Wang Luyang

Papers from this author

A Multi-Task Neural Network for Action Recognition with 3D Key-Points

Rongxiao Tang, Wang Luyang, Zhenhua Guo

Responsive image

Auto-TLDR; Multi-task Neural Network for Action Recognition and 3D Human Pose Estimation

Slides Poster Similar

Action recognition and 3D human pose estimation are the fundamental problems in computer vision and closely related. In this work, we propose a multi-task neural network for action recognition and 3D human pose estimation. The results of the previous methods are still error-prone especially when tested against the images taken in-the-wild, leading error results in action recognition. To solve this problem, we propose a principled approach to generate high quality 3D pose ground truth given any in-the-wild image with a person inside. We achieve this by first devising a novel stereo inspired neural network to directly map any 2D pose to high quality 3D counterpart. Based on the high-quality 3D labels, we carefully design the multi-task framework for action recognition and 3D human pose estimation. The proposed architecture can utilize the shallow, deep features of the images, and the in-the-wild 3D human key-points to guide a more precise result. High quality 3D key-points can fully reflect the morphological features of motions, thus boosting the performance on action recognition. Experiments demonstrate that 3D pose estimation leads to significantly higher performance on action recognition than separated learning. We also evaluate the generalization ability of our method both quantitatively and qualitatively. The proposed architecture performs favorably against the baseline 3D pose estimation methods. In addition, the reported results on Penn Action and NTU datasets demonstrate the effectiveness of our method on the action recognition task.