feature Maps

Slides Poster Similar

Temporal action detection is a challenging but promising task in video content analysis. It is in great demand in the field of public safety. The main difficulty of the task is precisely localizing activities in the video especially those short duration activities. And most of the existing methods can not achieve a satisfactory detection result. Our method addresses a key point to improve detection accuracy, which is to use multi-scale feature maps for regression and classification. In this paper, we introduce a novel network based on classification following proposal framework. In our network, a 3D feature pyramid hierarchies is built to enhance the ability of detecting short duration activities. The input RGB/Flow frames are first encoded by a 3D feature pyramid hierarchies, and this subnet produces multi-level feature maps. Then temporal proposal subnet uses these features to pick out proposals which might contain activity segments. Finally a pyramid region of interest (RoI) pooling pipeline and two fully connected layers reuse muti-level feature maps to refine the temporal boundaries of proposals and classify them. We use late feature fusion scheme to combine RGB and Flow information. The network is trained end-to-end and we evaluate it in THUMOS'14 dataset. Our network achieves a good result among typical methods. A further ablation test demonstrate that pyramid hierarchies is effective to improve detecting short duration activity segments.

SL-DML: Signal Level Deep Metric Learning for Multimodal One-Shot Action Recognition

Raphael Memmesheimer, Nick Theisen, Dietrich Paulus

Responsive image

Auto-TLDR; One-Shot Action Recognition using Metric Learning

Slides Similar

Recognizing an activity with a single reference sample using metric learning approaches is a promising research field. The majority of few-shot methods focus on object recognition or face-identification. We propose a metric learning approach to reduce the action recognition problem to a nearest neighbor search in embedding space. We encode signals into images and extract features using a deep residual CNN. Using triplet loss, we learn a feature embedding. The resulting encoder transforms features into an embedding space in which closer distances encode similar actions while higher distances encode different actions. Our approach is based on a signal level formulation and remains flexible across a variety of modalities. It further outperforms the baseline on the large scale NTU RGB+D 120 dataset for the One-Shot action recognition protocol by \ntuoneshotimpro%. With just 60% of the training data, our approach still outperforms the baseline approach by \ntuoneshotimproreduced%. With 40% of the training data, our approach performs comparably well as the second follow up. Further, we show that our approach generalizes well in experiments on the UTD-MHAD dataset for inertial, skeleton and fused data and the Simitate dataset for motion capturing data. Furthermore, our inter-joint and inter-sensor experiments suggest good capabilities on previously unseen setups.

Uncertainty-Sensitive Activity Recognition: A Reliability Benchmark and the CARING Models

Alina Roitberg, Monica Haurilet, Manuel Martinez, Rainer Stiefelhagen

Responsive image

Auto-TLDR; CARING: Calibrated Action Recognition with Input Guidance

Slides Similar

Beyond assigning the correct class, an activity recognition model should also to be able to determine, how certain it is in its predictions. We present the first study of how well the confidence values of modern action recognition architectures indeed reflect the probability of the correct outcome and propose a learning-based approach for improving it. First, we extend two popular action recognition datasets with a reliability benchmark in form of the expected calibration error and reliability diagrams. Since our evaluation highlights that confidence values of standard action recognition architectures do not represent the uncertainty well, we introduce a new approach which learns to transform the model output into realistic confidence estimates through an additional calibration network. The main idea of our Calibrated Action Recognition with Input Guidance (CARING) model is to learn an optimal scaling parameter depending on the video representation. We compare our model with the native action recognition networks and the temperature scaling approach - a wide spread calibration method utilized in image classification. While temperature scaling alone drastically improves the reliability of the confidence values, our CARING method consistently leads to the best uncertainty estimates in all benchmark settings.

Image Sequence Based Cyclist Action Recognition Using Multi-Stream 3D Convolution

Stefan Zernetsch, Steven Schreck, Viktor Kress, Konrad Doll, Bernhard Sick

Responsive image

Auto-TLDR; 3D-ConvNet: A Multi-stream 3D Convolutional Neural Network for Detecting Cyclists in Real World Traffic Situations

Slides Poster Similar

In this article, we present an approach to detect basic movements of cyclists in real world traffic situations based on image sequences, optical flow (OF) sequences, and past positions using a multi-stream 3D convolutional neural network (3D-ConvNet) architecture. To resolve occlusions of cyclists by other traffic participants or road structures, we use a wide angle stereo camera system mounted at a heavily frequented public intersection. We created a large dataset consisting of 1,639 video sequences containing cyclists, recorded in real world traffic, resulting in over 1.1 million samples. Through modeling the cyclists' behavior by a state machine of basic cyclist movements, our approach takes every situation into account and is not limited to certain scenarios. We compare our method to an approach solely based on position sequences. Both methods are evaluated taking into account frame wise and scene wise classification results of basic movements, and detection times of basic movement transitions, where our approach outperforms the position based approach by producing more reliable detections with shorter detection times. Our code and parts of our dataset are made publicly available.

TSMSAN: A Three-Stream Multi-Scale Attentive Network for Video Saliency Detection

Jingwen Yang, Guanwen Zhang, Wei Zhou

Responsive image

Auto-TLDR; Three-stream Multi-scale attentive network for video saliency detection in dynamic scenes

Slides Poster Similar

Video saliency detection is an important low-level task that has been used in a large range of high-level applications. In this paper, we proposed a three-stream multi-scale attentive network (TSMSAN) for saliency detection in dynamic scenes. TSMSAN integrates motion vector representation, static saliency map, and RGB information in multi-scales together into one framework on the basis of Fully Convolutional Network (FCN) and spatial attention mechanism. On the one hand, the respective motion features, spatial features, as well as the scene features can provide abundant information for video saliency detection. On the other hand, spatial attention mechanism can combine features with multi-scales to focus on key information in dynamic scenes. In this manner, the proposed TSMSAN can encode the spatiotemporal features of the dynamic scene comprehensively. We evaluate the proposed approach on two public dynamic saliency data sets. The experimental results demonstrate TSMSAN is able to achieve the state-of-the-art performance as well as the excellent generalization ability. Furthermore, the proposed TSMSAN can provide more convincing video saliency information, in line with human perception.

2D Deep Video Capsule Network with Temporal Shift for Action Recognition

Théo Voillemin, Hazem Wannous, Jean-Philippe Vandeborre

Responsive image

Auto-TLDR; Temporal Shift Module over Capsule Network for Action Recognition in Continuous Videos

Slides Similar

Action recognition in continuous video streams is a growing field since the past few years. Deep learning techniques and in particular Convolutional Neural Networks (CNNs) achieved good results in this topic. However, intrinsic CNNs limitations begin to cap the results since 2D CNN cannot capture temporal information and 3D CNN are to much resource demanding for real-time applications. Capsule Network, evolution of CNN, already proves its interesting benefits on small and low informational datasets like MNIST but yet its true potential has not emerged. In this paper we tackle the action recognition problem by proposing a new architecture combining Temporal Shift module over deep Capsule Network. Temporal Shift module permits us to insert temporal information over 2D Capsule Network with a zero computational cost to conserve the lightness of 2D capsules and their ability to connect spatial features. Our proposed approach outperforms or brings near state-of-the-art results on color and depth information on public datasets like First Person Hand Action and DHG 14/28 with a number of parameters 10 to 40 times less than existing approaches.

Revisiting Sequence-To-Sequence Video Object Segmentation with Multi-Task Loss and Skip-Memory

Fatemeh Azimi, Benjamin Bischke, Sebastian Palacio, Federico Raue, Jörn Hees, Andreas Dengel

Responsive image

Auto-TLDR; Sequence-to-Sequence Learning for Video Object Segmentation

Slides Poster Similar

Video Object Segmentation (VOS) is an active research area of the visual domain. One of its fundamental sub-tasks is semi-supervised / one-shot learning: given only the segmentation mask for the first frame, the task is to provide pixel-accurate masks for the object over the rest of the sequence. Despite much progress in the last years, we noticed that many of the existing approaches lose objects in longer sequences, especially when the object is small or briefly occluded. In this work, we build upon a sequence-to-sequence approach that employs an encoder-decoder architecture together with a memory module for exploiting the sequential data. We further improve this approach by proposing a model that manipulates multi-scale spatio-temporal information using memory-equipped skip connections. Furthermore, we incorporate an auxiliary task based on distance classification which greatly enhances the quality of edges in segmentation masks. We compare our approach to the state of the art and show considerable improvement in the contour accuracy metric and the overall segmentation accuracy.

Inferring Tasks and Fluents in Videos by Learning Causal Relations

Haowen Tang, Ping Wei, Huan Li, Nanning Zheng

Responsive image

Auto-TLDR; Joint Learning of Complex Task and Fluent States in Videos

Slides Poster Similar

Recognizing time-varying object states in complex tasks is an important and challenging issue. In this paper, we propose a novel model to jointly infer object fluents and complex tasks in videos. A task is a complex goal-driven human activity and a fluent is defined as a time-varying object state. A hierarchical graph represents a task as a human action stream and multiple concurrent object fluents which vary as the human performs the actions. In this process, the human actions serve as the causes of object state changes which conversely reflect the effects of human actions. Given an input video, a causal sampling beam search (CSBS) algorithm is proposed to jointly infer the task category and the states of objects in each video frame. For model learning, a structural SVM framework is adopted to jointly train the task, fluent, cause, and effect parameters. We collected a new large-scale dataset of tasks and fluents in third-person view videos. It contains 14 categories of tasks, 24 categories of object fluents, 50 categories of object states, 809 videos, and 333,351 frames. Experimental results demonstrate the effectiveness of the proposed method.

Gabriella: An Online System for Real-Time Activity Detection in Untrimmed Security Videos

Mamshad Nayeem Rizve, Ugur Demir, Praveen Praveen Tirupattur, Aayush Jung Rana, Kevin Duarte, Ishan Rajendrakumar Dave, Yogesh Rawat, Mubarak Shah

Responsive image

Auto-TLDR; Gabriella: A Real-Time Online System for Activity Detection in Surveillance Videos

Slides Similar

Activity detection in surveillance videos is a difficult problem due to multiple factors such as large field of view, presence of multiple activities, varying scales and viewpoints, and its untrimmed nature. The existing research in activity detection is mainly focused on datasets, such as UCF-101, JHMDB, THUMOS, and AVA, which partially address these issues. The requirement of processing the surveillance videos in real-time makes this even more challenging. In this work we propose Gabriella, a real-time online system to perform activity detection on untrimmed surveillance videos. The proposed method consists of three stages: tubelet extraction, activity classification, and online tubelet merging. For tubelet extraction, we propose a localization network which takes a video clip as input and spatio-temporally detects potential foreground regions at multiple scales to generate action tubelets. We propose a novel Patch-Dice loss to handle large variations in actor size. Our online processing of videos at a clip level drastically reduces the computation time in detecting activities. The detected tubelets are assigned activity class scores by the classification network and merged together using our proposed Tubelet-Merge Action-Split (TMAS) algorithm to form the final action detections. The TMAS algorithm efficiently connects the tubelets in an online fashion to generate action detections which are robust against varying length activities. We perform our experiments on the VIRAT and MEVA (Multiview Extended Video with Activities) datasets and demonstrate the effectiveness of the proposed approach in terms of speed ($\sim$100 fps) and performance with state-of-the-art results. The code and models will be made publicly available.

Video Semantic Segmentation Using Deep Multi-View Representation Learning

Akrem Sellami, Salvatore Tabbone

Responsive image

Auto-TLDR; Deep Multi-view Representation Learning for Video Object Segmentation

Slides Poster Similar

In this paper, we propose a deep learning model based on deep multi-view representation learning, to address the video object segmentation task. The proposed model emphasizes the importance of the inherent correlation between video frames and incorporates a multi-view representation learning based on deep canonically correlated autoencoders. The multi-view representation learning in our model provides an efficient mechanism for capturing inherent correlations by jointly extracting useful features and learning better representation into a joint feature space, i.e., shared representation. To increase the training data and the learning capacity, we train the proposed model with pairs of video frames, i.e., $F_{a}$ and $F_{b}$. During the segmentation phase, the deep canonically correlated autoencoders model encodes useful features by processing multiple reference frames together, which is used to detect the frequently reappearing. Our model enhances the state-of-the-art deep learning-based methods that mainly focus on learning discriminative foreground representations over appearance and motion. Experimental results over two large benchmarks demonstrate the ability of the proposed method to outperform competitive approaches and to reach good performances, in terms of semantic segmentation.

Contextual Classification Using Self-Supervised Auxiliary Models for Deep Neural Networks

Sebastian Palacio, Philipp Engler, Jörn Hees, Andreas Dengel

Responsive image

Auto-TLDR; Self-Supervised Autogenous Learning for Deep Neural Networks

Slides Poster Similar

Classification problems solved with deep neural networks (DNNs) typically rely on a closed world paradigm, and optimize over a single objective (e.g., minimization of the cross- entropy loss). This setup dismisses all kinds of supporting signals that can be used to reinforce the existence or absence of particular patterns. The increasing need for models that are interpretable by design makes the inclusion of said contextual signals a crucial necessity. To this end, we introduce the notion of Self-Supervised Autogenous Learning (SSAL). A SSAL objective is realized through one or more additional targets that are derived from the original supervised classification task, following architectural principles found in multi-task learning. SSAL branches impose low-level priors into the optimization process (e.g., grouping). The ability of using SSAL branches during inference, allow models to converge faster, focusing on a richer set of class-relevant features. We equip state-of-the-art DNNs with SSAL objectives and report consistent improvements for all of them on CIFAR100 and Imagenet. We show that SSAL models outperform similar state-of-the-art methods focused on contextual loss functions, auxiliary branches and hierarchical priors.

Context Matters: Self-Attention for Sign Language Recognition

Fares Ben Slimane, Mohamed Bouguessa

Responsive image

Auto-TLDR; Attentional Network for Continuous Sign Language Recognition

Slides Poster Similar

This paper proposes an attentional network for the task of Continuous Sign Language Recognition. The proposed approach exploits co-independent streams of data to model the sign language modalities. These different channels of information can share a complex temporal structure between each other. For that reason, we apply attention to synchronize and help capture entangled dependencies between the different sign language components. Even though Sign Language is multi-channel, handshapes represent the central entities in sign interpretation. Seeing handshapes in their correct context defines the meaning of a sign. Taking that into account, we utilize the attention mechanism to efficiently aggregate the hand features with their appropriate Spatio-temporal context for better sign recognition. We found that by doing so the model is able to identify the essential Sign Language components that revolve around the dominant hand and the face areas. We test our model on the benchmark dataset RWTH-PHOENIX-Weather 2014, yielding competitive results.

Joint Supervised and Self-Supervised Learning for 3D Real World Challenges

Antonio Alliegro, Davide Boscaini, Tatiana Tommasi

Responsive image

Auto-TLDR; Self-supervision for 3D Shape Classification and Segmentation in Point Clouds

Slides Similar

Point cloud processing and 3D shape understanding are very challenging tasks for which deep learning techniques have demonstrated great potentials. Still further progresses are essential to allow artificial intelligent agents to interact with the real world. In many practical conditions the amount of annotated data may be limited and integrating new sources of knowledge becomes crucial to support autonomous learning. Here we consider several scenarios involving synthetic and real world point clouds where supervised learning fails due to data scarcity and large domain gaps. We propose to enrich standard feature representations by leveraging self-supervision through a multi-task model that can solve a 3D puzzle while learning the main task of shape classification or part segmentation. An extensive analysis investigating few-shot, transfer learning and cross-domain settings shows the effectiveness of our approach with state-of-the-art results for 3D shape classification and part segmentation.