On Embodied Visual Navigation in Real Environments through Habitat

Marco Rosano, Antonino Furnari, Luigi Gulino, Giovanni Maria Farinella

Responsive image

Auto-TLDR; Learning Navigation Policies on Real World Observations using Real World Images and Sensor and Actuation Noise

Slides Poster

Visual navigation models based on deep learning can learn effective policies when trained on large amounts of visual observations through reinforcement learning. Unfortunately, collecting the required experience deploying a robotic platform in the real world is expensive and time-consuming. To deal with this limitation, several simulation platforms have been proposed in order to train visual navigation policies on virtual environments efficiently. Despite the advantages they offer, simulators present a limited realism in terms of appearance and physical dynamics, leading to navigation policies that do not generalize in the real world. In this paper, we propose a tool based on the Habitat simulator which exploits real world images of the environment, together with sensor and actuator noise models, to produce more realistic navigation episodes. We perform a range of experiments using virtual, real and images transformed with a simple domain adaptation approach. We also assess the impact of sensor and actuation noise on the navigation performance and investigate whether they allow to learn more robust navigation policies. We show that our tool can effectively help to train and evaluate navigation policies on real world observations without running navigation episodes in the real world.

Similar papers

Unsupervised Domain Adaptation for Object Detection in Cultural Sites

Giovanni Pasqualino, Antonino Furnari, Giovanni Maria Farinella

Responsive image

Auto-TLDR; Unsupervised Domain Adaptation for Object Detection in Cultural Sites

Slides Similar

The ability to detect objects in cultural sites from the egocentric point of view of the user can enable interesting applications for both the visitors and the manager of the site. Unfortunately, current object detection algorithms have to be trained on large amounts of labeled data, the collection of which is costly and time-consuming. While synthetic data generated from the 3D model of the cultural site can be used to train object detection algorithms, a significant drop in performance is generally observed when such algorithms are deployed to work with real images. In this paper, we consider the problem of unsupervised domain adaptation for object detection in cultural sites. Specifically, we assume the availability of synthetic labeled images and real unlabeled images for training. To study the problem, we propose a dataset containing 75244 synthetic and 2190 real images with annotations for 16 different artworks. We hence investigate different domain adaptation techniques based on image-to-image translation and feature alignment. Our analysis points out that such techniques can be useful to address the domain adaptation issue, while there is still plenty of space for improvement on the proposed dataset. We release the dataset at our web page to encourage research on this challenging topic: https://iplab.dmi.unict.it/EGO-CH-OBJ-ADAPT/.

Semantic Object Segmentation in Cultural Sites Using Real and Synthetic Data

Francesco Ragusa, Daniele Di Mauro, Alfio Palermo, Antonino Furnari, Giovanni Maria Farinella

Responsive image

Auto-TLDR; Exploiting Synthetic Data for Object Segmentation in Cultural Sites

Slides Poster Similar

We consider the problem of object segmentation in cultural sites. Since collecting and labeling large datasets of real images is challenging, we investigate whether the use of synthetic images can be useful to achieve good segmentation performance on real data. To perform the study, we collected a new dataset comprising both real and synthetic images of 24 artworks in a cultural site. The synthetic images have been automatically generated from the 3D model of the considered cultural site using a tool developed for that purpose. Real and synthetic images have been labeled for the task of semantic segmentation of artworks. We compare three different approaches to perform object segmentation exploiting real and synthetic data. The experimental results point out that the use of synthetic data helps to improve the performances of segmentation algorithms when tested on real images. Satisfactory performance is achieved exploiting semantic segmentation together with image-to-image translation and including a small amount of real data during training. To encourage research on the topic, we publicly release the proposed dataset at the following url: https://iplab.dmi.unict.it/EGO-CH-OBJ-SEG/.

Deep Reinforcement Learning on a Budget: 3D Control and Reasoning without a Supercomputer

Edward Beeching, Jilles Steeve Dibangoye, Olivier Simonin, Christian Wolf

Responsive image

Auto-TLDR; Deep Reinforcement Learning in Mobile Robots Using 3D Environment Scenarios

Slides Poster Similar

An important goal of research in Deep Reinforcement Learning in mobile robotics is to train agents capableof solving complex tasks, which require a high level of scene understanding and reasoning from an egocentric perspective.When trained from simulations, optimal environments should satisfy a currently unobtainable combination of high-fidelity photographic observations, massive amounts of different environment configurations and fast simulation speeds. In this paper we argue that research on training agents capable of complex reasoning can be simplified by decoupling from the requirement of high fidelity photographic observations. We present a suite of tasks requiring complex reasoning and exploration in continuous,partially observable 3D environments. The objective is to provide challenging scenarios and a robust baseline agent architecture that can be trained on mid-range consumer hardware in under 24h. Our scenarios combine two key advantages: (i) they are based on a simple but highly efficient 3D environment (ViZDoom)which allows high speed simulation (12000fps); (ii) the scenarios provide the user with a range of difficulty settings, in order to identify the limitations of current state of the art algorithms and network architectures. We aim to increase accessibility to the field of Deep-RL by providing baselines for challenging scenarios where new ideas can be iterated on quickly. We argue that the community should be able to address challenging problems in reasoning of mobile agents without the need for a large compute infrastructure.

SAILenv: Learning in Virtual Visual Environments Made Simple

Enrico Meloni, Luca Pasqualini, Matteo Tiezzi, Marco Gori, Stefano Melacci

Responsive image

Auto-TLDR; SAILenv: A Simple and Customized Platform for Visual Recognition in Virtual 3D Environment

Slides Poster Similar

Recently, researchers in Machine Learning algorithms, Computer Vision scientists, engineers and others, showed a growing interest in 3D simulators as a mean to artificially create experimental settings that are very close to those in the real world. However, most of the existing platforms to interface algorithms with 3D environments are often designed to setup navigation-related experiments, to study physical interactions, or to handle ad-hoc cases that are not thought to be customized, sometimes lacking a strong photorealistic appearance and an easy-to-use software interface. In this paper, we present a novel platform, SAILenv, that is specifically designed to be simple and customizable, and that allows researchers to experiment visual recognition in virtual 3D scenes. A few lines of code are needed to interface every algorithm with the virtual world, and non-3D-graphics experts can easily customize the 3D environment itself, exploiting a collection of photorealistic objects. Our framework yields pixel-level semantic and instance labeling, depth, and, to the best of our knowledge, it is the only one that provides motion-related information directly inherited from the 3D engine. The client-server communication operates at a low level, avoiding the overhead of HTTP-based data exchanges. We perform experiments using a state-of-the-art object detector trained on real-world images, showing that it is able to recognize the photorealistic 3D objects of our environment. The computational burden of the optical flow compares favourably with the estimation performed using modern GPU-based convolutional networks or more classic implementations. We believe that the scientific community will benefit from the easiness and high-quality of our framework to evaluate newly proposed algorithms in their own customized realistic conditions.

A Bayesian Approach to Reinforcement Learning of Vision-Based Vehicular Control

Zahra Gharaee, Karl Holmquist, Linbo He, Michael Felsberg

Responsive image

Auto-TLDR; Bayesian Reinforcement Learning for Autonomous Driving

Slides Poster Similar

In this paper, we present a state-of-the-art reinforcement learning method for autonomous driving. Our approach employs temporal difference learning in a Bayesian framework to learn vehicle control signals from sensor data. The agent has access to images from a forward facing camera, which are pre-processed to generate semantic segmentation maps. We trained our system using both ground truth and estimated semantic segmentation input. Based on our observations from a large set of experiments, we conclude that training the system on ground truth input data leads to better performance than training the system on estimated input even if estimated input is used for evaluation. The system is trained and evaluated in a realistic simulated urban environment using the CARLA simulator. The simulator also contains a benchmark that allows for comparing to other systems and methods. The required training time of the system is shown to be lower and the performance on the benchmark superior to competing approaches.

Explore and Explain: Self-Supervised Navigation and Recounting

Roberto Bigazzi, Federico Landi, Marcella Cornia, Silvia Cascianelli, Lorenzo Baraldi, Rita Cucchiara

Responsive image

Auto-TLDR; Exploring a Photorealistic Environment for Explanation and Navigation

Slides Similar

Embodied AI has been recently gaining attention as it aims to foster the development of autonomous and intelligent agents. In this paper, we devise a novel embodied setting in which an agent needs to explore a previously unknown environment while recounting what it sees during the path. In this context, the agent needs to navigate the environment driven by an exploration goal, select proper moments for description, and output natural language descriptions of relevant objects and scenes. Our model integrates a novel self-supervised exploration module with penalty, and a fully-attentive captioning model for explanation. Also, we investigate different policies for selecting proper moments for explanation, driven by information coming from both the environment and the navigation. Experiments are conducted on photorealistic environments from the Matterport3D dataset and investigate the navigation and explanation capabilities of the agent as well as the role of their interactions.

Object-Oriented Map Exploration and Construction Based on Auxiliary Task Aided DRL

Junzhe Xu, Jianhua Zhang, Shengyong Chen, Honghai Liu

Responsive image

Auto-TLDR; Auxiliary Task Aided Deep Reinforcement Learning for Environment Exploration by Autonomous Robots

Similar

Environment exploration by autonomous robots through deep reinforcement learning (DRL) based methods has attracted more and more attention. However, existing methods usually focus on robot navigation to single or multiple fixed goals, while ignoring the perception and construction of external environments. In this paper, we propose a novel environment exploration task based on DRL, which requires a robot fast and completely perceives all objects of interest, and reconstructs their poses in a global environment map, as much as the robot can do. To this end, we design an auxiliary task aided DRL model, which is integrated with the auxiliary object detection and 6-DoF pose estimation components. The outcome of auxiliary tasks can improve the learning speed and robustness of DRL, as well as the accuracy of object pose estimation. Comprehensive experimental results on the indoor simulation platform AI2-THOR have shown the effectiveness and robustness of our method.

Low Dimensional State Representation Learning with Reward-Shaped Priors

Nicolò Botteghi, Ruben Obbink, Daan Geijs, Mannes Poel, Beril Sirmacek, Christoph Brune, Abeje Mersha, Stefano Stramigioli

Responsive image

Auto-TLDR; Unsupervised Learning for Unsupervised Reinforcement Learning in Robotics

Poster Similar

Reinforcement Learning has been able to solve many complicated robotics tasks without any need of feature engineering in an end-to-end fashion. However, learning the optimal policy directly from the sensory inputs, i.e the observations, often requires processing and storage of huge amount of data. In the context of robotics, the cost of data from real robotics hardware is usually very high, thus solutions that achieves high sample-efficiency are needed. We propose a method that aims at learning a mapping from the observations into a lower dimensional state space. This mapping is learned with unsupervised learning using loss functions shaped to incorporate prior knowledge of the environment and the task. Using the samples from the state space, the optimal policy is quickly and efficiently learned. We test the method on several mobile robot navigation tasks in simulation environment and also on a real robot.

Deep Reinforcement Learning for Autonomous Driving by Transferring Visual Features

Hongli Zhou, Guanwen Zhang, Wei Zhou

Responsive image

Auto-TLDR; Deep Reinforcement Learning for Autonomous Driving by Transferring Visual Features

Slides Poster Similar

Deep reinforcement learning (DRL) has achieved great success in processing vision-based driving tasks. However, the end-to-end training manner makes DRL agents suffer from overfitting training scenes. The agents easily fail to generalize to unseen environments. In this paper, we propose a deep reinforcement learning for autonomous driving by transferring visual features. We formulate the DRL training as a perception and control module and introduce adversarial training mechanism for autonomous driving. The perception module is able to extract invariant features between different domains through adversarial training. While the DRL agent can then be trained on the basis of low dimensional states. In this manner, the proposed approach enables trained agents to adapt to unseen environments by learning robust features invariant across various scenes. We evaluate the proposed approach by transferring visual features between different simulators. The experimental results demonstrate the driving policy trained in the source domain can be directly applied in the target domain, and achieve great efficient and effective performance for autonomous driving.

RISEdb: A Novel Indoor Localization Dataset

Carlos Sanchez Belenguer, Erik Wolfart, Álvaro Casado Coscollá, Vitor Sequeira

Responsive image

Auto-TLDR; Indoor Localization Using LiDAR SLAM and Smartphones: A Benchmarking Dataset

Slides Poster Similar

In this paper we introduce a novel public dataset for developing and benchmarking indoor localization systems. We have selected and 3D mapped a set of representative indoor environments including a large office building, a conference room, a workshop, an exhibition area and a restaurant. Our acquisition pipeline is based on a portable LiDAR SLAM backpack to map the buildings and to accurately track the pose of the user as it moves freely inside them. We introduce the calibration procedures that enable us to acquire and geo-reference live data coming from different independent sensors rigidly attached to the backpack. This has allowed us to collect long sequences of spherical and stereo images, together with all the sensor readings coming from a consumer smartphone and locate them inside the map with centimetre accuracy. The dataset addresses many of the limitations of existing indoor localization datasets regarding the scale and diversity of the mapped buildings; the number of acquired sequences under varying conditions; the accuracy of the ground-truth trajectory; the availability of a detailed 3D model and the availability of different sensor types. It enables the benchmarking of existing and the development of new indoor localization approaches, in particular for deep learning based systems that require large amounts of labeled training data.

Multiple Future Prediction Leveraging Synthetic Trajectories

Lorenzo Berlincioni, Federico Becattini, Lorenzo Seidenari, Alberto Del Bimbo

Responsive image

Auto-TLDR; Synthetic Trajectory Prediction using Markov Chains

Slides Poster Similar

Trajectory prediction is an important task, especially in autonomous driving. The ability to forecast the position of other moving agents can yield to an effective planning, ensuring safety for the autonomous vehicle as well for the observed entities. In this work we propose a data driven approach based on Markov Chains to generate synthetic trajectories, which are useful for training a multiple future trajectory predictor. The advantages are twofold: on the one hand synthetic samples can be used to augment existing datasets and train more effective predictors; on the other hand, it allows to generate samples with multiple ground truths, corresponding to diverse equally likely outcomes of the observed trajectory. We define a trajectory prediction model and a loss that explicitly address the multimodality of the problem and we show that combining synthetic and real data leads to prediction improvements, obtaining state of the art results.

Quantifying the Use of Domain Randomization

Mohammad Ani, Hector Basevi, Ales Leonardis

Responsive image

Auto-TLDR; Evaluating Domain Randomization for Synthetic Image Generation by directly measuring the difference between realistic and synthetic data distributions

Slides Poster Similar

Synthetic image generation provides the ability to efficiently produce large quantities of labeled data, which addresses both the data volume requirements of state-of-the-art vision systems and the expense of manually labeling data. However, systems trained on synthetic data typically under-perform systems trained on realistic data due to mismatch between the synthetic and realistic data distributions. Domain Randomization (DR) is a method of broadening a synthetic data distribution to encompass a realistic data distribution, and so provide better performance, when the exact characteristics of the realistic data distribution are not known or cannot be simulated. However, there is no consensus in the literature on the best method of performing DR. We propose a novel method of ranking DR methods by directly measuring the difference between realistic and DR data distributions. This avoids the need to measure task-specific performance and the associated expense of training and evaluation. We compare different methods for measuring distribution differences including the Wasserstein, and Fr\'echet Inception distances. We also examine the effect of performing this evaluation directly on images, and on features generated by an image classification backbone. Finally, we show that the ranking generated by our method is reflected in actual task performance.

Learning from Learners: Adapting Reinforcement Learning Agents to Be Competitive in a Card Game

Pablo Vinicius Alves De Barros, Ana Tanevska, Alessandra Sciutti

Responsive image

Auto-TLDR; Adaptive Reinforcement Learning for Competitive Card Games

Slides Poster Similar

Learning how to adapt to complex and dynamic environments is one of the most important factors that contribute to our intelligence. Endowing artificial agents with this ability is not a simple task, particularly in competitive scenarios. In this paper, we present a broad study on how popular reinforcement learning algorithms can be adapted and implemented to learn and to play a real-world implementation of a competitive multiplayer card game. We propose specific training and validation routines for the learning agents, in order to evaluate how the agents learn to be competitive and explain how they adapt to each others' playing style. Finally, we pinpoint how the behavior of each agent derives from their learning style and create a baseline for future research on this scenario.

Unsupervised Domain Adaptation with Multiple Domain Discriminators and Adaptive Self-Training

Teo Spadotto, Marco Toldo, Umberto Michieli, Pietro Zanuttigh

Responsive image

Auto-TLDR; Unsupervised Domain Adaptation for Semantic Segmentation of Urban Scenes

Slides Poster Similar

Unsupervised Domain Adaptation (UDA) aims at improving the generalization capability of a model trained on a source domain to perform well on a target domain for which no labeled data is available. In this paper, we consider the semantic segmentation of urban scenes and we propose an approach to adapt a deep neural network trained on synthetic data to real scenes addressing the domain shift between the two different data distributions. We introduce a novel UDA framework where a standard supervised loss on labeled synthetic data is supported by an adversarial module and a self-training strategy aiming at aligning the two domain distributions. The adversarial module is driven by a couple of fully convolutional discriminators dealing with different domains: the first discriminates between ground truth and generated maps, while the second between segmentation maps coming from synthetic or real world data. The self-training module exploits the confidence estimated by the discriminators on unlabeled data to select the regions used to reinforce the learning process. Furthermore, the confidence is thresholded with an adaptive mechanism based on the per-class overall confidence. Experimental results prove the effectiveness of the proposed strategy in adapting a segmentation network trained on synthetic datasets like GTA5 and SYNTHIA, to real world datasets like Cityscapes and Mapillary.

Deep Next-Best-View Planner for Cross-Season Visual Route Classification

Kurauchi Kanya, Kanji Tanaka

Responsive image

Auto-TLDR; Active Visual Place Recognition using Deep Convolutional Neural Network

Slides Poster Similar

This paper addresses the problem of active visual place recognition (VPR) from a novel perspective of long-term autonomy. In our approach, a next-best-view (NBV) planner plans an optimal action-observation-sequence to maximize the expected cost-performance for a visual route classification task. A difficulty arises from the fact that the NBV planner is trained and tested in different domains (times of day, weather conditions, and seasons). Existing NBV methods may be confused and deteriorated by the domain-shifts, and require significant efforts for adapting them to a new domain. We address this issue by a novel deep convolutional neural network (DNN) -based NBV planner that does not require the adaptation. Our main contributions in this paper are summarized as follows: (1) We present a novel domain-invariant NBV planner that is specifically tailored for DNN-based VPR. (2) We formulate the active VPR as a POMDP problem and present a feasible solution to address the inherent intractability. Specifically, the probability distribution vector (PDV) output by the available DNN is used as a domain-invariant observation model without the need to retrain it. (3) We verify efficacy of the proposed approach through challenging cross-season VPR experiments, where it is confirmed that the proposed approach clearly outperforms the previous single-view-based or multi-view-based VPR in terms of VPR accuracy and/or action-observation-cost.

Improving Robotic Grasping on Monocular Images Via Multi-Task Learning and Positional Loss

William Prew, Toby Breckon, Magnus Bordewich, Ulrik Beierholm

Responsive image

Auto-TLDR; Improving grasping performance from monocularcolour images in an end-to-end CNN architecture with multi-task learning

Slides Poster Similar

In this paper we introduce two methods of improv-ing real-time objecting grasping performance from monocularcolour images in an end-to-end CNN architecture. The first isthe addition of an auxiliary task during model training (multi-task learning). Our multi-task CNN model improves graspingperformance from a baseline average of 72.04% to 78.14% onthe large Jacquard grasping dataset when performing a supple-mentary depth reconstruction task. The second is introducinga positional loss function that emphasises loss per pixel forsecondary parameters (gripper angle and width) only on points ofan object where a successful grasp can take place. This increasesperformance from a baseline average of 72.04% to 78.92% aswell as reducing the number of training epochs required. Thesemethods can be also performed in tandem resulting in a furtherperformance increase to 79.12%, while maintaining sufficientinference speed to enable processing at 50FPS

Shape Consistent 2D Keypoint Estimation under Domain Shift

Levi Vasconcelos, Massimiliano Mancini, Davide Boscaini, Barbara Caputo, Elisa Ricci

Responsive image

Auto-TLDR; Deep Adaptation for Keypoint Prediction under Domain Shift

Slides Poster Similar

Recent unsupervised domain adaptation methods based on deep architectures have shown remarkable performance not only in traditional classification tasks but also in more complex problems involving structured predictions (e.g. semantic segmentation, depth estimation). Following this trend, in this paper we present a novel deep adaptation framework for estimating keypoints under \textit{domain shift}, i.e. when the training (\textit{source}) and the test (\textit{target}) images significantly differ in terms of visual appearance. Our method seamlessly combines three different components: feature alignment, adversarial training and self-supervision. Specifically, our deep architecture leverages from domain-specific distribution alignment layers to perform target adaptation at the feature level. Furthermore, a novel loss is proposed which combines an adversarial term for ensuring aligned predictions in the output space and a geometric consistency term which guarantees coherent predictions between a target sample and its perturbed version. Our extensive experimental evaluation conducted on three publicly available benchmarks shows that our approach outperforms state-of-the-art domain adaptation methods in the 2D keypoint prediction task.

Efficient Shadow Detection and Removal Using Synthetic Data with Domain Adaptation

Rui Guo, Babajide Ayinde, Hao Sun

Responsive image

Auto-TLDR; Shadow Detection and Removal with Domain Adaptation and Synthetic Image Database

Poster Similar

In recent years, learning based shadow detection and removal approaches have shown prospects and, in most cases, yielded state-of-the-art results. The performance of these approaches, however, relies heavily on the construction of training database of shadow images, shadow-free versions, and shadow maps as ground truth. This conventional data gathering method is time-consuming, expensive, or even practically intractable to realize especially for outdoor scenes with complicated shadow patterns, thus limiting the size of the data available for training. In this paper, we leverage on large high quality synthetic image database and domain adaptation to eliminate the bottlenecks resulting from insufficient training samples and domain bias. Specifically, our approach utilizes adversarial training to predict near-pixel-perfect shadow map from synthetic shadow image for downstream shadow removal steps. At inference time, we capitalize on domain adaptation via image style transfer to map the style of real- world scene to that of synthetic scene for the purpose of detecting and subsequently removing shadow. Comprehensive experiments indicate that our approach outperforms state-of-the-art methods on select benchmark datasets.

Joint Supervised and Self-Supervised Learning for 3D Real World Challenges

Antonio Alliegro, Davide Boscaini, Tatiana Tommasi

Responsive image

Auto-TLDR; Self-supervision for 3D Shape Classification and Segmentation in Point Clouds

Slides Similar

Point cloud processing and 3D shape understanding are very challenging tasks for which deep learning techniques have demonstrated great potentials. Still further progresses are essential to allow artificial intelligent agents to interact with the real world. In many practical conditions the amount of annotated data may be limited and integrating new sources of knowledge becomes crucial to support autonomous learning. Here we consider several scenarios involving synthetic and real world point clouds where supervised learning fails due to data scarcity and large domain gaps. We propose to enrich standard feature representations by leveraging self-supervision through a multi-task model that can solve a 3D puzzle while learning the main task of shape classification or part segmentation. An extensive analysis investigating few-shot, transfer learning and cross-domain settings shows the effectiveness of our approach with state-of-the-art results for 3D shape classification and part segmentation.

Map-Based Temporally Consistent Geolocalization through Learning Motion Trajectories

Bing Zha, Alper Yilmaz

Responsive image

Auto-TLDR; Exploiting Motion Trajectories for Geolocalization of Object on Topological Map using Recurrent Neural Network

Slides Poster Similar

In this paper, we propose a novel trajectory learning method that exploits motion trajectories on topological map using recurrent neural network for temporally consistent geolocalization of object. Inspired by human's ability to both be aware of distance and direction of self-motion in navigation, our trajectory learning method learns a pattern representation of trajectories encoded as a sequence of distances and turning angles to assist self-localization. We pose the learning process as a conditional sequence prediction problem in which each output locates the object on a traversable edge in a map. Considering the prediction sequence ought to be topologically connected in the graph-structured map, we adopt two different hypotheses generation and elimination strategies to eliminate disconnected sequence prediction. We demonstrate our approach on the KITTI stereo visual odometry dataset which is a city-scale environment. The key benefits of our approach to geolocalization are that 1) we take advantage of powerful sequence modeling ability of recurrent neural network and its robustness to noisy input, 2) only require a map in the form of a graph and 3) simply use an affordable sensor that generates motion trajectory. The experiments show that the motion trajectories can be learned by training an recurrent neural network, and temporally consistent geolocation can be predicted with both of the proposed strategies.

Benchmarking Cameras for OpenVSLAM Indoors

Kevin Chappellet, Guillaume Caron, Fumio Kanehiro, Ken Sakurada, Abderrahmane Kheddar

Responsive image

Auto-TLDR; OpenVSLAM: Benchmarking Camera Types for Visual Simultaneous Localization and Mapping

Slides Poster Similar

In this paper we benchmark different types of cameras and evaluate their performance in terms of reliable localization reliability and precision in Visual Simultaneous Localization and Mapping (vSLAM). Such benchmarking is merely found for visual odometry, but never for vSLAM. Existing studies usually compare several algorithms for a given camera. %This work is the first to handle the dual of the latter, i.e. comparing several cameras for a given SLAM algorithm. The evaluation methodology we propose is applied to the recent OpenVSLAM framework. The latter is versatile enough to natively deal with perspective, fisheye, 360 cameras in a monocular or stereoscopic setup, an in RGB or RGB-D modalities. Results in various sequences containing light variation and scenery modifications in the scene assess quantitatively the maximum localization rate for 360 vision. In the contrary, RGB-D vision shows the lowest localization rate, but highest precision when localization is possible. Stereo-fisheye trades-off with localization rates and precision between 360 vision and RGB-D vision. The dataset with ground truth will be made available in open access to allow evaluating other/future vSLAM algorithms with respect to these camera types.

Detecting and Adapting to Crisis Pattern with Context Based Deep Reinforcement Learning

Eric Benhamou, David Saltiel Saltiel, Jean-Jacques Ohana Ohana, Jamal Atif Atif

Responsive image

Auto-TLDR; Deep Reinforcement Learning for Financial Crisis Detection and Dis-Investment

Slides Poster Similar

Deep reinforcement learning (DRL) has reached super human levels in complexes tasks like game solving (Go, StarCraft II), and autonomous driving. However, it remains an open question whether DRL can reach human level in applications to financial problems and in particular in detecting pattern crisis and consequently dis-investing. In this paper, we present an innovative DRL framework consisting in two sub-networks fed respectively with portfolio strategies past performances and standard deviation as well as additional contextual features. The second sub network plays an important role as it captures dependencies with common financial indicators features like risk aversion, economic surprise index and correlations between assets that allows taking into account context based information. We compare different network architectures either using layers of convolutions to reduce network's complexity or LSTM block to capture time dependency and whether previous allocations is important in the modeling. We also use adversarial training to make the final model more robust. Results on test set show this approach substantially over-performs traditional portfolio optimization methods like Markovitz and is able to detect and anticipate crisis like the current Covid one.

DAG-Net: Double Attentive Graph Neural Network for Trajectory Forecasting

Alessio Monti, Alessia Bertugli, Simone Calderara, Rita Cucchiara

Responsive image

Auto-TLDR; Recurrent Generative Model for Multi-modal Human Motion Behaviour in Urban Environments

Slides Poster Similar

Understanding human motion behaviour is a critical task for several possible applications like self-driving cars or social robots, and in general for all those settings where an autonomous agent has to navigate inside a human-centric environment. This is non-trivial because human motion is inherently multi-modal: given a history of human motion paths, there are many plausible ways by which people could move in the future. Additionally, people activities are often driven by goals, e.g. reaching particular locations or interacting with the environment. We address both the aforementioned aspects by proposing a new recurrent generative model that considers both single agents’ future goals and interactions between different agents. The model exploits a double attention-based graph neural network to collect information about the mutual influences among different agents and integrates it with data about agents’ possible future objectives. Our proposal is general enough to be applied in different scenarios: the model achieves state-of-the-art results in both urban environments and also in sports applications.

Rethinking Domain Generalization Baselines

Francesco Cappio Borlino, Antonio D'Innocente, Tatiana Tommasi

Responsive image

Auto-TLDR; Style Transfer Data Augmentation for Domain Generalization

Slides Poster Similar

Despite being very powerful in standard learning settings, deep learning models can be extremely brittle when deployed in scenarios different from those on which they were trained. Domain generalization methods investigate this problem and data augmentation strategies have shown to be helpful tools to increase data variability, supporting model robustness across domains. In our work we focus on style transfer data augmentation and we present how it can be implemented with a simple and inexpensive strategy to improve generalization. Moreover, we analyze the behavior of current state of the art domain generalization methods when integrated with this augmentation solution: our thorough experimental evaluation shows that their original effect almost always disappears with respect to the augmented baseline. This issue open new scenarios for domain generalization research, highlighting the need of novel methods properly able to take advantage of the introduced data variability.

A Simple Domain Shifting Network for Generating Low Quality Images

Guruprasad Hegde, Avinash Nittur Ramesh, Kanchana Vaishnavi Gandikota, Michael Möller, Roman Obermaisser

Responsive image

Auto-TLDR; Robotic Image Classification Using Quality degrading networks

Slides Poster Similar

Deep Learning systems have proven to be extremely successful for image recognition tasks for which significant amounts of training data is available, e.g., on the famous ImageNet dataset. We demonstrate that for robotics applications with cheap camera equipment, the low image quality, however, influences the classification accuracy, and freely available data bases cannot be exploited in a straight forward way to train classifiers to be used on a robot. As a solution we propose to train a network on degrading the quality images in order to mimic specific low quality imaging systems. Numerical experiments demonstrate that classification networks trained by using images produced by our quality degrading network along with the high quality images outperform classification networks trained only on high quality data when used on a real robot system, while being significantly easier to use than competing zero-shot domain adaptation techniques.

AVD-Net: Attention Value Decomposition Network for Deep Multi-Agent Reinforcement Learning

Zhang Yuanxin, Huimin Ma, Yu Wang

Responsive image

Auto-TLDR; Attention Value Decomposition Network for Cooperative Multi-agent Reinforcement Learning

Slides Poster Similar

Multi-agent reinforcement learning (MARL) is of importance for variable real-world applications but remains more challenges like stationarity and scalability. While recently value function factorization methods have obtained empirical good results in cooperative multi-agent environment, these works mostly focus on the decomposable learning structures. Inspired by the application of attention mechanism in machine translation and other related domains, we propose an attention based approach called attention value decomposition network (AVD-Net), which capitalizes on the coordination relations between agents. AVD-Net employs centralized training with decentralized execution (CTDE) paradigm, which factorizes the joint action-value functions with only local observations and actions of agents. Our method is evaluated on multi-agent particle environment (MPE) and StarCraft micromanagement environment (SMAC). The experiment results show the strength of our approach compared to existing methods with state-of-the-art performance in cooperative scenarios.

Transformer Networks for Trajectory Forecasting

Francesco Giuliari, Hasan Irtiza, Marco Cristani, Fabio Galasso

Responsive image

Auto-TLDR; TransformerNetworks for Trajectory Prediction of People Interactions

Slides Poster Similar

Most recent successes on forecasting the people mo-tion are based on LSTM models andallmost recent progress hasbeen achieved by modelling the social interaction among peopleand the people interaction with the scene. We question the useof the LSTM models and propose the novel use of TransformerNetworks for trajectory forecasting. This is a fundamental switchfrom the sequential step-by-step processing of LSTMs to theonly-attention-based memory mechanisms of Transformers. Inparticular, we consider both the original Transformer Network(TF) and the larger Bidirectional Transformer (BERT), state-of-the-art on all natural language processing tasks. Our proposedTransformers predict the trajectories of the individual peoplein the scene. These are “simple” models because each personis modelled separately without any complex human-human norscene interaction terms. In particular, the TF modelwithoutbells and whistlesyields the best score on the largest and mostchallenging trajectory forecasting benchmark of TrajNet [1]. Ad-ditionally, its extension which predicts multiple plausible futuretrajectories performs on par with more engineered techniqueson the 5 datasets of ETH [2]+UCY [3]. Finally, we showthat Transformers may deal with missing observations, as itmay be the case with real sensor data. Code is available atgithub.com/FGiuliari/Trajectory-Transformer

Localization of Unmanned Aerial Vehicles in Corridor Environments Using Deep Learning

Ram Padhy, Shahzad Ahmad, Sachin Verma, Sambit Bakshi, Pankaj Kumar Sa

Responsive image

Auto-TLDR; A monocular vision assisted localization algorithm for indoor corridor environments

Slides Poster Similar

We propose a monocular vision assisted localization algorithm, that will help a UAV navigate safely in indoor corridor environments. Always, the aim is to navigate the UAV through a corridor in the forward direction by keeping it at the center with no orientation either to the left or right side. The algorithm makes use of the RGB image, captured from the UAV front camera, and passes it through a trained Deep Neural Network (DNN) to predict the position of the UAV as either on the left or center or right side of the corridor. Depending upon the divergence of the UAV with respect to an imaginary central line, known as the central bisector line (CBL) of the corridor, a suitable command is generated to bring the UAV to the center. When the UAV is at the center of the corridor, a new image is passed through another trained DNN to predict the orientation of the UAV with respect to the CBL of the corridor. If the UAV is either left or right tilted, an appropriate command is generated to rectify the orientation. We also propose a new corridor dataset, named UAVCorV1, which contains images as captured by the UAV front camera when the UAV is at all possible locations of a variety of corridors. An exhaustive set of experiments in different corridors reveal the efficacy of the proposed algorithm.

Meta Learning Via Learned Loss

Sarah Bechtle, Artem Molchanov, Yevgen Chebotar, Edward Thomas Grefenstette, Ludovic Righetti, Gaurav Sukhatme, Franziska Meier

Responsive image

Auto-TLDR; meta-learning for learning parametric loss functions that generalize across different tasks and model architectures

Slides Similar

Typically, loss functions, regularization mechanisms and other important aspects of training parametric models are chosen heuristically from a limited set of options. In this paper, we take the first step towards automating this process, with the view of producing models which train faster and more robustly. Concretely, we present a meta-learning method for learning parametric loss functions that can generalize across different tasks and model architectures. We develop a pipeline for “meta-training” such loss functions, targeted at maximizing the performance of the model trained under them. The loss landscape produced by our learned losses significantly improves upon the original task-specific losses in both supervised and reinforcement learning tasks. Furthermore, we show that our meta-learning framework is flexible enough to incorporate additional information at meta-train time. This information shapes the learned loss function such that the environment does not need to provide this information during meta-test time.

Polarimetric Image Augmentation

Marc Blanchon, Fabrice Meriaudeau, Olivier Morel, Ralph Seulin, Desire Sidibe

Responsive image

Auto-TLDR; Polarimetric Augmentation for Deep Learning in Robotics Applications

Poster Similar

This paper deals with new augmentation methods for an unconventional imaging modality sensitive to the physics of the observed scene called polarimetry. In nature, polarized light is obtained by reflection or scattering. Robotics applications in urban environments are subject to many obstacles that can be specular and therefore provide polarized light. These areas are prone to segmentation errors using standard modalities but could be solved using information carried by the polarized light. Deep Convolutional Neural Networks (DCNNs) have shown excellent segmentation results, but require a significant amount of data to achieve best performances. The lack of data is usually overcomed by using augmentation methods. However, unlike RGB images, polarization images are not only scalar (intensity) images and standard augmentation techniques cannot be applied straightforwardly. We propose enhancing deep learning models through a regularized augmentation procedure applied to polarimetric data in order to characterize scenes more effectively under challenging conditions. We subsequently observe an average of 18.1% improvement in IoU between not augmented and regularized training procedures on real world data.

Level Three Synthetic Fingerprint Generation

Andre Wyzykowski, Mauricio Pamplona Segundo, Rubisley Lemes

Responsive image

Auto-TLDR; Synthesis of High-Resolution Fingerprints with Pore Detection Using CycleGAN

Slides Poster Similar

Today's legal restrictions that protect the privacy of biometric data are hampering fingerprint recognition researches. For instance, all high-resolution fingerprint databases ceased to be publicly available. To address this problem, we present a novel hybrid approach to synthesize realistic, high-resolution fingerprints. First, we improved Anguli, a handcrafted fingerprint generator, to obtain dynamic ridge maps with sweat pores and scratches. Then, we trained a CycleGAN to transform these maps into realistic fingerprints. Unlike other CNN-based works, we can generate several images for the same identity. We used our approach to create a synthetic database with 7400 images in an attempt to propel further studies in this field without raising legal issues. We included sweat pore annotations in 740 images to encourage research developments in pore detection. In our experiments, we employed two fingerprint matching approaches to confirm that real and synthetic databases have similar performance. We conducted a human perception analysis where sixty volunteers could hardly differ between real and synthesized fingerprints. Given that we also favorably compare our results with the most advanced works in the literature, our experimentation suggests that our approach is the new state-of-the-art.

Unsupervised Multi-Task Domain Adaptation

Shih-Min Yang, Mei-Chen Yeh

Responsive image

Auto-TLDR; Unsupervised Domain Adaptation with Multi-task Learning for Image Recognition

Slides Poster Similar

With abundant labeled data, deep convolutional neural networks have shown great success in various image recognition tasks. However, these models are often less powerful when applied to novel datasets due to a phenomenon known as domain shift. Unsupervised domain adaptation methods aim to address this problem, allowing deep models trained on the labeled source domain to be used on a different target domain (without labels). In this paper, we investigate whether the generalization ability of an unsupervised domain adaptation method can be improved through multi-task learning, with learned features required to be both domain invariant and discriminative for multiple different but relevant tasks. Experiments evaluating two fundamental recognition tasks---including image recognition and segmentation--- show that the generalization ability empowered by multi-task learning may not benefit recognition when the model is directly applied on the target domain, but the multi-task setting can boost the performance of state-of-the-art unsupervised domain adaptation methods by a non-negligible margin.

Towards life-long mapping of dynamic environments using temporal persistence modeling

Georgios Tsamis, Ioannis Kostavelis, Dimitrios Giakoumis, Dimitrios Tzovaras

Responsive image

Auto-TLDR; Lifelong Mapping for Mobile Robot Navigation in Dynamic Environments

Slides Poster Similar

The contemporary SLAM mapping systems assume a static environment and build a map that is then used for mobile robot navigation disregarding the dynamic changes in this environment. The paper at hand presents a novel solution for the \emph{lifelong mapping} problem that continually updates a metric map represented as a 2D occupancy grid in large scale indoor environments with movable objects such as people, robots, objects etc. suitable for industrial applications. We formalize each cell's occupancy as a failure analysis problem and contribute temporal persistence modeling (TPM), an algorithm for probabilistic prediction of the time that a cell in an observed location is expected to be ``occupied" or ``empty" given sparse prior observations from a task specific mobile robot. Our work is evaluated in Gazebo simulation environment against the nominal occupancy of cells and the estimated obstacles persistence. We also show that robot navigation with lifelong mapping demands less re-plans and leads to more efficient navigation in highly dynamic environments.

Bridging the Gap between Natural and Medical Images through Deep Colorization

Lia Morra, Luca Piano, Fabrizio Lamberti, Tatiana Tommasi

Responsive image

Auto-TLDR; Transfer Learning for Diagnosis on X-ray Images Using Color Adaptation

Slides Poster Similar

Deep learning has thrived by training on large-scale datasets. However, in many applications, as for medical image diagnosis, getting massive amount of data is still prohibitive due to privacy, lack of acquisition homogeneity and annotation cost. In this scenario transfer learning from natural image collections is a standard practice that attempts to tackle shape, texture and color discrepancy all at once through pretrained model fine-tuning. In this work we propose to disentangle those challenges and design a dedicated network module that focuses on color adaptation. We combine learning from scratch of the color module with transfer learning of different classification backbones obtaining an end-to-end, easy-to-train architecture for diagnostic image recognition on X-ray images. Extensive experiments show how our approach is particularly efficient in case of data scarcity and provides a new path for further transferring the learned color information across multiple medical datasets.

Derivation of Geometrically and Semantically Annotated UAV Datasets at Large Scales from 3D City Models

Sidi Wu, Lukas Liebel, Marco Körner

Responsive image

Auto-TLDR; Large-Scale Dataset of Synthetic UAV Imagery for Geometric and Semantic Annotation

Slides Poster Similar

While in high demand for the development of deep learning approaches, extensive datasets of annotated UAV imagery are still scarce today. Manual annotation, however, is time-consuming and, thus, has limited the potential for creating large-scale datasets. We tackle this challenge by presenting a procedure for the automatic creation of simulated UAV image sequences in urban areas and pixel-level annotations from publicly available data sources. We synthesize photo-realistic UAV imagery from Goole Earth Studio and derive annotations from an open CityGML model that not only provides geometric but also semantic information. The first dataset we exemplarily created using our approach contains 144000 images of Berlin, Germany, with four types of annotations, namely semantic labels as well as depth, surface normals, and edge maps. In the future, a complete pipeline regarding all the technical problems will be provided, together with more accurate models to refine some of the empirical settings currently, to automatically generate a large-scale dataset with reliable ground-truth annotations over the whole city of Berlin. The dataset, as well as the source code, will be published by then. Different methods will also be facilitated to test the usability of the dataset. We believe our dataset can be used for, and not limited to, tasks like pose estimation, geo-localization, monocular depth estimation, edge detection, building/surface classification, and plane segmentation. A potential research pipeline for geo-localization based on the synthetic dataset is provided.

Future Urban Scenes Generation through Vehicles Synthesis

Alessandro Simoni, Luca Bergamini, Andrea Palazzi, Simone Calderara, Rita Cucchiara

Responsive image

Auto-TLDR; Predicting the Future of an Urban Scene with a Novel View Synthesis Paradigm

Slides Poster Similar

In this work we propose a deep learning pipeline to predict the visual future appearance of an urban scene. Despite recent advances, generating the entire scene in an end-to-end fashion is still far from being achieved. Instead, here we follow a two stages approach, where interpretable information is included in the loop and each actor is modelled independently. We leverage a per-object novel view synthesis paradigm; i.e. generating a synthetic representation of an object undergoing a geometrical roto-translation in the 3D space. Our model can be easily conditioned with constraints (e.g. input trajectories) provided by state-of-the-art tracking methods or by the user itself. This allows us to generate a set of diverse realistic futures starting from the same input in a multi-modal fashion. We visually and quantitatively show the superiority of this approach over traditional end-to-end scene-generation methods on CityFlow, a challenging real world dataset.

Surface Material Dataset for Robotics Applications (SMDRA): A Dataset with Friction Coefficient and RGB-D for Surface Segmentation

Donghun Noh, Hyunwoo Nam, Min Sung Ahn, Hosik Chae, Sangjoon Lee, Kyle Gillespie, Dennis Hong

Responsive image

Auto-TLDR; A Surface Material Dataset for Robotics Applications

Slides Poster Similar

In this paper, we introduce the Surface Material Dataset for Robotics Applications (SMDRA), a collection of RGB color image, depth data, and pixel-wise friction coefficient data of 10 different materials for computer vision research specifically with robotics applications in mind that require physical contact between the robot and its environment such as robotic manipulators or walking robots. These selected surface materials are both easily accessible around our daily lives and cover a wide range of friction coefficients. Our dataset is unique in that while there is an abundance of RGB-D data due to the popularization of imaging sensors, additional pixel-wise aligned data of a different modality are not readily available. The depth data is collected by an active stereo camera which has shown promise on a variety of different robotic applications. In addition, this dataset is greatly expanded with friction coefficient data. Similarly to humans, this additional information can be helpful in ensuing proper decision making in tasks ranging from grasping orientation and strength to path determination in an unstructured environment. A newly developed friction measuring device was used to obtain this data. We verify that existing Convolutional Neural Network (CNN) architectures, the Fully Convolutional Network (FCN) and U-Net, can be trained on the SMDRA. This result demonstrates that the SMDRA can be utilized to train a neural network model for segmentation and these different modes are not just additional information, but valuable modes that researchers can incorporate and exploit when applying computer vision algorithms on robotic platforms.

Effective Deployment of CNNs for 3DoF Pose Estimation and Grasping in Industrial Settings

Daniele De Gregorio, Riccardo Zanella, Gianluca Palli, Luigi Di Stefano

Responsive image

Auto-TLDR; Automated Deep Learning for Robotic Grasping Applications

Slides Poster Similar

In this paper we investigate how to effectively deploy deep learning in practical industrial settings, such as robotic grasping applications. When a deep-learning based solution is proposed, usually lacks of any simple method to generate the training data. In the industrial field, where automation is the main goal, not bridging this gap is one of the main reasons why deep learning is not as widespread as it is in the academic world. For this reason, in this work we developed a system composed by a 3-DoF Pose Estimator based on Convolutional Neural Networks (CNNs) and an effective procedure to gather massive amounts of training images in the field with minimal human intervention. By automating the labeling stage, we also obtain very robust systems suitable for production-level usage. An open source implementation of our solution is provided, alongside with the dataset used for the experimental evaluation.

Can You Trust Your Pose? Confidence Estimation in Visual Localization

Luca Ferranti, Xiaotian Li, Jani Boutellier, Juho Kannala

Responsive image

Auto-TLDR; Pose Confidence Estimation in Large-Scale Environments: A Light-weight Approach to Improving Pose Estimation Pipeline

Slides Poster Similar

Camera pose estimation in large-scale environments is still an open question and, despite recent promising results, it may still fail in some situations. The research so far has focused on improving subcomponents of estimation pipelines, to achieve more accurate poses. However, there is no guarantee for the result to be correct, even though the correctness of pose estimation is critically important in several visual localization applications, such as in autonomous navigation. In this paper we bring to attention a novel research question, pose confidence estimation, where we aim at quantifying how reliable the visually estimated pose is. We develop a novel confidence measure to fulfill this task and show that it can be flexibly applied to different datasets, indoor or outdoor, and for various visual localization pipelines. We also show that the proposed techniques can be used to accomplish a secondary goal: improving the accuracy of existing pose estimation pipelines. Finally, the proposed approach is computationally light-weight and adds only a negligible increase to the computational effort of pose estimation.

RefiNet: 3D Human Pose Refinement with Depth Maps

Andrea D'Eusanio, Stefano Pini, Guido Borghi, Roberto Vezzani, Rita Cucchiara

Responsive image

Auto-TLDR; RefiNet: A Multi-stage Framework for 3D Human Pose Estimation

Slides Similar

Human Pose Estimation is a fundamental task for many applications in the Computer Vision community and it has been widely investigated in the 2D domain, i.e. intensity images. Therefore, most of the available methods for this task are mainly based on 2D Convolutional Neural Networks and huge manually-annotated RGB datasets, achieving stunning results. In this paper, we propose RefiNet, a multi-stage framework that regresses an extremely-precise 3D human pose estimation from a given 2D pose and a depth map. The framework consists of three different modules, each one specialized in a particular refinement and data representation, i.e. depth patches, 3D skeleton and point clouds. Moreover, we collect a new dataset, namely Baracca, acquired with RGB, depth and thermal cameras and specifically created for the automotive context. Experimental results confirm the quality of the refinement procedure that largely improves the human pose estimations of off-the-shelf 2D methods.

The Effect of Multi-Step Methods on Overestimation in Deep Reinforcement Learning

Lingheng Meng, Rob Gorbet, Dana Kulić

Responsive image

Auto-TLDR; Multi-Step DDPG for Deep Reinforcement Learning

Slides Poster Similar

Multi-step (also called n-step) methods in reinforcement learning (RL) have been shown to be more efficient than the 1-step method due to faster propagation of the reward signal, both theoretically and empirically, in tasks exploiting tabular representation of the value-function. Recently, research in Deep Reinforcement Learning (DRL) also shows that multi-step methods improve learning speed and final performance in applications where the value-function and policy are represented with deep neural networks. However, there is a lack of understanding about what is actually contributing to the boost of performance. In this work, we analyze the effect of multi-step methods on alleviating the overestimation problem in DRL, where multi-step experiences are sampled from a replay buffer. Specifically building on top of Deep Deterministic Policy Gradient (DDPG), we experiment with Multi-step DDPG (MDDPG), where different step sizes are manually set, and with a variant called Mixed Multi-step DDPG (MMDDPG) where an average over different multi-step backups is used as target Q-value. Empirically, we show that both MDDPG and MMDDPG are significantly less affected by the overestimation problem than DDPG with 1-step backup, which consequently results in better final performance and learning speed. We also discuss the advantages and disadvantages of different ways to do multi-step expansion in order to reduce approximation error, and expose the tradeoff between overestimation and underestimation that underlies offline multi-step methods. Finally, we compare the computational resource needs of TD3 and our proposed methods, since they show comparable final performance and learning speed.

Galaxy Image Translation with Semi-Supervised Noise-Reconstructed Generative Adversarial Networks

Qiufan Lin, Dominique Fouchez, Jérôme Pasquet

Responsive image

Auto-TLDR; Semi-supervised Image Translation with Generative Adversarial Networks Using Paired and Unpaired Images

Slides Poster Similar

Image-to-image translation with Deep Learning neural networks, particularly with Generative Adversarial Networks (GANs), is one of the most powerful methods for simulating astronomical images. However, current work is limited to utilizing paired images with supervised translation, and there has been rare discussion on reconstructing noise background that encodes instrumental and observational effects. These limitations might be harmful for subsequent scientific applications in astrophysics. Therefore, we aim to develop methods for using unpaired images and preserving noise characteristics in image translation. In this work, we propose a two-way image translation model using GANs that exploits both paired and unpaired images in a semi-supervised manner, and introduce a noise emulating module that is able to learn and reconstruct noise characterized by high-frequency features. By experimenting on multi-band galaxy images from the Sloan Digital Sky Survey (SDSS) and the Canada France Hawaii Telescope Legacy Survey (CFHT), we show that our method recovers global and local properties effectively and outperforms benchmark image translation models. To our best knowledge, this work is the first attempt to apply semi-supervised methods and noise reconstruction techniques in astrophysical studies.

Trajectory Representation Learning for Multi-Task NMRDP Planning

Firas Jarboui, Vianney Perchet

Responsive image

Auto-TLDR; Exploring Non Markovian Reward Decision Processes for Reinforcement Learning

Slides Poster Similar

Expanding Non Markovian Reward Decision Processes (NMRDP) into Markov Decision Processes (MDP) enables the use of state of the art Reinforcement Learning (RL) techniques to identify optimal policies. In this paper an approach to exploring NMRDPs and expanding them into MDPs, without the prior knowledge of the reward structure, is proposed. The non Markovianity of the reward function is disentangled under the assumption that sets of similar and dissimilar trajectory batches can be sampled. More precisely, within the same batch, measuring the similarity between any couple of trajectories is permitted, although comparing trajectories from different batches is not possible. A modified version of the triplet loss is optimised to construct a representation of the trajectories under which rewards become Markovian.

Do We Really Need Scene-Specific Pose Encoders?

Yoli Shavit, Ron Ferens

Responsive image

Auto-TLDR; Pose Regression Using Deep Convolutional Networks for Visual Similarity

Slides Similar

Visual pose regression models estimate the camera pose from a query image with a single forward pass. Current models learn pose encoding from an image using deep convolutional networks which are trained per scene. The resulting encoding is typically passed to a multi-layer perceptron in order to regress the pose. In this work, we propose that scene-specific pose encoders are not required for pose regression and that encodings trained for visual similarity can be used instead. In order to test our hypothesis, we take a shallow architecture of several fully connected layers and train it with pre-computed encodings from a generic image retrieval model. We find that these encodings are not only sufficient to regress the camera pose, but that, when provided to a branching fully connected architecture, a trained model can achieve competitive results and even surpass current state-of-the-art pose regressors in some cases. Moreover, we show that for outdoor localization, the proposed architecture is the only pose regressor, to date, consistently localizing in under 2 meters and 5 degrees.

Robust Pedestrian Detection in Thermal Imagery Using Synthesized Images

My Kieu, Lorenzo Berlincioni, Leonardo Galteri, Marco Bertini, Andrew Bagdanov, Alberto Del Bimbo

Responsive image

Auto-TLDR; Improving Pedestrian Detection in the thermal domain using Generative Adversarial Network

Slides Poster Similar

In this paper we propose a method for improving pedestrian detection in the thermal domain using two stages: first, a generative data augmentation approach is used, then a domain adaptation method using generated data adapts an RGB pedestrian detector. Our model, based on the Least-Squares Generative Adversarial Network, is trained to synthesize realistic thermal versions of input RGB images which are then used to augment the limited amount of labeled thermal pedestrian images available for training. We apply our generative data augmentation strategy in order to adapt a pretrained YOLOv3 pedestrian detector to detection in the thermal-only domain. Experimental results demonstrate the effectiveness of our approach: using less than 50% of available real thermal training data, and relying on synthesized data generated by our model in the domain adaptation phase, our detector achieves state-of-the-art results on the KAIST Multispectral Pedestrian Detection Benchmark; even if more real thermal data is available adding GAN generated images to the training data results in improved performance, thus showing that these images act as an effective form of data augmentation. To the best of our knowledge, our detector achieves the best single-modality detection results on KAIST with respect to the state-of-the-art.

Learning Dictionaries of Kinematic Primitives for Action Classification

Alessia Vignolo, Nicoletta Noceti, Alessandra Sciutti, Francesca Odone, Giulio Sandini

Responsive image

Auto-TLDR; Action Understanding using Visual Motion Primitives

Slides Poster Similar

This paper proposes a method based on visual motion primitives to address the problem of action understanding. The approach builds in an unsupervised way a dictionary of kinematic primitives from a set of sub-movements obtained by segmenting the velocity profile of an action on the basis of local minima derived directly from the optical flow. The dictionary is then used to describe each sub-movement as a linear combination of atoms using sparse coding. The descriptive capability of the proposed motion representation is experimentally validated on the MoCA dataset, a collection of synchronized multi-view videos and motion capture data of cooking activities. The results show that the approach, despite its simplicity, has a good performance in action classification, especially when the motion primitives are combined over time. Also, the method is proved to be tolerant to view point changes, and can thus support cross-view action recognition. Overall, the method may be seen as a backbone of a general approach to action understanding, with potential applications in robotics.

Randomized Transferable Machine

Pengfei Wei, Tze Yun Leong

Responsive image

Auto-TLDR; Randomized Transferable Machine for Suboptimal Feature-based Transfer Learning

Slides Poster Similar

Feature-based transfer method is one of the most effective methodologies for transfer learning. Existing works usually claim the learned new feature representation is truly \emph{domain-invariant}, and thus directly train a transfer model $\mathcal{M}$ on source domain. In this paper, we work on a more realistic scenario where the new feature representation is suboptimal where small divergence still exists across domains. We propose a new learning strategy and name the transfer model following the learning strategy as Randomized Transferable Machine (RTM). More specifically, we work on source data with the new feature representation learned from existing feature-based transfer methods. Our key idea is to enlarge source training data populations by randomly corrupting source data using some noises, and then train a transfer model $\widetilde{\mathcal{M}}$ performing well on all these corrupted source data populations. In principle, the more corruptions are made, the higher probability of the target data can be covered by the constructed source populations and thus a better transfer performance can be achieved by $\widetilde{\mathcal{M}}$. An ideal case is with infinite corruptions, which however is infeasible in reality. We instead develop a marginalized solution. With a marginalization trick, we can train an RTM that is equivalently trained using infinite source noisy populations without truly conducting any corruption. More importantly, such an RTM has a closed-form solution, which enables a super fast and efficient training. Extensive experiments on various real-world transfer tasks show that RTM is a very promising transfer model.

Extending Single Beam Lidar to Full Resolution by Fusing with Single Image Depth Estimation

Yawen Lu, Yuxing Wang, Devarth Parikh, Guoyu Lu

Responsive image

Auto-TLDR; Self-supervised LIDAR for Low-Cost Depth Estimation

Slides Similar

Depth estimation is playing an important role in indoor and outdoor scene understanding, autonomous driving, augmented reality and many other tasks. Vehicles and robotics are able to use active illumination sensors such as LIDAR to receive high precision depth estimation. However, high-resolution Lidars are usually too expensive, which limits its massive production on various applications. Though single beam LIDAR enjoys the benefits of low cost, one beam depth sensing is not usually sufficient to perceive the surrounding environment in many scenarios. In this paper, we propose a learning-based framework to explore to replicate similar or even higher performance as costly LIDARs with our designed self-supervised network and a low-cost single-beam LIDAR. After the accurate calibration with a visible camera, the single beam LIDAR can adjust the scale uncertainty of the depth map estimated by the visible camera. The adjusted depth map enjoys the benefits of high resolution and sensing accuracy as high beam LIDAR and maintains low-cost as single beam LIDAR. Thus we can achieve similar sensing effect of high beam LIDAR with more than a 50-100 times cheaper price (e.g., \$80000 Velodyne HDL-64E LIDAR v.s. \$1000 SICK TIM-781 2D LIDAR and normal camera). The proposed approach is verified on our collected dataset and public dataset with superior depth-sensing performance.