Precise Temporal Action Localization with Quantified Temporal Structure of Actions

Chongkai Lu, Ruimin Li, Hong Fu, Bin Fu, Yihao Wang, Wai Lun Lo, Zheru Chi

Responsive image

Auto-TLDR; Action progression networks for temporal action detection

Slides Poster

Existing temporal action detection algorithms cannot distinguish complete and incomplete actions while this property is essential in many applications. To tackle this challenge, we proposed the action progression networks (APN), a novel model that predicts action progression of video frames with continuous numbers. Using the progression sequence of test video, on the top of the APN, a complete action searching algorithm (CAS) was designed to detect complete actions only. With the usage of frame-level fine-grained temporal structure modeling and detecting actions according to their whole temporal context, our framework can locate actions precisely and is good at avoiding incomplete action detection. We evaluated our framework on a new dataset (DFMAD-70) collected by ourselves which contains both complete and incomplete actions. Our framework got good temporal localization results with 95.77% average precision when the IoU threshold is 0.5. On the benchmark THUMOS14, an incomplete-ignostic dataset, our framework still obtain competitive performance. The code is available online at https://github.com/MakeCent/Action-Progression-Network

Similar papers

Feature Pyramid Hierarchies for Multi-Scale Temporal Action Detection

Jiayu He, Guohui Li, Jun Lei

Responsive image

Auto-TLDR; Temporal Action Detection using Pyramid Hierarchies and Multi-scale Feature Maps

Slides Poster Similar

Temporal action detection is a challenging but promising task in video content analysis. It is in great demand in the field of public safety. The main difficulty of the task is precisely localizing activities in the video especially those short duration activities. And most of the existing methods can not achieve a satisfactory detection result. Our method addresses a key point to improve detection accuracy, which is to use multi-scale feature maps for regression and classification. In this paper, we introduce a novel network based on classification following proposal framework. In our network, a 3D feature pyramid hierarchies is built to enhance the ability of detecting short duration activities. The input RGB/Flow frames are first encoded by a 3D feature pyramid hierarchies, and this subnet produces multi-level feature maps. Then temporal proposal subnet uses these features to pick out proposals which might contain activity segments. Finally a pyramid region of interest (RoI) pooling pipeline and two fully connected layers reuse muti-level feature maps to refine the temporal boundaries of proposals and classify them. We use late feature fusion scheme to combine RGB and Flow information. The network is trained end-to-end and we evaluate it in THUMOS'14 dataset. Our network achieves a good result among typical methods. A further ablation test demonstrate that pyramid hierarchies is effective to improve detecting short duration activity segments.

ActionSpotter: Deep Reinforcement Learning Framework for Temporal Action Spotting in Videos

Guillaume Vaudaux-Ruth, Adrien Chan-Hon-Tong, Catherine Achard

Responsive image

Auto-TLDR; ActionSpotter: A Reinforcement Learning Algorithm for Action Spotting in Video

Slides Poster Similar

Action spotting has recently been proposed as an alternative to action detection and key frame extraction. However, the current state-of-the-art method of action spotting requires an expensive ground truth composed of the search sequences employed by human annotators spotting actions - a critical limitation. In this article, we propose to use a reinforcement learning algorithm to perform efficient action spotting using only the temporal segments from the action detection annotations, thus opening an interesting solution for video understanding. Experiments performed on THUMOS14 and ActivityNet datasets show that the proposed method, named ActionSpotter, leads to good results and outperforms state-of-the-art detection outputs redrawn for this application. In particular, the spotting mean Average Precision on THUMOS14 is significantly improved from 59.7% to 65.6% while skipping 23% of video.

What and How? Jointly Forecasting Human Action and Pose

Yanjun Zhu, Yanxia Zhang, Qiong Liu, Andreas Girgensohn

Responsive image

Auto-TLDR; Forecasting Human Actions and Motion Trajectories with Joint Action Classification and Pose Regression

Slides Poster Similar

Forecasting human actions and motion trajectories addresses the problem of predicting what a person is going to do next and how they will perform it. This is crucial in a wide range of applications such as assisted living and future co-robotic settings. We propose to simultaneously learn actions and action-related human motion dynamics, while existing works perform them independently. In this paper, we present a method to jointly forecast categories of human action and the pose of skeletal joints in the hope that the two tasks can help each other. As a result, our system can predict not only the future actions but also the motion trajectories that will result. To achieve this, we define a task of joint action classification and pose regression. We employ a sequence to sequence encoder-decoder model combined with multi-task learning to forecast future actions and poses progressively before the action happens. Experimental results on two public datasets, IkeaDB and OAD, demonstrate the effectiveness of the proposed method.

You Ought to Look Around: Precise, Large Span Action Detection

Ge Pan, Zhang Han, Fan Yu, Yonghong Song, Yuanlin Zhang, Han Yuan

Responsive image

Auto-TLDR; YOLA: Local Feature Extraction for Action Localization with Variable receptive field

Slides Similar

For the action localization task, pre-defined action anchors are the cornerstone of mainstream techniques. State-of-the-art models mostly rely on a dense segmenting scheme, where anchors are sampled uniformly over the temporal domain with a predefined set of scales. However, it is not sufficient because action duration varies greatly. Therefore, it is necessary for the anchors or proposals to have a variable receptive field. In this paper, we propose a method called YOLA (You Ought to Look Around) which includes three parts: 1) a robust backbone SPN-I3D for extracting spatio-temporal features. In this part, we employ a stronger backbone I3D with SPN (Segment Pyramid Network) instead of C3D to obtain multi-scale features; 2) a simple but useful feature fusion module named LFE (Local Feature Extraction). Compared with the fully connected layer and global average pooling, our LFE model is more advantageous for network to fit and fuse features. 3) a new feature segment aligning method called TPGC (Two Pathway Graph Convolution), which allows one proposal to leverage semantic features of adjacent proposals to update its content and make sure the proposals have a variable receptive field. YOLA add only a small overhead to the baseline network, and is easy to train in an end-to-end manner, running at a speed of 1097 fps. YOLA achieves a mAP of 58.3%, outperforming all existing models including both RGB-based and two stream on THUMOS'14, and achieves competitive results on ActivityNet 1.3.

Towards Practical Compressed Video Action Recognition: A Temporal Enhanced Multi-Stream Network

Bing Li, Longteng Kong, Dongming Zhang, Xiuguo Bao, Di Huang, Yunhong Wang

Responsive image

Auto-TLDR; TEMSN: Temporal Enhanced Multi-Stream Network for Compressed Video Action Recognition

Slides Poster Similar

Current compressed video action recognition methods are mainly based on completely received compressed videos. However, in real transmission, the compressed video packets are usually disorderly received and lost due to network jitters or congestion. It is of great significance to recognize actions in early phases with limited packets, e.g. forecasting the potential risks from videos quickly. In this paper, we proposed a Temporal Enhanced Multi-Stream Network (TEMSN) for practical compressed video action recognition. First, we use three compressed modalities as complementary cues and build a multi-stream network to capture the rich information from compressed video packets. Second, we design a temporal enhanced module based on Encoder-Decoder structure applied on each stream to infer the missing packets, and generate more complete action dynamics. Thanks to the rich modalities and temporal enhancement, our approach is able to better modeling the action with limited compressed packets. Experiments on HMDB-51 and UCF-101 dataset validate its effectiveness and efficiency.

RMS-Net: Regression and Masking for Soccer Event Spotting

Matteo Tomei, Lorenzo Baraldi, Simone Calderara, Simone Bronzin, Rita Cucchiara

Responsive image

Auto-TLDR; An Action Spotting Network for Soccer Videos

Slides Poster Similar

The recently proposed action spotting task consists in finding the exact timestamp in which an event occurs. This task fits particularly well for soccer videos, where events correspond to salient actions strictly defined by soccer rules (a goal occurs when the ball crosses the goal line). In this paper, we devise a lightweight and modular network for action spotting, which can simultaneously predict the event label and its temporal offset using the same underlying features. We enrich our model with two training strategies: the first one for data balancing and uniform sampling, the second for masking ambiguous frames and keeping the most discriminative visual cues. When tested on the SoccerNet dataset and using standard features, our full proposal exceeds the current state of the art by 3 Average-mAP points. Additionally, it reaches a gain of more than 10 Average-mAP points on the test set when fine-tuned in combination with a strong 2D backbone.

Self-Supervised Joint Encoding of Motion and Appearance for First Person Action Recognition

Mirco Planamente, Andrea Bottino, Barbara Caputo

Responsive image

Auto-TLDR; A Single Stream Architecture for Egocentric Action Recognition from the First-Person Point of View

Slides Poster Similar

Wearable cameras are becoming more and more popular in several applications, increasing the interest of the research community in developing approaches for recognizing actions from the first-person point of view. An open challenge in egocentric action recognition is that videos lack detailed information about the main actor's pose and thus tend to record only parts of the movement when focusing on manipulation tasks. Thus, the amount of information about the action itself is limited, making crucial the understanding of the manipulated objects and their context. Many previous works addressed this issue with two-stream architectures, where one stream is dedicated to modeling the appearance of objects involved in the action, and another to extracting motion features from optical flow. In this paper, we argue that learning features jointly from these two information channels is beneficial to capture the spatio-temporal correlations between the two better. To this end, we propose a single stream architecture able to do so, thanks to the addition of a self-supervised block that uses a pretext motion prediction task to intertwine motion and appearance knowledge. Experiments on several publicly available databases show the power of our approach.

Gabriella: An Online System for Real-Time Activity Detection in Untrimmed Security Videos

Mamshad Nayeem Rizve, Ugur Demir, Praveen Praveen Tirupattur, Aayush Jung Rana, Kevin Duarte, Ishan Rajendrakumar Dave, Yogesh Rawat, Mubarak Shah

Responsive image

Auto-TLDR; Gabriella: A Real-Time Online System for Activity Detection in Surveillance Videos

Slides Similar

Activity detection in surveillance videos is a difficult problem due to multiple factors such as large field of view, presence of multiple activities, varying scales and viewpoints, and its untrimmed nature. The existing research in activity detection is mainly focused on datasets, such as UCF-101, JHMDB, THUMOS, and AVA, which partially address these issues. The requirement of processing the surveillance videos in real-time makes this even more challenging. In this work we propose Gabriella, a real-time online system to perform activity detection on untrimmed surveillance videos. The proposed method consists of three stages: tubelet extraction, activity classification, and online tubelet merging. For tubelet extraction, we propose a localization network which takes a video clip as input and spatio-temporally detects potential foreground regions at multiple scales to generate action tubelets. We propose a novel Patch-Dice loss to handle large variations in actor size. Our online processing of videos at a clip level drastically reduces the computation time in detecting activities. The detected tubelets are assigned activity class scores by the classification network and merged together using our proposed Tubelet-Merge Action-Split (TMAS) algorithm to form the final action detections. The TMAS algorithm efficiently connects the tubelets in an online fashion to generate action detections which are robust against varying length activities. We perform our experiments on the VIRAT and MEVA (Multiview Extended Video with Activities) datasets and demonstrate the effectiveness of the proposed approach in terms of speed ($\sim$100 fps) and performance with state-of-the-art results. The code and models will be made publicly available.

TinyVIRAT: Low-Resolution Video Action Recognition

Ugur Demir, Yogesh Rawat, Mubarak Shah

Responsive image

Auto-TLDR; TinyVIRAT: A Progressive Generative Approach for Action Recognition in Videos

Slides Poster Similar

The existing research in action recognition is mostly focused on high-quality videos where the action is distinctly visible. In real-world surveillance environments, the actions in videos are captured at a wide range of resolutions. Most activities occur at a distance with a small resolution and recognizing such activities is a challenging problem. In this work, we focus on recognizing tiny actions in videos. We introduce a benchmark dataset, TinyVIRAT, which contains natural low-resolution activities. The actions in TinyVIRAT videos have multiple labels and they are extracted from surveillance videos which makes them realistic and more challenging. We propose a novel method for recognizing tiny actions in videos which utilizes a progressive generative approach to improve the quality of low-resolution actions. The proposed method also consists of a weakly trained attention mechanism which helps in focusing on the activity regions in the video. We perform extensive experiments to benchmark the proposed TinyVIRAT dataset and observe that the proposed method significantly improves the action recognition performance over baselines. We also evaluate the proposed approach on synthetically resized action recognition datasets and achieve state-of-the-art results when compared with existing methods. The dataset and code will be publicly available.

MFI: Multi-Range Feature Interchange for Video Action Recognition

Sikai Bai, Qi Wang, Xuelong Li

Responsive image

Auto-TLDR; Multi-range Feature Interchange Network for Action Recognition in Videos

Slides Poster Similar

Short-range motion features and long-range dependencies are two complementary and vital cues for action recognition in videos, but it remains unclear how to efficiently and effectively extract these two features. In this paper, we propose a novel network to capture these two features in a unified 2D framework. Specifically, we first construct a Short-range Temporal Interchange (STI) block, which contains a Channels-wise Temporal Interchange (CTI) module for encoding short-range motion features. Then a Graph-based Regional Interchange (GRI) module is built to present long-range dependencies using graph convolution. Finally, we replace original bottleneck blocks in the ResNet with STI blocks and insert several GRI modules between STI blocks, to form a Multi-range Feature Interchange (MFI) Network. Practically, extensive experiments are conducted on three action recognition datasets (i.e., Something-Something V1, HMDB51, and UCF101), which demonstrate that the proposed MFI network achieves impressive results with very limited computing cost.

Modeling Long-Term Interactions to Enhance Action Recognition

Alejandro Cartas, Petia Radeva, Mariella Dimiccoli

Responsive image

Auto-TLDR; A Hierarchical Long Short-Term Memory Network for Action Recognition in Egocentric Videos

Slides Poster Similar

In this paper, we propose a new approach to understand actions in egocentric videos that exploit the semantics of object interactions at both frame and temporal levels. At the frame level, we use a region-based approach that takes as input a primary region roughly corresponding to the user hands and a set of secondary regions potentially corresponding to the interacting objects and calculates the action score through a CNN formulation. This information is then fed to a Hierarchical Long Short-Term Memory Network (HLSTM) that captures temporal dependencies between actions within and across shots. Ablation studies thoroughly validate the proposed approach, showing in particular that both levels of the HLSTM architecture contribute to performance improvement. Furthermore, quantitative comparisons show that the proposed approach outperforms the state-of-the-art in terms of action recognition on standard benchmarks, without relying on motion information.

A Grid-Based Representation for Human Action Recognition

Soufiane Lamghari, Guillaume-Alexandre Bilodeau, Nicolas Saunier

Responsive image

Auto-TLDR; GRAR: Grid-based Representation for Action Recognition in Videos

Slides Poster Similar

Human action recognition (HAR) in videos is a fundamental research topic in computer vision. It consists mainly in understanding actions performed by humans based on a sequence of visual observations. In recent years, HAR have witnessed significant progress, especially with the emergence of deep learning models. However, most of existing approaches for action recognition rely on information that is not always relevant for the task, and are limited in the way they fuse temporal information. In this paper, we propose a novel method for human action recognition that encodes efficiently the most discriminative appearance information of an action with explicit attention on representative pose features, into a new compact grid representation. Our GRAR (Grid-based Representation for Action Recognition) method is tested on several benchmark datasets that demonstrate that our model can accurately recognize human actions, despite intra-class appearance variations and occlusion challenges.

RWF-2000: An Open Large Scale Video Database for Violence Detection

Ming Cheng, Kunjing Cai, Ming Li

Responsive image

Auto-TLDR; Flow Gated Network for Violence Detection in Surveillance Cameras

Slides Poster Similar

In recent years, surveillance cameras are widely deployed in public places, and the general crime rate has been reduced significantly due to these ubiquitous devices. Usually, these cameras provide cues and evidence after crimes were conducted, while they are rarely used to prevent or stop criminal activities in time. It is both time and labor consuming to manually monitor a large amount of video data from surveillance cameras. Therefore, automatically recognizing violent behaviors from video signals becomes essential. In this paper, we summarize several existing video datasets for violence detection and propose a new video dataset with 2,000 videos all captured by surveillance cameras in real-world scenes. Also, we present a new method that utilizes both the merits of 3D-CNNs and optical flow, namely Flow Gated Network. The proposed approach obtains an accuracy of 87.25% on the test set of our proposed RWF-2000 database. The proposed database and source codes of this paper are currently open to access.

Toward Building a Data-Driven System ForDetecting Mounting Actions of Black Beef Cattle

Yuriko Kawano, Susumu Saito, Nakano Teppei, Ikumi Kondo, Ryota Yamazaki, Hiromi Kusaka, Minoru Sakaguchi, Tetsuji Ogawa

Responsive image

Auto-TLDR; Cattle Mounting Action Detection Using Crowdsourcing and Pattern Recognition

Poster Similar

This paper tackles on building a pattern recognition system that detects whether a pair of Japanese black beefs captured in a given image region is in a “mounting” action, which is known to be a sign critically important to be detected for cattle farmers before artificial insemination. The “mounting” action refers to a cattle’s action where a cow bends over another cow usually when either cow is in estrus. Although a pattern recognition-based approach for detecting such an action would be appreciated as being low-cost and robust, it had not been discussed much due to the complexity of the system architecture, unavailability of datasets, etc. This study presents i) our image dataset construction technique that exploits both object detection algorithm and crowdsourcing for collecting cattle pair images with labels of either “mounting” or not; and ii) a system for detecting the mounting action from any given image of a cattle pair, developed based on the dataset. Starting with an algorithm for extracting regions of cattle pairs from a video frame based on intersection of single cattle regions, we then designed our crowdsourcing microtask in which crowd workers were given simple guidelines to annotate mounting-action-relevant labels to the extracted regions, to finally obtain a dataset. We also introduce our tandem-layered pattern recognition system trained with the dataset. The system is comprised of two serially-connected machine learning components, and is capable of more robustly detecting mounting actions even with a small amount of training data than a normal end-to-end neural network. Experimental comparisons demonstrated that our detection system was capable of detecting estrus with a precision rate of 80% and a recall rate of 76%.

Attention-Oriented Action Recognition for Real-Time Human-Robot Interaction

Ziyang Song, Ziyi Yin, Zejian Yuan, Chong Zhang, Wanchao Chi, Yonggen Ling, Shenghao Zhang

Responsive image

Auto-TLDR; Attention-Oriented Multi-Level Network for Action Recognition in Interaction Scenes

Slides Poster Similar

Despite the notable progress made in action recognition tasks, not much work has been done in action recognition specifically for human-robot interaction. In this paper, we deeply explore the characteristics of the action recognition task in interaction scenes and propose an attention-oriented multi-level network framework to meet the need for real-time interaction. Specifically, a Pre-Attention network is employed to roughly focus on the interactor in the scene at low resolution firstly and then perform fine-grained pose estimation at high resolution. The other compact CNN receives the extracted skeleton sequence as input for action recognition, utilizing attention-like mechanisms to capture local spatial-temporal patterns and global semantic information effectively. To evaluate our approach, we construct a new action dataset specially for the recognition task in interaction scenes. Experimental results on our dataset and high efficiency (112 fps at 640 x 480 RGBD) on the mobile computing platform (Nvidia Jetson AGX Xavier) demonstrate excellent applicability of our method on action recognition in real-time human-robot interaction.

Learnable Higher-Order Representation for Action Recognition

Jie Shao, Xiangyang Xue

Responsive image

Auto-TLDR; Learningable Higher-Order Operations for Spatiotemporal Dynamics in Video Recognition

Similar

Capturing spatiotemporal dynamics is an essential topic in video recognition. In this paper, we present learnable higher-order operations as a generic family of building blocks for capturing spatiotemporal dynamics from RGB input video space. Similar to higher-order functions, the weights of higher-order operations are themselves derived from the data with learnable parameters. Classical architectures such as residual learning and network-in-network are first-order operations where weights are directly learned from the data. Higher-order operations make it easier to capture context-sensitive patterns, such as motion. Self-attention models are also higher-order operations, but the attention weights are mostly computed from an affine operation or dot product. The learnable higher-order operations can be more generic and flexible. Experimentally, we show that on the task of video recognition, our higher-order models can achieve results on par with or better than the existing state-of-the-art methods on Something-Something (V1 and V2), Kinetics and Charades datasets.

Pose-Based Body Language Recognition for Emotion and Psychiatric Symptom Interpretation

Zhengyuan Yang, Amanda Kay, Yuncheng Li, Wendi Cross, Jiebo Luo

Responsive image

Auto-TLDR; Body Language Based Emotion Recognition for Psychiatric Symptoms Prediction

Slides Poster Similar

Inspired by the human ability to infer emotions from body language, we propose an automated framework for body language based emotion recognition starting from regular RGB videos. In collaboration with psychologists, we further extend the framework for psychiatric symptom prediction. Because a specific application domain of the proposed framework may only supply a limited amount of data, the framework is designed to work on a small training set and possess a good transferability. The proposed system in the first stage generates sequences of body language predictions based on human poses estimated from input videos. In the second stage, the predicted sequences are fed into a temporal network for emotion interpretation and psychiatric symptom prediction. We first validate the accuracy and transferability of the proposed body language recognition method on several public action recognition datasets. We then evaluate the framework on a proposed URMC dataset, which consists of conversations between a standardized patient and a behavioral health professional, along with expert annotations of body language, emotions, and potential psychiatric symptoms. The proposed framework outperforms other methods on the URMC dataset.

Developing Motion Code Embedding for Action Recognition in Videos

Maxat Alibayev, David Andrea Paulius, Yu Sun

Responsive image

Auto-TLDR; Motion Embedding via Motion Codes for Action Recognition

Slides Poster Similar

We propose a motion embedding strategy via the motion codes that is a vectorized representation of motions based on their salient mechanical attributes. We show that our motion codes can provide robust motion representation. We train a deep neural network model that learns to embed demonstration videos into motion codes. We integrate the extracted features from the motion embedding model into the current state-of-the-art action recognition model. The obtained model achieved higher accuracy than the baseline on a verb classification task from egocentric videos in EPIC-KITCHENS dataset.

Temporal Binary Representation for Event-Based Action Recognition

Simone Undri Innocenti, Federico Becattini, Federico Pernici, Alberto Del Bimbo

Responsive image

Auto-TLDR; Temporal Binary Representation for Gesture Recognition

Slides Poster Similar

In this paper we present an event aggregation strategy to convert the output of an event camera into frames processable by traditional Computer Vision algorithms. The proposed method first generates sequences of intermediate binary representations, which are then losslessly transformed into a compact format by simply applying a binary-to-decimal conversion. This strategy allows us to encode temporal information directly into pixel values, which are then interpreted by deep learning models. We apply our strategy, called Temporal Binary Representation, to the task of Gesture Recognition, obtaining state of the art results on the popular DVS128 Gesture Dataset. To underline the effectiveness of the proposed method compared to existing ones, we also collect an extension of the dataset under more challenging conditions on which to perform experiments.

Multi-Scale 2D Representation Learning for Weakly-Supervised Moment Retrieval

Ding Li, Rui Wu, Zhizhong Zhang, Yongqiang Tang, Wensheng Zhang

Responsive image

Auto-TLDR; Multi-scale 2D Representation Learning for Weakly Supervised Video Moment Retrieval

Slides Poster Similar

Video moment retrieval aims to search the moment most relevant to a given language query. However, most existing methods in this community often require temporal boundary annotations which are expensive and time-consuming to label. Hence weakly supervised methods have been put forward recently by only using coarse video-level label. Despite effectiveness, these methods usually process moment candidates independently, while ignoring a critical issue that the natural temporal dependencies between candidates in different temporal scales. To cope with this issue, we propose a Multi-scale 2D Representation Learning method for weakly supervised video moment retrieval. Specifically, we first construct a two-dimensional map for each temporal scale to capture the temporal dependencies between candidates. Two dimensions in this map indicate the start and end time points of these candidates. Then, we select top-K candidates from each scale-varied map with a learnable convolutional neural network. With a newly designed Moments Evaluation Module, we obtain the alignment scores of the selected candidates. At last, the similarity between captions and language query is served as supervision for further training the candidates' selector. Experiments on two benchmark datasets Charades-STA and ActivityNet Captions demonstrate that our approach achieves superior performance to state-of-the-art results.

A Multi-Task Neural Network for Action Recognition with 3D Key-Points

Rongxiao Tang, Wang Luyang, Zhenhua Guo

Responsive image

Auto-TLDR; Multi-task Neural Network for Action Recognition and 3D Human Pose Estimation

Slides Poster Similar

Action recognition and 3D human pose estimation are the fundamental problems in computer vision and closely related. In this work, we propose a multi-task neural network for action recognition and 3D human pose estimation. The results of the previous methods are still error-prone especially when tested against the images taken in-the-wild, leading error results in action recognition. To solve this problem, we propose a principled approach to generate high quality 3D pose ground truth given any in-the-wild image with a person inside. We achieve this by first devising a novel stereo inspired neural network to directly map any 2D pose to high quality 3D counterpart. Based on the high-quality 3D labels, we carefully design the multi-task framework for action recognition and 3D human pose estimation. The proposed architecture can utilize the shallow, deep features of the images, and the in-the-wild 3D human key-points to guide a more precise result. High quality 3D key-points can fully reflect the morphological features of motions, thus boosting the performance on action recognition. Experiments demonstrate that 3D pose estimation leads to significantly higher performance on action recognition than separated learning. We also evaluate the generalization ability of our method both quantitatively and qualitatively. The proposed architecture performs favorably against the baseline 3D pose estimation methods. In addition, the reported results on Penn Action and NTU datasets demonstrate the effectiveness of our method on the action recognition task.

Late Fusion of Bayesian and Convolutional Models for Action Recognition

Camille Maurice, Francisco Madrigal, Frederic Lerasle

Responsive image

Auto-TLDR; Fusion of Deep Neural Network and Bayesian-based Approach for Temporal Action Recognition

Slides Poster Similar

The activities we do in our daily-life are generally carried out as a succession of atomic actions, following a logical order. During a video sequence, actions usually follow a logical order. In this paper, we propose a hybrid approach resulting from the fusion of a deep learning neural network with a Bayesian-based approach. The latter models human-object interactions and transition between actions. The key idea is to combine both approaches in the final prediction. We validate our strategy in two public datasets: CAD-120 and Watch-n-Patch. We show that our fusion approach yields performance gains in accuracy of respectively +4\% and +6\% over a baseline approach. Temporal action recognition performances are clearly improved by the fusion, especially when classes are imbalanced.

Relevance Detection in Cataract Surgery Videos by Spatio-Temporal Action Localization

Negin Ghamsarian, Mario Taschwer, Doris Putzgruber, Stephanie. Sarny, Klaus Schoeffmann

Responsive image

Auto-TLDR; relevance-based retrieval in cataract surgery videos

Slides Similar

In cataract surgery, the operation is performed with the help of a microscope. Since the microscope enables watching real-time surgery by up to two people only, a major part of surgical training is conducted using the recorded videos. To optimize the training procedure with the video content, the surgeons require an automatic relevance detection approach. In addition to relevance-based retrieval, these results can be further used for skill assessment and irregularity detection in cataract surgery videos. In this paper, a three-module framework is proposed to detect and classify the relevant phase segments in cataract videos. Taking advantage of an idle frame recognition network, the video is divided into idle and action segments. To boost the performance in relevance detection Mask R-CNN is utilized to detect the cornea in each frame where the relevant surgical actions are conducted. The spatio-temporal localized segments containing higher-resolution information about the pupil texture and actions, and complementary temporal information from the same phase are fed into the relevance detection module. This module consists of four parallel recurrent CNNs being responsible to detect four relevant phases that have been defined with medical experts. The results will then be integrated to classify the action phases as irrelevant or one of four relevant phases. Experimental results reveal that the proposed approach outperforms static CNNs and different configurations of feature-based and end-to-end recurrent networks.

Dual-Mode Iterative Denoiser: Tackling the Weak Label for Anomaly Detection

Shuheng Lin, Hua Yang

Responsive image

Auto-TLDR; A Dual-Mode Iterative Denoiser for Crowd Anomaly Detection

Slides Poster Similar

Crowd anomaly detection suffers from limited training data under weak supervision. In this paper, we propose a dual-mode iterative denoiser to tackle the weak label challenge for anomaly detection. First, we use a convolution autoencoder (CAE) in image space to act as a cluster for grouping similar video clips, where the spatial-temporal similarity helps the cluster metric to represent the reconstruction error. Then we use the graph convolution neural network (GCN) to explore the temporal correlation and the feature similarity between video clips within different rough labels, where the classifier can be constantly updated in the label denoising process. Without specific image-level labels, our model can predict the clip-level anomaly probabilities for videos. Extensive experiment results on two public datasets show that our approach performs favorably against the state-of-the-art methods.

Inferring Tasks and Fluents in Videos by Learning Causal Relations

Haowen Tang, Ping Wei, Huan Li, Nanning Zheng

Responsive image

Auto-TLDR; Joint Learning of Complex Task and Fluent States in Videos

Slides Poster Similar

Recognizing time-varying object states in complex tasks is an important and challenging issue. In this paper, we propose a novel model to jointly infer object fluents and complex tasks in videos. A task is a complex goal-driven human activity and a fluent is defined as a time-varying object state. A hierarchical graph represents a task as a human action stream and multiple concurrent object fluents which vary as the human performs the actions. In this process, the human actions serve as the causes of object state changes which conversely reflect the effects of human actions. Given an input video, a causal sampling beam search (CSBS) algorithm is proposed to jointly infer the task category and the states of objects in each video frame. For model learning, a structural SVM framework is adopted to jointly train the task, fluent, cause, and effect parameters. We collected a new large-scale dataset of tasks and fluents in third-person view videos. It contains 14 categories of tasks, 24 categories of object fluents, 50 categories of object states, 809 videos, and 333,351 frames. Experimental results demonstrate the effectiveness of the proposed method.

Coarse to Fine: Progressive and Multi-Task Learning for Salient Object Detection

Dong-Goo Kang, Sangwoo Park, Joonki Paik

Responsive image

Auto-TLDR; Progressive and mutl-task learning scheme for salient object detection

Slides Poster Similar

Most deep learning-based salient object detection (SOD) methods tried to manipulate the convolution block to effectively capture the context of object. In this paper, we propose a novel method, called progressive and mutl-task learning scheme, to extract the context of object by only manipulating the learning scheme without changing the network architecture. The progressive learning scheme is a method to grow the decoder progressively in the train phase. In other words, starting from easier low-resolution layers, it gradually adds high-resolution layers. Although the progressive learning successfullyl captures the context of object, its output boundary tends to be rough. To solve this problem, we also propose a multi-task learning (MTL) scheme that processes the object saliency map and contour in a single network jointly. The proposed MTL scheme trains the network in an edge-preserved direction through an auxiliary branch that learns contours. The proposed a learning scheme can be combined with other convolution block manipulation methods. Extensive experiments on five datasets show that the proposed method performs best compared with state-of-the-art methods in most cases.

Not 3D Re-ID: Simple Single Stream 2D Convolution for Robust Video Re-Identification

Toby Breckon, Aishah Alsehaim

Responsive image

Auto-TLDR; ResNet50-IBN for Video-based Person Re-Identification using Single Stream 2D Convolution Network

Slides Poster Similar

Video-based person re-identification has received increasing attention recently, as it plays an important role within the surveillance video analysis. Video-based Re-ID is an expansion of earlier image-based re-identification methods by learning features from a video via multiple image frames for each person. Most contemporary video Re-ID methods utilise complex CNN-based network architectures using 3D convolution or multi-branch networks to extract spatial-temporal features from the video. By contrast, in this paper, we will illustrate superior performance from a simple single stream 2D convolution network leveraging the ResNet50-IBN architecture to extract frame-level features followed by temporal attention for clip level features. These clip level features can be generalised to extract video level features by averaging clip level features without any additional cost. Our model, uses best video Re-ID practice and transfer learning between datasets, outperforms existing state-of-the-art approaches on MARS, PRID2011 and iLIDSVID datasets with 89:62%, 97:75%, 97:33% rank-1 accuracy respectively and with 84:61% mAP for MARS, without reliance on complex and memory intensive 3D convolutions or multistream networks architectures as found in other contemporary work. Conversely, this work shows that global features extracted by the 2D convolution network are a sufficient representation for robust state of the art video Re-ID.

Single View Learning in Action Recognition

Gaurvi Goyal, Nicoletta Noceti, Francesca Odone

Responsive image

Auto-TLDR; Cross-View Action Recognition Using Domain Adaptation for Knowledge Transfer

Slides Poster Similar

Viewpoint is an essential aspect of how an action is visually perceived, with the motion appearing substantially different for some viewpoint pairs. Data driven action recognition algorithms compensate for this by including a variety of viewpoints in their training data, adding to the cost of data acquisition as well as training. We propose a novel methodology that leverages deeply pretrained features to learn actions from a single viewpoint using domain adaptation for knowledge transfer. We demonstrate the effectiveness of this pipeline on 3 different datasets: IXMAS, MoCA and NTU RGBD+, and compare with both classical and deep learning methods. Our method requires low training data and demonstrates unparalleled cross-view action recognition accuracies for single view learning.

Hierarchical Multimodal Attention for Deep Video Summarization

Melissa Sanabria, Frederic Precioso, Thomas Menguy

Responsive image

Auto-TLDR; Automatic Summarization of Professional Soccer Matches Using Event-Stream Data and Multi- Instance Learning

Slides Poster Similar

The way people consume sports on TV has drastically evolved in the last years, particularly under the combined effects of the legalization of sport betting and the huge increase of sport analytics. Several companies are nowadays sending observers in the stadiums to collect live data of all the events happening on the field during the match. Those data contain meaningful information providing a very detailed description of all the actions occurring during the match to feed the coaches and staff, the fans, the viewers, and the gamblers. Exploiting all these data, sport broadcasters want to generate extra content such as match highlights, match summaries, players and teams analytics, etc., to appeal subscribers. This paper explores the problem of summarizing professional soccer matches as automatically as possible using both the aforementioned event-stream data collected from the field and the content broadcasted on TV. We have designed an architecture, introducing first (1) a Multiple Instance Learning method that takes into account the sequential dependency among events and then (2) a hierarchical multimodal attention layer that grasps the importance of each event in an action. We evaluate our approach on matches from two professional European soccer leagues, showing its capability to identify the best actions for automatic summarization by comparing with real summaries made by human operators.

Recognizing American Sign Language Nonmanual Signal Grammar Errors in Continuous Videos

Elahe Vahdani, Longlong Jing, Ying-Li Tian, Matt Huenerfauth

Responsive image

Auto-TLDR; ASL-HW-RGBD: Recognizing Grammatical Errors in Continuous Sign Language

Slides Poster Similar

As part of the development of an educational tool that can help students achieve fluency in American Sign Language (ASL) through independent and interactive practice with immediate feedback, this paper introduces a near real-time system to recognize grammatical errors in continuous signing videos without necessarily identifying the entire sequence of signs. Our system automatically recognizes if a performance of ASL sentences contains grammatical errors made by ASL students. We first recognize the ASL grammatical elements including both manual gestures and nonmanual signals independently from multiple modalities (i.e. hand gestures, facial expressions, and head movements) by 3D-ResNet networks. Then the temporal boundaries of grammatical elements from different modalities are examined to detect ASL grammatical mistakes by using a sliding window-based approach. We have collected a dataset of continuous sign language, ASL-HW-RGBD, covering different aspects of ASL grammars for training and testing. Our system is able to recognize grammatical elements on ASL-HW-RGBD from manual gestures, facial expressions, and head movements and successfully detect 8 ASL grammatical mistakes.

Knowledge Distillation for Action Anticipation Via Label Smoothing

Guglielmo Camporese, Pasquale Coscia, Antonino Furnari, Giovanni Maria Farinella, Lamberto Ballan

Responsive image

Auto-TLDR; A Multi-Modal Framework for Action Anticipation using Long Short-Term Memory Networks

Slides Poster Similar

Human capability to anticipate near future from visual observations and non-verbal cues is essential for developing intelligent systems that need to interact with people. Several research areas, such as human-robot interaction (HRI), assisted living or autonomous driving need to foresee future events to avoid crashes or help people. Egocentric scenarios are classic examples where action anticipation is applied due to their numerous applications. Such challenging task demands to capture and model domain's hidden structure to reduce prediction uncertainty. Since multiple actions may equally occur in the future, we treat action anticipation as a multi-label problem with missing labels extending the concept of label smoothing. This idea resembles the knowledge distillation process since useful information is injected into the model during training. We implement a multi-modal framework based on long short-term memory (LSTM) networks to summarize past observations and make predictions at different time steps. We perform extensive experiments on EPIC-Kitchens and EGTEA Gaze+ datasets including more than 2500 and 100 action classes, respectively. The experiments show that label smoothing systematically improves performance of state-of-the-art models for action anticipation.

Automated Whiteboard Lecture Video Summarization by Content Region Detection and Representation

Bhargava Urala Kota, Alexander Stone, Kenny Davila, Srirangaraj Setlur, Venu Govindaraju

Responsive image

Auto-TLDR; A Framework for Summarizing Whiteboard Lecture Videos Using Feature Representations of Handwritten Content Regions

Poster Similar

Lecture videos are rapidly becoming an invaluable source of information for students across the globe. Given the large number of online courses currently available, it is important to condense the information within these videos into a compact yet representative summary that can be used for search-based applications. We propose a framework to summarize whiteboard lecture videos by finding feature representations of detected handwritten content regions to determine unique content. We investigate multi-scale histogram of gradients and embeddings from deep metric learning for feature representation. We explicitly handle occluded, growing and disappearing handwritten content. Our method is capable of producing two kinds of lecture video summaries - the unique regions themselves or so-called key content and keyframes (which contain all unique content in a video segment). We use weighted spatio-temporal conflict minimization to segment the lecture and produce keyframes from detected regions and features. We evaluate both types of summaries and find that we obtain state-of-the-art peformance in terms of number of summary keyframes while our unique content recall and precision are comparable to state-of-the-art.

Activity and Relationship Modeling Driven Weakly Supervised Object Detection

Yinlin Li, Yang Qian, Xu Yang, Yuren Zhang

Responsive image

Auto-TLDR; Weakly Supervised Object Detection Using Activity Label and Relationship Modeling

Slides Poster Similar

This paper presents a weakly supervised object detection method based on activity label and relationship modeling, which is motivated by the assumption that configuration of human and object are similar in same activity, and joint modeling of human, active object and activity could leverage the recognition of them. Compared to most weakly supervised method taking object as independent instance, firstly, active human and object proposals are learned and filtered based on class activation map of multi-label classification. Secondly, a spatial relationship prior including relative position, scale, overlaps etc are learned dependent on action. Finally, a multi-stream object detection framework integrating the spatial prior and pairwise ROI pooling are proposed to jointly learn the object and action class. Experiments are conducted on HICO-DET dataset, and our approach outperforms the state of the art weakly supervised object detection methods.

Continuous Sign Language Recognition with Iterative Spatiotemporal Fine-Tuning

Kenessary Koishybay, Medet Mukushev, Anara Sandygulova

Responsive image

Auto-TLDR; A Deep Neural Network for Continuous Sign Language Recognition with Iterative Gloss Recognition

Slides Poster Similar

This paper aims to develop a deep neural network for Continuous Sign Language Recognition (CSLR) with iterative Gloss Recognition (GR) fine-tuning. CSLR has been a popular research field in the last years and iterative optimization methods are well established. This paper introduces our proposed architecture involving Spatiotemporal feature-extraction model to segment useful ``gloss-unit" features and BiLSTM with CTC as a sequence model. Spatiotemporal Feature Extractor is used for both image features extraction and sequence length reduction. To this end, we compare different architectures for feature extraction and sequence model. In addition, we iteratively fine-tune feature extractor on gloss-unit video segments with alignments from the end2end model. During the iterative training, we use novel alignment correction technique, which is based on minimum transformations of Levenshtein distance. All the experiments were conducted on the RWTH-PHOENIX-Weather-2014 dataset.

Image Sequence Based Cyclist Action Recognition Using Multi-Stream 3D Convolution

Stefan Zernetsch, Steven Schreck, Viktor Kress, Konrad Doll, Bernhard Sick

Responsive image

Auto-TLDR; 3D-ConvNet: A Multi-stream 3D Convolutional Neural Network for Detecting Cyclists in Real World Traffic Situations

Slides Poster Similar

In this article, we present an approach to detect basic movements of cyclists in real world traffic situations based on image sequences, optical flow (OF) sequences, and past positions using a multi-stream 3D convolutional neural network (3D-ConvNet) architecture. To resolve occlusions of cyclists by other traffic participants or road structures, we use a wide angle stereo camera system mounted at a heavily frequented public intersection. We created a large dataset consisting of 1,639 video sequences containing cyclists, recorded in real world traffic, resulting in over 1.1 million samples. Through modeling the cyclists' behavior by a state machine of basic cyclist movements, our approach takes every situation into account and is not limited to certain scenarios. We compare our method to an approach solely based on position sequences. Both methods are evaluated taking into account frame wise and scene wise classification results of basic movements, and detection times of basic movement transitions, where our approach outperforms the position based approach by producing more reliable detections with shorter detection times. Our code and parts of our dataset are made publicly available.

Temporally Coherent Embeddings for Self-Supervised Video Representation Learning

Joshua Knights, Ben Harwood, Daniel Ward, Anthony Vanderkop, Olivia Mackenzie-Ross, Peyman Moghadam

Responsive image

Auto-TLDR; Temporally Coherent Embeddings for Self-supervised Video Representation Learning

Slides Poster Similar

This paper presents TCE: Temporally Coherent Embeddings for self-supervised video representation learning. The proposed method exploits inherent structure of unlabeled video data to explicitly enforce temporal coherency in the embedding space, rather than indirectly learning it through ranking or predictive proxy tasks. In the same way that high-level visual information in the world changes smoothly, we believe that nearby frames in learned representations will benefit from demonstrating similar properties. Using this assumption, we train our TCE model to encode videos such that adjacent frames exist close to each other and videos are separated from one another. Using TCE we learn robust representations from large quantities of unlabeled video data. We thoroughly analyse and evaluate our self-supervised learned TCE models on a downstream task of video action recognition using multiple challenging benchmarks (Kinetics400, UCF101, HMDB51). With a simple but effective 2D-CNN backbone and only RGB stream inputs, TCE pre-trained representations outperform all previous self-supervised 2D-CNN and 3D-CNN trained on UCF101. The code and pre-trained models for this paper can be downloaded at: https://github.com/csiro-robotics/TCE

JT-MGCN: Joint-Temporal Motion Graph Convolutional Network for Skeleton-Based Action Recognition

Suekyeong Nam, Seungkyu Lee

Responsive image

Auto-TLDR; Joint-temporal Motion Graph Convolutional Networks for Action Recognition

Slides Similar

Recently, action recognition methods using graph convolutional networks (GCN) have shown remarkable performance thanks to its concise but effective representation of human body motion. Prior methods construct human body motion graph building edges between neighbor or distant body joints. On the other hand, human action contains lots of temporal variations showing strong temporal correlations between joint motions. Thus the characterization of an action requires a comprehensive analysis of joint motion correlations on spatial and temporal domains. In this paper, we propose Joint-temporal Motion Graph Convolutional Networks (JT-MGCN) in which joint-temporal edges learn the correlations between different joints at different time. Experimental evaluation on large public data sets such as NTU rgb+d data set and kinetics-skeleton data set show outstanding action recognition performance.

A Two-Stream Recurrent Network for Skeleton-Based Human Interaction Recognition

Qianhui Men, Edmond S. L. Ho, Shum Hubert P. H., Howard Leung

Responsive image

Auto-TLDR; Two-Stream Recurrent Neural Network for Human-Human Interaction Recognition

Slides Poster Similar

This paper addresses the problem of recognizing human-human interaction from skeletal sequences. Existing methods are mainly designed to classify single human action. Many of them simply stack the movement features of two characters to deal with human interaction, while neglecting the abundant relationships between characters. In this paper, we propose a novel two-stream recurrent neural network by adopting the geometric features from both single actions and interactions to describe the spatial correlations with different discriminative abilities. The first stream is constructed under pairwise joint distance (PJD) in a fully-connected mesh to categorize the interactions with explicit distance patterns. To better distinguish similar interactions, in the second stream, we combine PJD with the spatial features from individual joint positions using graph convolutions to detect the implicit correlations among joints, where the joint connections in the graph are adaptive for flexible correlations. After spatial modeling, each stream is fed to a bi-directional LSTM to encode two-way temporal properties. To take advantage of the diverse discriminative power of the two streams, we come up with a late fusion algorithm to combine their output predictions concerning information entropy. Experimental results show that the proposed framework achieves state-of-the-art performance on 3D and comparable performance on 2D interaction datasets. Moreover, the late fusion results demonstrate the effectiveness of improving the recognition accuracy compared with single streams.

Visual Object Tracking in Drone Images with Deep Reinforcement Learning

Derya Gözen, Sedat Ozer

Responsive image

Auto-TLDR; A Deep Reinforcement Learning based Single Object Tracker for Drone Applications

Slides Poster Similar

There is an increasing demand on utilizing camera equipped drones and their applications in many domains varying from agriculture to entertainment and from sports events to surveillance. In such drone applications, an essential and a common task is tracking an object of interest visually. Drone (or UAV) images have different properties when compared to the ground taken (natural) images and those differences introduce additional complexities to the existing object trackers to be directly applied on drone applications. Some important differences among those complexities include (i) smaller object sizes to be tracked and (ii) different orientations and viewing angles yielding different texture and features to be observed. Therefore, new algorithms trained on drone images are needed for the drone-based applications. In this paper, we introduce a deep reinforcement learning (RL) based single object tracker that tracks an object of interest in drone images by estimating a series of actions to find the location of the object in the next frame. This is the first work introducing a single object tracker using a deep RL-based technique for drone images. Our proposed solution introduces a novel reward function that aims to reduce the total number of actions taken to estimate the object's location in the next frame and also introduces a different backbone network to be used on low resolution images. Additionally, we introduce a set of new actions into the action library to better deal with the above-mentioned complexities. We compare our proposed solutions to a state of the art tracking algorithm from the recent literature and demonstrate up to 3.87\% improvement in precision and 3.6\% improvement in IoU values on the VisDrone2019 dataset. We also provide additional results on OTB-100 dataset and show up to 3.15\% improvement in precision on the OTB-100 dataset when compared to the same previous state of the art algorithm. Lastly, we analyze the ability to handle some of the challenges faced during tracking, including but not limited to occlusion, deformation, and scale variation for our proposed solutions.

Self-Supervised Learning of Dynamic Representations for Static Images

Siyang Song, Enrique Sanchez, Linlin Shen, Michel Valstar

Responsive image

Auto-TLDR; Facial Action Unit Intensity Estimation and Affect Estimation from Still Images with Multiple Temporal Scale

Slides Poster Similar

Facial actions are spatio-temporal signals by nature, and therefore their modeling is crucially dependent on the availability of temporal information. In this paper, we focus on inferring such temporal dynamics of facial actions when no explicit temporal information is available, i.e. from still images. We present a novel approach to capture multiple scales of such temporal dynamics, with an application to facial Action Unit (AU) intensity estimation and dimensional affect estimation. In particular, 1) we propose a framework that infers a dynamic representation (DR) from a still image, which captures the bi-directional flow of time within a short time-window centered at the input image; 2) we show that we can train our method without the need of explicitly generating target representations, allowing the network to represent dynamics more broadly; and 3) we propose to apply a multiple temporal scale approach that infers DRs for different window lengths (MDR) from a still image. We empirically validate the value of our approach on the task of frame ranking, and show how our proposed MDR attains state of the art results on BP4D for AU intensity estimation and on SEMAINE for dimensional affect estimation, using only still images at test time.

Correlation-Based ConvNet for Small Object Detection in Videos

Brais Bosquet, Manuel Mucientes, Victor Brea

Responsive image

Auto-TLDR; STDnet-ST: An End-to-End Spatio-Temporal Convolutional Neural Network for Small Object Detection in Video

Slides Poster Similar

The detection of small objects is of particular interest in many real applications. In this paper, we propose STDnet-ST, a novel approach to small object detection in video using spatial information operating alongside temporal video information. STDnet-ST is an end-to-end spatio-temporal convolutional neural network that detects small objects over time and correlates pairs of the top-ranked regions with the highest likelihood of containing small objects. This architecture links the small objects across the time as tubelets, being able to dismiss unprofitable object links in order to provide high-quality tubelets. STDnet-ST achieves state-of-the-art results for small objects on the publicly available USC-GRAD-STDdb and UAVDT video datasets.

Activity Recognition Using First-Person-View Cameras Based on Sparse Optical Flows

Peng-Yuan Kao, Yan-Jing Lei, Chia-Hao Chang, Chu-Song Chen, Ming-Sui Lee, Yi-Ping Hung

Responsive image

Auto-TLDR; 3D Convolutional Neural Network for Activity Recognition with FPV Videos

Slides Poster Similar

First-person-view (FPV) cameras are finding wide use in daily life to record activities and sports. In this paper, we propose a succinct and robust 3D convolutional neural network (CNN) architecture accompanied with an ensemble-learning network for activity recognition with FPV videos. The proposed 3D CNN is trained on low-resolution (32x32) sparse optical flows using FPV video datasets consisting of daily activities. According to the experimental results, our network achieves an average accuracy of 90%.

Video Representation Fusion Network For Multi-Label Movie Genre Classification

Tianyu Bi, Dmitri Jarnikov, Johan Lukkien

Responsive image

Auto-TLDR; A Video Representation Fusion Network for Movie Genre Classification

Slides Poster Similar

In this paper, we introduce a Video Representation Fusion Network (VRFN) for movie genre classification. Different from the previous works, which use frame-level features for movie genre classification, our approach uses video classification architecture to create video-level features from a group of frames and fuse these features temporally to learn long-term spatiotemporal information for the movie genre classification task. We use a pre-trained I3D model to generate intermediate video representations and connect it with a C3D-LSTM model for feature fusion and movie genre classification. LMTD-9 dataset which contains 4007 trailers multi-labeled with 9 movie genres is used for training and evaluation of the model. The experimental results demonstrate that learning long-term temporal dependencies by fusing video representations improves the performance in movie genre classification. Our best model outperforms the state-of-the-art methods by 3.4% improvement in AUPRC (macro).

MixTConv: Mixed Temporal Convolutional Kernels for Efficient Action Recognition

Kaiyu Shan, Yongtao Wang, Zhi Tang, Ying Chen, Yangyan Li

Responsive image

Auto-TLDR; Mixed Temporal Convolution for Action Recognition

Slides Poster Similar

To efficiently extract spatiotemporal features of video for action recognition, most state-of-the-art methods integrate 1D temporal convolution into a conventional 2D CNN backbone. However, they all exploit 1D temporal convolution of fixed kernel size (i.e., 3) in the network building block, thus have suboptimal temporal modeling capability to handle both long term and short-term actions. To address this problem, we first investigate the impacts of different kernel sizes for the 1D temporal convolutional filters. Then, we propose a simple yet efficient operation called Mixed Temporal Convolution (MixTConv) in methodology, which consists of multiple depthwise 1D convolutional filters with different kernel sizes. By plugging MixTConv into the conventional 2D CNN backbone ResNet-50, we further propose an efficient and effective network architecture named MSTNet for action recognition, and achieve state-of-the-art results on multiple large-scale benchmarks.

DeepPear: Deep Pose Estimation and Action Recognition

Wen-Jiin Tsai, You-Ying Jhuang

Responsive image

Auto-TLDR; Human Action Recognition Using RGB Video Using 3D Human Pose and Appearance Features

Slides Poster Similar

Human action recognition has been a popular issue recently because it can be applied in many applications such as intelligent surveillance systems, human-robot interaction, and autonomous vehicle control. Human action recognition using RGB video is a challenging task because the learning of actions is easily affected by the cluttered background. To cope with this problem, the proposed method estimates 3D human poses first which can help remove the cluttered background and focus on the human body. In addition to the human poses, the proposed method also utilizes appearance features nearby the predicted joints to make our action prediction context-aware. Instead of using 3D convolutional neural networks as many action recognition approaches did, the proposed method uses a two-stream architecture that aggregates the results from skeleton-based and appearance-based approaches to do action recognition. Experimental results show that the proposed method achieved state-of-the-art performance on NTU RGB+D which is a largescale dataset for human action recognition.

Learning Group Activities from Skeletons without Individual Action Labels

Fabio Zappardino, Tiberio Uricchio, Lorenzo Seidenari, Alberto Del Bimbo

Responsive image

Auto-TLDR; Lean Pose Only for Group Activity Recognition

Similar

To understand human behavior we must not just recognize individual actions but model possibly complex group activity and interactions. Hierarchical models obtain the best results in group activity recognition but require fine grained individual action annotations at the actor level. In this paper we show that using only skeletal data we can train a state-of-the art end-to-end system using only group activity labels at the sequence level. Our experiments show that models trained without individual action supervision perform poorly. On the other hand we show that pseudo-labels can be computed from any pre-trained feature extractor with comparable final performance. Finally our carefully designed lean pose only architecture shows highly competitive results versus more complex multimodal approaches even in the self-supervised variant.

3D Attention Mechanism for Fine-Grained Classification of Table Tennis Strokes Using a Twin Spatio-Temporal Convolutional Neural Networks

Pierre-Etienne Martin, Jenny Benois-Pineau, Renaud Péteri, Julien Morlier

Responsive image

Auto-TLDR; Attentional Blocks for Action Recognition in Table Tennis Strokes

Slides Poster Similar

The paper addresses the problem of recognition of actions in video with low inter-class variability such as Table Tennis strokes. Two stream, "twin" convolutional neural networks are used with 3D convolutions both on RGB data and optical flow. Actions are recognized by classification of temporal windows. We introduce 3D attention modules and examine their impact on classification efficiency. In the context of the study of sportsmen performances, a corpus of the particular actions of table tennis strokes is considered. The use of attention blocks in the network speeds up the training step and improves the classification scores up to 5% with our twin model. We visualize the impact on the obtained features and notice correlation between attention and player movements and position. Score comparison of state-of-the-art action classification method and proposed approach with attentional blocks is performed on the corpus. Proposed model with attention blocks outperforms previous model without them and our baseline.

A Detection-Based Approach to Multiview Action Classification in Infants

Carolina Pacheco, Effrosyni Mavroudi, Elena Kokkoni, Herbert Tanner, Rene Vidal

Responsive image

Auto-TLDR; Multiview Action Classification for Infants in a Pediatric Rehabilitation Environment

Slides Similar

Activity recognition in children and infants is important in applications such as safety monitoring, behavior assessment, and child-robot interaction, among others. However, it differs from activity recognition in adults not only because body poses and proportions are different, but also because of the way in which actions are performed. This paper addresses the problem of infant action classification (up to 2 years old) in challenging conditions. The actions are performed in a pediatric rehabilitation environment in which not only infants but also robots and adults are present, with the infant being one of the smallest actors in the scene. We propose a multiview action classification system based on Faster R-CNN and LSTM networks, which fuses information from different views by using learnable fusion coefficients derived from detection confidence scores. The proposed system is view-independent, learns features that are close to view-invariant, and can handle new or missing views at test time. Our approach outperforms the state-of-the-art baseline model for this dataset by 11.4% in terms of average classification accuracy in four classes (crawl, sit, stand and walk). Moreover, experiments in a extended dataset from 6 subjects (8 to 24 months old) show that the proposed fusion strategy outperforms the best post-processing fusion strategy by 2.5% and 6.8% average classification accuracy in Leave One Super-session Out and Leave One Subject Out cross-validation, respectively.