Antonino Furnari

Papers from this author

Knowledge Distillation for Action Anticipation Via Label Smoothing

Guglielmo Camporese, Pasquale Coscia, Antonino Furnari, Giovanni Maria Farinella, Lamberto Ballan

Responsive image

Auto-TLDR; A Multi-Modal Framework for Action Anticipation using Long Short-Term Memory Networks

Slides Poster Similar

Human capability to anticipate near future from visual observations and non-verbal cues is essential for developing intelligent systems that need to interact with people. Several research areas, such as human-robot interaction (HRI), assisted living or autonomous driving need to foresee future events to avoid crashes or help people. Egocentric scenarios are classic examples where action anticipation is applied due to their numerous applications. Such challenging task demands to capture and model domain's hidden structure to reduce prediction uncertainty. Since multiple actions may equally occur in the future, we treat action anticipation as a multi-label problem with missing labels extending the concept of label smoothing. This idea resembles the knowledge distillation process since useful information is injected into the model during training. We implement a multi-modal framework based on long short-term memory (LSTM) networks to summarize past observations and make predictions at different time steps. We perform extensive experiments on EPIC-Kitchens and EGTEA Gaze+ datasets including more than 2500 and 100 action classes, respectively. The experiments show that label smoothing systematically improves performance of state-of-the-art models for action anticipation.

On Embodied Visual Navigation in Real Environments through Habitat

Marco Rosano, Antonino Furnari, Luigi Gulino, Giovanni Maria Farinella

Responsive image

Auto-TLDR; Learning Navigation Policies on Real World Observations using Real World Images and Sensor and Actuation Noise

Slides Poster Similar

Visual navigation models based on deep learning can learn effective policies when trained on large amounts of visual observations through reinforcement learning. Unfortunately, collecting the required experience deploying a robotic platform in the real world is expensive and time-consuming. To deal with this limitation, several simulation platforms have been proposed in order to train visual navigation policies on virtual environments efficiently. Despite the advantages they offer, simulators present a limited realism in terms of appearance and physical dynamics, leading to navigation policies that do not generalize in the real world. In this paper, we propose a tool based on the Habitat simulator which exploits real world images of the environment, together with sensor and actuator noise models, to produce more realistic navigation episodes. We perform a range of experiments using virtual, real and images transformed with a simple domain adaptation approach. We also assess the impact of sensor and actuation noise on the navigation performance and investigate whether they allow to learn more robust navigation policies. We show that our tool can effectively help to train and evaluate navigation policies on real world observations without running navigation episodes in the real world.

Semantic Object Segmentation in Cultural Sites Using Real and Synthetic Data

Francesco Ragusa, Daniele Di Mauro, Alfio Palermo, Antonino Furnari, Giovanni Maria Farinella

Responsive image

Auto-TLDR; Exploiting Synthetic Data for Object Segmentation in Cultural Sites

Slides Poster Similar

We consider the problem of object segmentation in cultural sites. Since collecting and labeling large datasets of real images is challenging, we investigate whether the use of synthetic images can be useful to achieve good segmentation performance on real data. To perform the study, we collected a new dataset comprising both real and synthetic images of 24 artworks in a cultural site. The synthetic images have been automatically generated from the 3D model of the considered cultural site using a tool developed for that purpose. Real and synthetic images have been labeled for the task of semantic segmentation of artworks. We compare three different approaches to perform object segmentation exploiting real and synthetic data. The experimental results point out that the use of synthetic data helps to improve the performances of segmentation algorithms when tested on real images. Satisfactory performance is achieved exploiting semantic segmentation together with image-to-image translation and including a small amount of real data during training. To encourage research on the topic, we publicly release the proposed dataset at the following url: https://iplab.dmi.unict.it/EGO-CH-OBJ-SEG/.

Unsupervised Domain Adaptation for Object Detection in Cultural Sites

Giovanni Pasqualino, Antonino Furnari, Giovanni Maria Farinella

Responsive image

Auto-TLDR; Unsupervised Domain Adaptation for Object Detection in Cultural Sites

Slides Similar

The ability to detect objects in cultural sites from the egocentric point of view of the user can enable interesting applications for both the visitors and the manager of the site. Unfortunately, current object detection algorithms have to be trained on large amounts of labeled data, the collection of which is costly and time-consuming. While synthetic data generated from the 3D model of the cultural site can be used to train object detection algorithms, a significant drop in performance is generally observed when such algorithms are deployed to work with real images. In this paper, we consider the problem of unsupervised domain adaptation for object detection in cultural sites. Specifically, we assume the availability of synthetic labeled images and real unlabeled images for training. To study the problem, we propose a dataset containing 75244 synthetic and 2190 real images with annotations for 16 different artworks. We hence investigate different domain adaptation techniques based on image-to-image translation and feature alignment. Our analysis points out that such techniques can be useful to address the domain adaptation issue, while there is still plenty of space for improvement on the proposed dataset. We release the dataset at our web page to encourage research on this challenging topic: https://iplab.dmi.unict.it/EGO-CH-OBJ-ADAPT/.