Deep Reinforcement Learning on a Budget: 3D Control and Reasoning without a Supercomputer

Edward Beeching, Jilles Steeve Dibangoye, Olivier Simonin, Christian Wolf

Responsive image

Auto-TLDR; Deep Reinforcement Learning in Mobile Robots Using 3D Environment Scenarios

Slides Poster

An important goal of research in Deep Reinforcement Learning in mobile robotics is to train agents capableof solving complex tasks, which require a high level of scene understanding and reasoning from an egocentric perspective.When trained from simulations, optimal environments should satisfy a currently unobtainable combination of high-fidelity photographic observations, massive amounts of different environment configurations and fast simulation speeds. In this paper we argue that research on training agents capable of complex reasoning can be simplified by decoupling from the requirement of high fidelity photographic observations. We present a suite of tasks requiring complex reasoning and exploration in continuous,partially observable 3D environments. The objective is to provide challenging scenarios and a robust baseline agent architecture that can be trained on mid-range consumer hardware in under 24h. Our scenarios combine two key advantages: (i) they are based on a simple but highly efficient 3D environment (ViZDoom)which allows high speed simulation (12000fps); (ii) the scenarios provide the user with a range of difficulty settings, in order to identify the limitations of current state of the art algorithms and network architectures. We aim to increase accessibility to the field of Deep-RL by providing baselines for challenging scenarios where new ideas can be iterated on quickly. We argue that the community should be able to address challenging problems in reasoning of mobile agents without the need for a large compute infrastructure.

Similar papers

Low Dimensional State Representation Learning with Reward-Shaped Priors

Nicolò Botteghi, Ruben Obbink, Daan Geijs, Mannes Poel, Beril Sirmacek, Christoph Brune, Abeje Mersha, Stefano Stramigioli

Responsive image

Auto-TLDR; Unsupervised Learning for Unsupervised Reinforcement Learning in Robotics

Poster Similar

Reinforcement Learning has been able to solve many complicated robotics tasks without any need of feature engineering in an end-to-end fashion. However, learning the optimal policy directly from the sensory inputs, i.e the observations, often requires processing and storage of huge amount of data. In the context of robotics, the cost of data from real robotics hardware is usually very high, thus solutions that achieves high sample-efficiency are needed. We propose a method that aims at learning a mapping from the observations into a lower dimensional state space. This mapping is learned with unsupervised learning using loss functions shaped to incorporate prior knowledge of the environment and the task. Using the samples from the state space, the optimal policy is quickly and efficiently learned. We test the method on several mobile robot navigation tasks in simulation environment and also on a real robot.

Learning from Learners: Adapting Reinforcement Learning Agents to Be Competitive in a Card Game

Pablo Vinicius Alves De Barros, Ana Tanevska, Alessandra Sciutti

Responsive image

Auto-TLDR; Adaptive Reinforcement Learning for Competitive Card Games

Slides Poster Similar

Learning how to adapt to complex and dynamic environments is one of the most important factors that contribute to our intelligence. Endowing artificial agents with this ability is not a simple task, particularly in competitive scenarios. In this paper, we present a broad study on how popular reinforcement learning algorithms can be adapted and implemented to learn and to play a real-world implementation of a competitive multiplayer card game. We propose specific training and validation routines for the learning agents, in order to evaluate how the agents learn to be competitive and explain how they adapt to each others' playing style. Finally, we pinpoint how the behavior of each agent derives from their learning style and create a baseline for future research on this scenario.

The Effect of Multi-Step Methods on Overestimation in Deep Reinforcement Learning

Lingheng Meng, Rob Gorbet, Dana Kulić

Responsive image

Auto-TLDR; Multi-Step DDPG for Deep Reinforcement Learning

Slides Poster Similar

Multi-step (also called n-step) methods in reinforcement learning (RL) have been shown to be more efficient than the 1-step method due to faster propagation of the reward signal, both theoretically and empirically, in tasks exploiting tabular representation of the value-function. Recently, research in Deep Reinforcement Learning (DRL) also shows that multi-step methods improve learning speed and final performance in applications where the value-function and policy are represented with deep neural networks. However, there is a lack of understanding about what is actually contributing to the boost of performance. In this work, we analyze the effect of multi-step methods on alleviating the overestimation problem in DRL, where multi-step experiences are sampled from a replay buffer. Specifically building on top of Deep Deterministic Policy Gradient (DDPG), we experiment with Multi-step DDPG (MDDPG), where different step sizes are manually set, and with a variant called Mixed Multi-step DDPG (MMDDPG) where an average over different multi-step backups is used as target Q-value. Empirically, we show that both MDDPG and MMDDPG are significantly less affected by the overestimation problem than DDPG with 1-step backup, which consequently results in better final performance and learning speed. We also discuss the advantages and disadvantages of different ways to do multi-step expansion in order to reduce approximation error, and expose the tradeoff between overestimation and underestimation that underlies offline multi-step methods. Finally, we compare the computational resource needs of TD3 and our proposed methods, since they show comparable final performance and learning speed.

Object-Oriented Map Exploration and Construction Based on Auxiliary Task Aided DRL

Junzhe Xu, Jianhua Zhang, Shengyong Chen, Honghai Liu

Responsive image

Auto-TLDR; Auxiliary Task Aided Deep Reinforcement Learning for Environment Exploration by Autonomous Robots

Similar

Environment exploration by autonomous robots through deep reinforcement learning (DRL) based methods has attracted more and more attention. However, existing methods usually focus on robot navigation to single or multiple fixed goals, while ignoring the perception and construction of external environments. In this paper, we propose a novel environment exploration task based on DRL, which requires a robot fast and completely perceives all objects of interest, and reconstructs their poses in a global environment map, as much as the robot can do. To this end, we design an auxiliary task aided DRL model, which is integrated with the auxiliary object detection and 6-DoF pose estimation components. The outcome of auxiliary tasks can improve the learning speed and robustness of DRL, as well as the accuracy of object pose estimation. Comprehensive experimental results on the indoor simulation platform AI2-THOR have shown the effectiveness and robustness of our method.

AVD-Net: Attention Value Decomposition Network for Deep Multi-Agent Reinforcement Learning

Zhang Yuanxin, Huimin Ma, Yu Wang

Responsive image

Auto-TLDR; Attention Value Decomposition Network for Cooperative Multi-agent Reinforcement Learning

Slides Poster Similar

Multi-agent reinforcement learning (MARL) is of importance for variable real-world applications but remains more challenges like stationarity and scalability. While recently value function factorization methods have obtained empirical good results in cooperative multi-agent environment, these works mostly focus on the decomposable learning structures. Inspired by the application of attention mechanism in machine translation and other related domains, we propose an attention based approach called attention value decomposition network (AVD-Net), which capitalizes on the coordination relations between agents. AVD-Net employs centralized training with decentralized execution (CTDE) paradigm, which factorizes the joint action-value functions with only local observations and actions of agents. Our method is evaluated on multi-agent particle environment (MPE) and StarCraft micromanagement environment (SMAC). The experiment results show the strength of our approach compared to existing methods with state-of-the-art performance in cooperative scenarios.

A Bayesian Approach to Reinforcement Learning of Vision-Based Vehicular Control

Zahra Gharaee, Karl Holmquist, Linbo He, Michael Felsberg

Responsive image

Auto-TLDR; Bayesian Reinforcement Learning for Autonomous Driving

Slides Poster Similar

In this paper, we present a state-of-the-art reinforcement learning method for autonomous driving. Our approach employs temporal difference learning in a Bayesian framework to learn vehicle control signals from sensor data. The agent has access to images from a forward facing camera, which are pre-processed to generate semantic segmentation maps. We trained our system using both ground truth and estimated semantic segmentation input. Based on our observations from a large set of experiments, we conclude that training the system on ground truth input data leads to better performance than training the system on estimated input even if estimated input is used for evaluation. The system is trained and evaluated in a realistic simulated urban environment using the CARLA simulator. The simulator also contains a benchmark that allows for comparing to other systems and methods. The required training time of the system is shown to be lower and the performance on the benchmark superior to competing approaches.

On Embodied Visual Navigation in Real Environments through Habitat

Marco Rosano, Antonino Furnari, Luigi Gulino, Giovanni Maria Farinella

Responsive image

Auto-TLDR; Learning Navigation Policies on Real World Observations using Real World Images and Sensor and Actuation Noise

Slides Poster Similar

Visual navigation models based on deep learning can learn effective policies when trained on large amounts of visual observations through reinforcement learning. Unfortunately, collecting the required experience deploying a robotic platform in the real world is expensive and time-consuming. To deal with this limitation, several simulation platforms have been proposed in order to train visual navigation policies on virtual environments efficiently. Despite the advantages they offer, simulators present a limited realism in terms of appearance and physical dynamics, leading to navigation policies that do not generalize in the real world. In this paper, we propose a tool based on the Habitat simulator which exploits real world images of the environment, together with sensor and actuator noise models, to produce more realistic navigation episodes. We perform a range of experiments using virtual, real and images transformed with a simple domain adaptation approach. We also assess the impact of sensor and actuation noise on the navigation performance and investigate whether they allow to learn more robust navigation policies. We show that our tool can effectively help to train and evaluate navigation policies on real world observations without running navigation episodes in the real world.

Detecting and Adapting to Crisis Pattern with Context Based Deep Reinforcement Learning

Eric Benhamou, David Saltiel Saltiel, Jean-Jacques Ohana Ohana, Jamal Atif Atif

Responsive image

Auto-TLDR; Deep Reinforcement Learning for Financial Crisis Detection and Dis-Investment

Slides Poster Similar

Deep reinforcement learning (DRL) has reached super human levels in complexes tasks like game solving (Go, StarCraft II), and autonomous driving. However, it remains an open question whether DRL can reach human level in applications to financial problems and in particular in detecting pattern crisis and consequently dis-investing. In this paper, we present an innovative DRL framework consisting in two sub-networks fed respectively with portfolio strategies past performances and standard deviation as well as additional contextual features. The second sub network plays an important role as it captures dependencies with common financial indicators features like risk aversion, economic surprise index and correlations between assets that allows taking into account context based information. We compare different network architectures either using layers of convolutions to reduce network's complexity or LSTM block to capture time dependency and whether previous allocations is important in the modeling. We also use adversarial training to make the final model more robust. Results on test set show this approach substantially over-performs traditional portfolio optimization methods like Markovitz and is able to detect and anticipate crisis like the current Covid one.

Explore and Explain: Self-Supervised Navigation and Recounting

Roberto Bigazzi, Federico Landi, Marcella Cornia, Silvia Cascianelli, Lorenzo Baraldi, Rita Cucchiara

Responsive image

Auto-TLDR; Exploring a Photorealistic Environment for Explanation and Navigation

Slides Similar

Embodied AI has been recently gaining attention as it aims to foster the development of autonomous and intelligent agents. In this paper, we devise a novel embodied setting in which an agent needs to explore a previously unknown environment while recounting what it sees during the path. In this context, the agent needs to navigate the environment driven by an exploration goal, select proper moments for description, and output natural language descriptions of relevant objects and scenes. Our model integrates a novel self-supervised exploration module with penalty, and a fully-attentive captioning model for explanation. Also, we investigate different policies for selecting proper moments for explanation, driven by information coming from both the environment and the navigation. Experiments are conducted on photorealistic environments from the Matterport3D dataset and investigate the navigation and explanation capabilities of the agent as well as the role of their interactions.

Meta Learning Via Learned Loss

Sarah Bechtle, Artem Molchanov, Yevgen Chebotar, Edward Thomas Grefenstette, Ludovic Righetti, Gaurav Sukhatme, Franziska Meier

Responsive image

Auto-TLDR; meta-learning for learning parametric loss functions that generalize across different tasks and model architectures

Slides Similar

Typically, loss functions, regularization mechanisms and other important aspects of training parametric models are chosen heuristically from a limited set of options. In this paper, we take the first step towards automating this process, with the view of producing models which train faster and more robustly. Concretely, we present a meta-learning method for learning parametric loss functions that can generalize across different tasks and model architectures. We develop a pipeline for “meta-training” such loss functions, targeted at maximizing the performance of the model trained under them. The loss landscape produced by our learned losses significantly improves upon the original task-specific losses in both supervised and reinforcement learning tasks. Furthermore, we show that our meta-learning framework is flexible enough to incorporate additional information at meta-train time. This information shapes the learned loss function such that the environment does not need to provide this information during meta-test time.

Trajectory Representation Learning for Multi-Task NMRDP Planning

Firas Jarboui, Vianney Perchet

Responsive image

Auto-TLDR; Exploring Non Markovian Reward Decision Processes for Reinforcement Learning

Slides Poster Similar

Expanding Non Markovian Reward Decision Processes (NMRDP) into Markov Decision Processes (MDP) enables the use of state of the art Reinforcement Learning (RL) techniques to identify optimal policies. In this paper an approach to exploring NMRDPs and expanding them into MDPs, without the prior knowledge of the reward structure, is proposed. The non Markovianity of the reward function is disentangled under the assumption that sets of similar and dissimilar trajectory batches can be sampled. More precisely, within the same batch, measuring the similarity between any couple of trajectories is permitted, although comparing trajectories from different batches is not possible. A modified version of the triplet loss is optimised to construct a representation of the trajectories under which rewards become Markovian.

Can Reinforcement Learning Lead to Healthy Life?: Simulation Study Based on User Activity Logs

Masami Takahashi, Masahiro Kohjima, Takeshi Kurashima, Hiroyuki Toda

Responsive image

Auto-TLDR; Reinforcement Learning for Healthy Daily Life

Slides Poster Similar

The importance of developing an application based on intervention technology that leads to a healthier life is widely recognized. A challenging part of realizing the application is the need for planning, i.e., considering a user's health goal (e.g., sleep at 10:00 p.m. to get enough sleep), providing intervention at the appropriate timing to help the user achieve the goal. The reinforcement learning (RL) approach is well suited to this type of problem since it is a methodology for planning; RL finds the optimal strategy as that which maximizes future expected profit. The purpose of this study is to clarify the effects of intervention based on RL to support healthy daily life. Therefore, we (i) collect real daily activity data from participants, (ii) generate a user model that imitates the user's response to system interventions, (iii) examine valuable goals and design them as rewards in RL and (iv) obtain optimal intervention strategies by RL via simulations given a user model and goals. We evaluate a generated user model and verify by simulations whether our method could successfully achieve the goal. In addition, we analyze the cases that demonstrated higher probability of achieving the goal and report the features.

SAILenv: Learning in Virtual Visual Environments Made Simple

Enrico Meloni, Luca Pasqualini, Matteo Tiezzi, Marco Gori, Stefano Melacci

Responsive image

Auto-TLDR; SAILenv: A Simple and Customized Platform for Visual Recognition in Virtual 3D Environment

Slides Poster Similar

Recently, researchers in Machine Learning algorithms, Computer Vision scientists, engineers and others, showed a growing interest in 3D simulators as a mean to artificially create experimental settings that are very close to those in the real world. However, most of the existing platforms to interface algorithms with 3D environments are often designed to setup navigation-related experiments, to study physical interactions, or to handle ad-hoc cases that are not thought to be customized, sometimes lacking a strong photorealistic appearance and an easy-to-use software interface. In this paper, we present a novel platform, SAILenv, that is specifically designed to be simple and customizable, and that allows researchers to experiment visual recognition in virtual 3D scenes. A few lines of code are needed to interface every algorithm with the virtual world, and non-3D-graphics experts can easily customize the 3D environment itself, exploiting a collection of photorealistic objects. Our framework yields pixel-level semantic and instance labeling, depth, and, to the best of our knowledge, it is the only one that provides motion-related information directly inherited from the 3D engine. The client-server communication operates at a low level, avoiding the overhead of HTTP-based data exchanges. We perform experiments using a state-of-the-art object detector trained on real-world images, showing that it is able to recognize the photorealistic 3D objects of our environment. The computational burden of the optical flow compares favourably with the estimation performed using modern GPU-based convolutional networks or more classic implementations. We believe that the scientific community will benefit from the easiness and high-quality of our framework to evaluate newly proposed algorithms in their own customized realistic conditions.

Self-Play or Group Practice: Learning to Play Alternating Markov Game in Multi-Agent System

Chin-Wing Leung, Shuyue Hu, Ho-Fung Leung

Responsive image

Auto-TLDR; Group Practice for Deep Reinforcement Learning

Slides Poster Similar

The research in reinforcement learning has achieved great success in strategic game playing. These successes are thanks to the incorporation of deep reinforcement learning (DRL) and Monte Carlo Tree Search (MCTS) to the agent trained under the self-play (SP) environment. By self-play, agents are provided with an incrementally more difficult curriculum which in turn facilitate learning. However, recent research suggests that agents trained via self-play may easily lead to getting stuck in local equilibria. In this paper, we consider a population of agents each independently learns to play an alternating Markov game (AMG). We propose a new training framework---group practice---for a population of decentralized RL agents. By group practice (GP), agents are assigned into multiple learning groups during training, for every episode of games, an agent is randomly paired up and practices with another agent in the learning group. The convergence result to the optimal value function and the Nash equilibrium are proved under the GP framework. Experimental study is conducted by applying GP to Q-learning algorithm and the deep Q-learning with Monte-Carlo tree search on the game of Connect Four and the game of Hex. We verify that GP is the more efficient training scheme than SP given the same amount of training. We also show that the learning effectiveness can even be improved when applying local grouping to agents.

Deep Reinforcement Learning for Autonomous Driving by Transferring Visual Features

Hongli Zhou, Guanwen Zhang, Wei Zhou

Responsive image

Auto-TLDR; Deep Reinforcement Learning for Autonomous Driving by Transferring Visual Features

Slides Poster Similar

Deep reinforcement learning (DRL) has achieved great success in processing vision-based driving tasks. However, the end-to-end training manner makes DRL agents suffer from overfitting training scenes. The agents easily fail to generalize to unseen environments. In this paper, we propose a deep reinforcement learning for autonomous driving by transferring visual features. We formulate the DRL training as a perception and control module and introduce adversarial training mechanism for autonomous driving. The perception module is able to extract invariant features between different domains through adversarial training. While the DRL agent can then be trained on the basis of low dimensional states. In this manner, the proposed approach enables trained agents to adapt to unseen environments by learning robust features invariant across various scenes. We evaluate the proposed approach by transferring visual features between different simulators. The experimental results demonstrate the driving policy trained in the source domain can be directly applied in the target domain, and achieve great efficient and effective performance for autonomous driving.

ActionSpotter: Deep Reinforcement Learning Framework for Temporal Action Spotting in Videos

Guillaume Vaudaux-Ruth, Adrien Chan-Hon-Tong, Catherine Achard

Responsive image

Auto-TLDR; ActionSpotter: A Reinforcement Learning Algorithm for Action Spotting in Video

Slides Poster Similar

Action spotting has recently been proposed as an alternative to action detection and key frame extraction. However, the current state-of-the-art method of action spotting requires an expensive ground truth composed of the search sequences employed by human annotators spotting actions - a critical limitation. In this article, we propose to use a reinforcement learning algorithm to perform efficient action spotting using only the temporal segments from the action detection annotations, thus opening an interesting solution for video understanding. Experiments performed on THUMOS14 and ActivityNet datasets show that the proposed method, named ActionSpotter, leads to good results and outperforms state-of-the-art detection outputs redrawn for this application. In particular, the spotting mean Average Precision on THUMOS14 is significantly improved from 59.7% to 65.6% while skipping 23% of video.

Vacant Parking Space Detection Based on Task Consistency and Reinforcement Learning

Manh Hung Nguyen, Tzu-Yin Chao, Ching-Chun Huang

Responsive image

Auto-TLDR; Vacant Space Detection via Semantic Consistency Learning

Slides Poster Similar

In this paper, we proposed a novel task-consistency learning method that allows training a vacant space detection network (target task) based on the logistic consistency with the semantic outcomes from a naive flow-based motion behavior classifier (source task) in a parking lot. By well designing the reward mechanism upon semantic consistency, we show the possibility to train the target network in a reinforcement learning setting. Compared with conventional supervised detection methods, the major contribution of this work is to learn a vacant space detector via semantic consistency rather than supervised labels. The dynamic learning property may make the proposed detector been deployed in different lots easily without heavy training loads. The experiments show that based on the task consistency rewards from the motion behavior classifier, the vacant space detector can be trained successfully.

Improving Robotic Grasping on Monocular Images Via Multi-Task Learning and Positional Loss

William Prew, Toby Breckon, Magnus Bordewich, Ulrik Beierholm

Responsive image

Auto-TLDR; Improving grasping performance from monocularcolour images in an end-to-end CNN architecture with multi-task learning

Slides Poster Similar

In this paper we introduce two methods of improv-ing real-time objecting grasping performance from monocularcolour images in an end-to-end CNN architecture. The first isthe addition of an auxiliary task during model training (multi-task learning). Our multi-task CNN model improves graspingperformance from a baseline average of 72.04% to 78.14% onthe large Jacquard grasping dataset when performing a supple-mentary depth reconstruction task. The second is introducinga positional loss function that emphasises loss per pixel forsecondary parameters (gripper angle and width) only on points ofan object where a successful grasp can take place. This increasesperformance from a baseline average of 72.04% to 78.92% aswell as reducing the number of training epochs required. Thesemethods can be also performed in tandem resulting in a furtherperformance increase to 79.12%, while maintaining sufficientinference speed to enable processing at 50FPS

A Novel Actor Dual-Critic Model for Remote Sensing Image Captioning

Ruchika Chavhan, Biplab Banerjee, Xiao Xiang Zhu, Subhasis Chaudhuri

Responsive image

Auto-TLDR; Actor Dual-Critic Training for Remote Sensing Image Captioning Using Deep Reinforcement Learning

Slides Poster Similar

We deal with the problem of generating textual captions from optical remote sensing (RS) images using the notion of deep reinforcement learning. Due to the high inter-class similarity in reference sentences describing remote sensing data, jointly encoding the sentences and images encourages prediction of captions that are semantically more precise than the ground truth in many cases. To this end, we introduce an Actor Dual-Critic training strategy where a second critic model is deployed in the form of an encoder-decoder RNN to encode the latent information corresponding to the original and generated captions. While all actor-critic methods use an actor to predict sentences for an image and a critic to provide rewards, our proposed encoder-decoder RNN guarantees high-level comprehension of images by sentence-to-image translation. We observe that the proposed model generates sentences on the test data highly similar to the ground truth and is successful in generating even better captions in many critical cases. Extensive experiments on the benchmark Remote Sensing Image Captioning Dataset (RSICD) and the UCM-captions dataset confirm the superiority of the proposed approach in comparison to the previous state-of-the-art where we obtain a gain of sharp increments in both the ROUGE-L and CIDEr measures.

Adaptive Remote Sensing Image Attribute Learning for Active Object Detection

Nuo Xu, Chunlei Huo, Chunhong Pan

Responsive image

Auto-TLDR; Adaptive Image Attribute Learning for Active Object Detection

Slides Similar

In recent years, deep learning methods bring incredible progress to the field of object detection. However, in the field of remote sensing image processing, existing methods neglect the relationship between imaging configuration and detection performance, and do not take into account the importance of detection performance feedback for improving image quality. Therefore, detection performance is limited by the passive nature of the conventional object detection framework. In order to solve the above limitations, this paper takes adaptive brightness adjustment and scale adjustment as examples, and proposes an active object detection method based on deep reinforcement learning. The goal of adaptive image attribute learning is to maximize the detection performance. With the help of active object detection and image attribute adjustment strategies, low-quality images can be converted into high-quality images, and the overall performance is improved without retraining the detector.

AOAM: Automatic Optimization of Adjacency Matrix for Graph Convolutional Network

Yuhang Zhang, Hongshuai Ren, Jiexia Ye, Xitong Gao, Yang Wang, Kejiang Ye, Cheng-Zhong Xu

Responsive image

Auto-TLDR; Adjacency Matrix for Graph Convolutional Network in Non-Euclidean Space

Slides Poster Similar

Graph Convolutional Network (GCN) is adopted to tackle the problem of the convolution operation in non-Euclidean space. Although previous works on GCN have made some progress, one of their limitations is that their input Adjacency Matrix (AM) is designed manually and requires domain knowledge, which is cumbersome, tedious and error-prone. In addition, entries of this fixed Adjacency Matrix are generally designed as binary values (i.e., ones and zeros) which can not reflect more complex relationship between nodes. However, many applications require a weighted and dynamic Adjacency Matrix instead of an unweighted and fixed Adjacency Matrix. To this end, there are few works focusing on designing a more flexible Adjacency Matrix. In this paper, we propose an end-to-end algorithm to improve the GCN performance by focusing on the Adjacency Matrix. We first provide a calculation method that called node information entropy to update the matrix. Then, we analyze the search strategy in a continuous space and introduce the Deep Deterministic Policy Gradient (DDPG) method to overcome the demerit of the discrete space search. Finally, we integrate the GCN and reinforcement learning into an end-to-end framework. Our method can automatically define the adjacency matrix without artificial knowledge. At the same time, the proposed approach can deal with any size of the matrix and provide a better value for the network. Four popular datasets are selected to evaluate the capability of our algorithm. The method in this paper achieves the state-of-the-art performance on Cora and Pubmed datasets, respectively, with the accuracy of 84.6% and 81.6%.

Multiple Future Prediction Leveraging Synthetic Trajectories

Lorenzo Berlincioni, Federico Becattini, Lorenzo Seidenari, Alberto Del Bimbo

Responsive image

Auto-TLDR; Synthetic Trajectory Prediction using Markov Chains

Slides Poster Similar

Trajectory prediction is an important task, especially in autonomous driving. The ability to forecast the position of other moving agents can yield to an effective planning, ensuring safety for the autonomous vehicle as well for the observed entities. In this work we propose a data driven approach based on Markov Chains to generate synthetic trajectories, which are useful for training a multiple future trajectory predictor. The advantages are twofold: on the one hand synthetic samples can be used to augment existing datasets and train more effective predictors; on the other hand, it allows to generate samples with multiple ground truths, corresponding to diverse equally likely outcomes of the observed trajectory. We define a trajectory prediction model and a loss that explicitly address the multimodality of the problem and we show that combining synthetic and real data leads to prediction improvements, obtaining state of the art results.

DAG-Net: Double Attentive Graph Neural Network for Trajectory Forecasting

Alessio Monti, Alessia Bertugli, Simone Calderara, Rita Cucchiara

Responsive image

Auto-TLDR; Recurrent Generative Model for Multi-modal Human Motion Behaviour in Urban Environments

Slides Poster Similar

Understanding human motion behaviour is a critical task for several possible applications like self-driving cars or social robots, and in general for all those settings where an autonomous agent has to navigate inside a human-centric environment. This is non-trivial because human motion is inherently multi-modal: given a history of human motion paths, there are many plausible ways by which people could move in the future. Additionally, people activities are often driven by goals, e.g. reaching particular locations or interacting with the environment. We address both the aforementioned aspects by proposing a new recurrent generative model that considers both single agents’ future goals and interactions between different agents. The model exploits a double attention-based graph neural network to collect information about the mutual influences among different agents and integrates it with data about agents’ possible future objectives. Our proposal is general enough to be applied in different scenarios: the model achieves state-of-the-art results in both urban environments and also in sports applications.

Improving Visual Question Answering Using Active Perception on Static Images

Theodoros Bozinis, Nikolaos Passalis, Anastasios Tefas

Responsive image

Auto-TLDR; Fine-Grained Visual Question Answering with Reinforcement Learning-based Active Perception

Slides Poster Similar

Visual Question Answering (VQA) is one of the most challenging emerging applications of deep learning. Providing powerful attention mechanisms is crucial for VQA, since the model must correctly identify the region of an image that is relevant to the question at hand. However, existing models analyze the input images at a fixed and typically small resolution, often leading to discarding valuable fine-grained details. To overcome this limitation, in this work we propose a reinforcement learning-based active perception approach that works by applying a series of transformation operations on the images (translation, zoom) in order to facilitate answering the question at hand. This allows for performing fine-grained analysis, effectively increasing the resolution at which the models process information. The proposed method is orthogonal to existing attention mechanisms and it can be combined with most existing VQA methods. The effectiveness of the proposed method is experimentally demonstrated on a challenging VQA dataset.

Deep Next-Best-View Planner for Cross-Season Visual Route Classification

Kurauchi Kanya, Kanji Tanaka

Responsive image

Auto-TLDR; Active Visual Place Recognition using Deep Convolutional Neural Network

Slides Poster Similar

This paper addresses the problem of active visual place recognition (VPR) from a novel perspective of long-term autonomy. In our approach, a next-best-view (NBV) planner plans an optimal action-observation-sequence to maximize the expected cost-performance for a visual route classification task. A difficulty arises from the fact that the NBV planner is trained and tested in different domains (times of day, weather conditions, and seasons). Existing NBV methods may be confused and deteriorated by the domain-shifts, and require significant efforts for adapting them to a new domain. We address this issue by a novel deep convolutional neural network (DNN) -based NBV planner that does not require the adaptation. Our main contributions in this paper are summarized as follows: (1) We present a novel domain-invariant NBV planner that is specifically tailored for DNN-based VPR. (2) We formulate the active VPR as a POMDP problem and present a feasible solution to address the inherent intractability. Specifically, the probability distribution vector (PDV) output by the available DNN is used as a domain-invariant observation model without the need to retrain it. (3) We verify efficacy of the proposed approach through challenging cross-season VPR experiments, where it is confirmed that the proposed approach clearly outperforms the previous single-view-based or multi-view-based VPR in terms of VPR accuracy and/or action-observation-cost.

Visual Object Tracking in Drone Images with Deep Reinforcement Learning

Derya Gözen, Sedat Ozer

Responsive image

Auto-TLDR; A Deep Reinforcement Learning based Single Object Tracker for Drone Applications

Slides Poster Similar

There is an increasing demand on utilizing camera equipped drones and their applications in many domains varying from agriculture to entertainment and from sports events to surveillance. In such drone applications, an essential and a common task is tracking an object of interest visually. Drone (or UAV) images have different properties when compared to the ground taken (natural) images and those differences introduce additional complexities to the existing object trackers to be directly applied on drone applications. Some important differences among those complexities include (i) smaller object sizes to be tracked and (ii) different orientations and viewing angles yielding different texture and features to be observed. Therefore, new algorithms trained on drone images are needed for the drone-based applications. In this paper, we introduce a deep reinforcement learning (RL) based single object tracker that tracks an object of interest in drone images by estimating a series of actions to find the location of the object in the next frame. This is the first work introducing a single object tracker using a deep RL-based technique for drone images. Our proposed solution introduces a novel reward function that aims to reduce the total number of actions taken to estimate the object's location in the next frame and also introduces a different backbone network to be used on low resolution images. Additionally, we introduce a set of new actions into the action library to better deal with the above-mentioned complexities. We compare our proposed solutions to a state of the art tracking algorithm from the recent literature and demonstrate up to 3.87\% improvement in precision and 3.6\% improvement in IoU values on the VisDrone2019 dataset. We also provide additional results on OTB-100 dataset and show up to 3.15\% improvement in precision on the OTB-100 dataset when compared to the same previous state of the art algorithm. Lastly, we analyze the ability to handle some of the challenges faced during tracking, including but not limited to occlusion, deformation, and scale variation for our proposed solutions.

RLST: A Reinforcement Learning Approach to Scene Text Detection Refinement

Xuan Peng, Zheng Huang, Kai Chen, Jie Guo, Weidong Qiu

Responsive image

Auto-TLDR; Saccadic Eye Movements and Peripheral Vision for Scene Text Detection using Reinforcement Learning

Slides Poster Similar

Within the research of scene text detection, some previous work has already achieved significant accuracy and efficiency. However, most of the work was generally done without considering about the implicit relationship between detection and eye movements. In this paper, we propose a new method for scene text detection especially for its refinement based on reinforcement learning. The idea of this method is inspired by Saccadic Eye Movements and Peripheral Vision. A saccade makes it possible for humans to orient the gaze to the location where a visual object has appeared. Peripheral vision gathers visual information of surroundings which provides supplement to foveal vision during gazing. We propose a simple pipeline, imitating the way human eyes do a saccade and collect peripheral information, to locate scene text roughly and to refine multi-scale vision field iteratively using reinforcement learning. For both training and evaluation, we use ICDAR2015 Challenge 4 dataset as a base and design several criteria to measure the feasibility of our work.

Towards life-long mapping of dynamic environments using temporal persistence modeling

Georgios Tsamis, Ioannis Kostavelis, Dimitrios Giakoumis, Dimitrios Tzovaras

Responsive image

Auto-TLDR; Lifelong Mapping for Mobile Robot Navigation in Dynamic Environments

Slides Poster Similar

The contemporary SLAM mapping systems assume a static environment and build a map that is then used for mobile robot navigation disregarding the dynamic changes in this environment. The paper at hand presents a novel solution for the \emph{lifelong mapping} problem that continually updates a metric map represented as a 2D occupancy grid in large scale indoor environments with movable objects such as people, robots, objects etc. suitable for industrial applications. We formalize each cell's occupancy as a failure analysis problem and contribute temporal persistence modeling (TPM), an algorithm for probabilistic prediction of the time that a cell in an observed location is expected to be ``occupied" or ``empty" given sparse prior observations from a task specific mobile robot. Our work is evaluated in Gazebo simulation environment against the nominal occupancy of cells and the estimated obstacles persistence. We also show that robot navigation with lifelong mapping demands less re-plans and leads to more efficient navigation in highly dynamic environments.

Transformer Networks for Trajectory Forecasting

Francesco Giuliari, Hasan Irtiza, Marco Cristani, Fabio Galasso

Responsive image

Auto-TLDR; TransformerNetworks for Trajectory Prediction of People Interactions

Slides Poster Similar

Most recent successes on forecasting the people mo-tion are based on LSTM models andallmost recent progress hasbeen achieved by modelling the social interaction among peopleand the people interaction with the scene. We question the useof the LSTM models and propose the novel use of TransformerNetworks for trajectory forecasting. This is a fundamental switchfrom the sequential step-by-step processing of LSTMs to theonly-attention-based memory mechanisms of Transformers. Inparticular, we consider both the original Transformer Network(TF) and the larger Bidirectional Transformer (BERT), state-of-the-art on all natural language processing tasks. Our proposedTransformers predict the trajectories of the individual peoplein the scene. These are “simple” models because each personis modelled separately without any complex human-human norscene interaction terms. In particular, the TF modelwithoutbells and whistlesyields the best score on the largest and mostchallenging trajectory forecasting benchmark of TrajNet [1]. Ad-ditionally, its extension which predicts multiple plausible futuretrajectories performs on par with more engineered techniqueson the 5 datasets of ETH [2]+UCY [3]. Finally, we showthat Transformers may deal with missing observations, as itmay be the case with real sensor data. Code is available atgithub.com/FGiuliari/Trajectory-Transformer

The DeepHealth Toolkit: A Unified Framework to Boost Biomedical Applications

Michele Cancilla, Laura Canalini, Federico Bolelli, Stefano Allegretti, Salvador Carrión, Roberto Paredes, Jon Ander Gómez, Simone Leo, Marco Enrico Piras, Luca Pireddu, Asaf Badouh, Santiago Marco-Sola, Lluc Alvarez, Miquel Moreto, Costantino Grana

Responsive image

Auto-TLDR; DeepHealth Toolkit: An Open Source Deep Learning Toolkit for Cloud Computing and HPC

Slides Poster Similar

Given the overwhelming impact of machine learning on the last decade, several libraries and frameworks have been developed in recent years to simplify the design and training of neural networks, providing array-based programming, automatic differentiation and user-friendly access to hardware accelerators. None of those tools, however, was designed with native and transparent support for Cloud Computing or heterogeneous High-Performance Computing (HPC). The DeepHealth Toolkit is an open source deep learning toolkit aimed at boosting productivity of data scientists operating in the medical field by providing a unified framework for the distributed training of neural networks, that is able to leverage hybrid HPC and Cloud environments in a way transparent to the user. The toolkit is composed of a computer vision library, a deep learning library, and a front-end for non-expert users; all of the components are focused on the medical domain, but they are general purpose and can be applied to any other field. In this paper, the principles driving the design of the DeepHealth libraries are described, along with details about the implementation and the interaction between the different elements composing the toolkit. Finally, experiments on common benchmarks prove the efficiency of each separate component, and of the DeepHealth Toolkit overall.

ILS-SUMM: Iterated Local Search for Unsupervised Video Summarization

Yair Shemer, Daniel Rotman, Nahum Shimkin

Responsive image

Auto-TLDR; ILS-SUMM: Iterated Local Search for Video Summarization

Slides Similar

In recent years, there has been an increasing interest in building video summarization tools, where the goal is to automatically create a short summary of an input video that properly represents the original content. We consider shot-based video summarization where the summary consists of a subset of the video shots which can be of various lengths. A straightforward approach to maximize the representativeness of a subset of shots is by minimizing the total distance between shots and their nearest selected shots. We formulate the task of video summarization as an optimization problem with a knapsack-like constraint on the total summary duration. Previous studies have proposed greedy algorithms to solve this problem approximately, but no experiments were presented to measure the ability of these methods to obtain solutions with low total distance. Indeed, our experiments on video summarization datasets show that the success of current methods in obtaining results with low total distance still has much room for improvement. In this paper, we develop ILS-SUMM, a novel video summarization algorithm to solve the subset selection problem under the knapsack constraint. Our algorithm is based on the well-known metaheuristic optimization framework -- Iterated Local Search (ILS), known for its ability to avoid weak local minima and obtain a good near-global minimum. Extensive experiments show that our method finds solutions with significantly better total distance than previous methods. Moreover, to indicate the high scalability of ILS-SUMM, we introduce a new dataset consisting of videos of various lengths.

A Fine-Grained Dataset and Its Efficient Semantic Segmentation for Unstructured Driving Scenarios

Kai Andreas Metzger, Peter Mortimer, Hans J "Joe" Wuensche

Responsive image

Auto-TLDR; TAS500: A Semantic Segmentation Dataset for Autonomous Driving in Unstructured Environments

Slides Poster Similar

Research in autonomous driving for unstructured environments suffers from a lack of semantically labeled datasets compared to its urban counterpart. Urban and unstructured outdoor environments are challenging due to the varying lighting and weather conditions during a day and across seasons. In this paper, we introduce TAS500, a novel semantic segmentation dataset for autonomous driving in unstructured environments. TAS500 offers fine-grained vegetation and terrain classes to learn drivable surfaces and natural obstacles in outdoor scenes effectively. We evaluate the performance of modern semantic segmentation models with an additional focus on their efficiency. Our experiments demonstrate the advantages of fine-grained semantic classes to improve the overall prediction accuracy, especially along the class boundaries. The dataset, code, and pretrained model are available online.

E-DNAS: Differentiable Neural Architecture Search for Embedded Systems

Javier García López, Antonio Agudo, Francesc Moreno-Noguer

Responsive image

Auto-TLDR; E-DNAS: Differentiable Architecture Search for Light-Weight Networks for Image Classification

Slides Poster Similar

Designing optimal and light weight networks to fit in resource-limited platforms like mobiles, DSPs or GPUs is a challenging problem with a wide range of interesting applications, {\em e.g.} in embedded systems for autonomous driving. While most approaches are based on manual hyperparameter tuning, there exist a new line of research, the so-called NAS (Neural Architecture Search) methods, that aim to optimize several metrics during the design process, including memory requirements of the network, number of FLOPs, number of MACs (Multiply-ACcumulate operations) or inference latency. However, while NAS methods have shown very promising results, they are still significantly time and cost consuming. In this work we introduce E-DNAS, a differentiable architecture search method, which improves the efficiency of NAS methods in designing light-weight networks for the task of image classification. Concretely, E-DNAS computes, in a differentiable manner, the optimal size of a number of meta-kernels that capture patterns of the input data at different resolutions. We also leverage on the additive property of convolution operations to merge several kernels with different compatible sizes into a single one, reducing thus the number of operations and the time required to estimate the optimal configuration. We evaluate our approach on several datasets to perform classification. We report results in terms of the SoC (System on Chips) metric, typically used in the Texas Instruments TDA2x families for autonomous driving applications. The results show that our approach allows designing low latency architectures significantly faster than state-of-the-art.

Trainable Spectrally Initializable Matrix Transformations in Convolutional Neural Networks

Michele Alberti, Angela Botros, Schuetz Narayan, Rolf Ingold, Marcus Liwicki, Mathias Seuret

Responsive image

Auto-TLDR; Trainable and Spectrally Initializable Matrix Transformations for Neural Networks

Slides Poster Similar

In this work, we introduce a new architectural component to Neural Networks (NN), i.e., trainable and spectrally initializable matrix transformations on feature maps. While previous literature has already demonstrated the possibility of adding static spectral transformations as feature processors, our focus is on more general trainable transforms. We study the transforms in various architectural configurations on four datasets of different nature: from medical (ColorectalHist, HAM10000) and natural (Flowers) images to historical documents (CB55). With rigorous experiments that control for the number of parameters and randomness, we show that networks utilizing the introduced matrix transformations outperform vanilla neural networks. The observed accuracy increases appreciably across all datasets. In addition, we show that the benefit of spectral initialization leads to significantly faster convergence, as opposed to randomly initialized matrix transformations. The transformations are implemented as auto-differentiable PyTorch modules that can be incorporated into any neural network architecture. The entire code base is open-source.

RNN Training along Locally Optimal Trajectories via Frank-Wolfe Algorithm

Yun Yue, Ming Li, Venkatesh Saligrama, Ziming Zhang

Responsive image

Auto-TLDR; Frank-Wolfe Algorithm for Efficient Training of RNNs

Slides Poster Similar

We propose a novel and efficient training method for RNNs by iteratively seeking a local minima on the loss surface within a small region, and leverage this directional vector for the update, in an outer-loop. We propose to utilize the Frank-Wolfe (FW) algorithm in this context. Although, FW implicitly involves normalized gradients, which can lead to a slow convergence rate, we develop a novel RNN training method that, surprisingly, even with the additional cost, the overall training cost is empirically observed to be lower than back-propagation. Our method leads to a new Frank-Wolfe method, that is in essence an SGD algorithm with a restart scheme. We prove that under certain conditions our algorithm has a sublinear convergence rate of $O(1/\epsilon)$ for $\epsilon$ error. We then conduct empirical experiments on several benchmark datasets including those that exhibit long-term dependencies, and show significant performance improvement. We also experiment with deep RNN architectures and show efficient training performance. Finally, we demonstrate that our training method is robust to noisy data.

Self-Supervised Joint Encoding of Motion and Appearance for First Person Action Recognition

Mirco Planamente, Andrea Bottino, Barbara Caputo

Responsive image

Auto-TLDR; A Single Stream Architecture for Egocentric Action Recognition from the First-Person Point of View

Slides Poster Similar

Wearable cameras are becoming more and more popular in several applications, increasing the interest of the research community in developing approaches for recognizing actions from the first-person point of view. An open challenge in egocentric action recognition is that videos lack detailed information about the main actor's pose and thus tend to record only parts of the movement when focusing on manipulation tasks. Thus, the amount of information about the action itself is limited, making crucial the understanding of the manipulated objects and their context. Many previous works addressed this issue with two-stream architectures, where one stream is dedicated to modeling the appearance of objects involved in the action, and another to extracting motion features from optical flow. In this paper, we argue that learning features jointly from these two information channels is beneficial to capture the spatio-temporal correlations between the two better. To this end, we propose a single stream architecture able to do so, thanks to the addition of a self-supervised block that uses a pretext motion prediction task to intertwine motion and appearance knowledge. Experiments on several publicly available databases show the power of our approach.

A Close Look at Deep Learning with Small Data

Lorenzo Brigato, Luca Iocchi

Responsive image

Auto-TLDR; Low-Complex Neural Networks for Small Data Conditions

Slides Poster Similar

In this work, we perform a wide variety of experiments with different Deep Learning architectures in small data conditions. We show that model complexity is a critical factor when only a few samples per class are available. Differently from the literature, we improve the state of the art using low complexity models. We show that standard convolutional neural networks with relatively few parameters are effective in this scenario. In many of our experiments, low complexity models outperform state-of-the-art architectures. Moreover, we propose a novel network that uses an unsupervised loss to regularize its training. Such architecture either improves the results either performs comparably well to low capacity networks. Surprisingly, experiments show that the dynamic data augmentation pipeline is not beneficial in this particular domain. Statically augmenting the dataset might be a promising research direction while dropout maintains its role as a good regularizer.

Stage-Wise Neural Architecture Search

Artur Jordão, Fernando Akio Yamada, Maiko Lie, William Schwartz

Responsive image

Auto-TLDR; Efficient Neural Architecture Search for Deep Convolutional Networks

Slides Poster Similar

Modern convolutional networks such as ResNet and NASNet have achieved state-of-the-art results in many computer vision applications. These architectures consist of stages, which are sets of layers that operate on representations in the same resolution. It has been demonstrated that increasing the number of layers in each stage improves the prediction ability of the network. However, the resulting architecture becomes computationally expensive in terms of floating point operations, memory requirements and inference time. Thus, significant human effort is necessary to evaluate different trade-offs between depth and performance. To handle this problem, recent works have proposed to automatically design high-performance architectures, mainly by means of neural architecture search (NAS). Current NAS strategies analyze a large set of possible candidate architectures and, hence, require vast computational resources and take many GPUs days. Motivated by this, we propose a NAS approach to efficiently design accurate and low-cost convolutional architectures and demonstrate that an efficient strategy for designing these architectures is to learn the depth stage-by-stage. For this purpose, our approach increases depth incrementally in each stage taking into account its importance, such that stages with low importance are kept shallow while stages with high importance become deeper. We conduct experiments on the CIFAR and different versions of ImageNet datasets, where we show that architectures discovered by our approach achieve better accuracy and efficiency than human-designed architectures. Additionally, we show that architectures discovered on CIFAR-10 can be successfully transferred to large datasets. Compared to previous NAS approaches, our method is substantially more efficient, as it evaluates one order of magnitude fewer models and yields architectures on par with the state-of-the-art.

Rethinking Experience Replay: A Bag of Tricks for Continual Learning

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Simone Calderara

Responsive image

Auto-TLDR; Experience Replay for Continual Learning: A Practical Approach

Slides Poster Similar

In Continual Learning, a Neural Network is trained on a stream of data whose distribution shifts over time. Under these assumptions, it is especially challenging to improve on classes appearing later in the stream while remaining accurate on previous ones. This is due to the infamous problem of catastrophic forgetting, which causes a quick performance degradation when the classifier focuses on learning new categories. Recent literature proposed various approaches to tackle this issue, often resorting to very sophisticated techniques. In this work, we show that naive rehearsal can be patched to achieve similar performance. We point out some shortcomings that restrain Experience Replay (ER) and propose five tricks to mitigate them. Experiments show that ER, thus enhanced, displays an accuracy gain of 51.2 and 26.9 percentage points on the CIFAR-10 and CIFAR-100 datasets respectively (memory buffer size 1000). As a result, it surpasses current state-of-the-art rehearsal-based methods.

Recurrent Deep Attention Network for Person Re-Identification

Changhao Wang, Jun Zhou, Xianfei Duan, Guanwen Zhang, Wei Zhou

Responsive image

Auto-TLDR; Recurrent Deep Attention Network for Person Re-identification

Slides Poster Similar

Person re-identification (re-id) is an important task in video surveillance. It is challenging due to the appearance of person varying a wide range acrossnon-overlapping camera views. Recent years, attention-based models are introduced to learn discriminative representation. In this paper, we consider the attention selection in a natural way as like human moving attention on different parts of the visual field for person re-id. In concrete, we propose a Recurrent Deep Attention Network (RDAN) with an attention selection mechanism based on reinforcement learning. The RDAN aims to adaptively observe the identity-sensitive regions to build up the representation of individuals step by step. Extensive experiments on three person re-id benchmarks Market-1501, DukeMTMC-reID and CUHK03-NP demonstrate the proposed method can achieve competitive performance.

Future Urban Scenes Generation through Vehicles Synthesis

Alessandro Simoni, Luca Bergamini, Andrea Palazzi, Simone Calderara, Rita Cucchiara

Responsive image

Auto-TLDR; Predicting the Future of an Urban Scene with a Novel View Synthesis Paradigm

Slides Poster Similar

In this work we propose a deep learning pipeline to predict the visual future appearance of an urban scene. Despite recent advances, generating the entire scene in an end-to-end fashion is still far from being achieved. Instead, here we follow a two stages approach, where interpretable information is included in the loop and each actor is modelled independently. We leverage a per-object novel view synthesis paradigm; i.e. generating a synthetic representation of an object undergoing a geometrical roto-translation in the 3D space. Our model can be easily conditioned with constraints (e.g. input trajectories) provided by state-of-the-art tracking methods or by the user itself. This allows us to generate a set of diverse realistic futures starting from the same input in a multi-modal fashion. We visually and quantitatively show the superiority of this approach over traditional end-to-end scene-generation methods on CityFlow, a challenging real world dataset.

Learning Dictionaries of Kinematic Primitives for Action Classification

Alessia Vignolo, Nicoletta Noceti, Alessandra Sciutti, Francesca Odone, Giulio Sandini

Responsive image

Auto-TLDR; Action Understanding using Visual Motion Primitives

Slides Poster Similar

This paper proposes a method based on visual motion primitives to address the problem of action understanding. The approach builds in an unsupervised way a dictionary of kinematic primitives from a set of sub-movements obtained by segmenting the velocity profile of an action on the basis of local minima derived directly from the optical flow. The dictionary is then used to describe each sub-movement as a linear combination of atoms using sparse coding. The descriptive capability of the proposed motion representation is experimentally validated on the MoCA dataset, a collection of synchronized multi-view videos and motion capture data of cooking activities. The results show that the approach, despite its simplicity, has a good performance in action classification, especially when the motion primitives are combined over time. Also, the method is proved to be tolerant to view point changes, and can thus support cross-view action recognition. Overall, the method may be seen as a backbone of a general approach to action understanding, with potential applications in robotics.

Map-Based Temporally Consistent Geolocalization through Learning Motion Trajectories

Bing Zha, Alper Yilmaz

Responsive image

Auto-TLDR; Exploiting Motion Trajectories for Geolocalization of Object on Topological Map using Recurrent Neural Network

Slides Poster Similar

In this paper, we propose a novel trajectory learning method that exploits motion trajectories on topological map using recurrent neural network for temporally consistent geolocalization of object. Inspired by human's ability to both be aware of distance and direction of self-motion in navigation, our trajectory learning method learns a pattern representation of trajectories encoded as a sequence of distances and turning angles to assist self-localization. We pose the learning process as a conditional sequence prediction problem in which each output locates the object on a traversable edge in a map. Considering the prediction sequence ought to be topologically connected in the graph-structured map, we adopt two different hypotheses generation and elimination strategies to eliminate disconnected sequence prediction. We demonstrate our approach on the KITTI stereo visual odometry dataset which is a city-scale environment. The key benefits of our approach to geolocalization are that 1) we take advantage of powerful sequence modeling ability of recurrent neural network and its robustness to noisy input, 2) only require a map in the form of a graph and 3) simply use an affordable sensor that generates motion trajectory. The experiments show that the motion trajectories can be learned by training an recurrent neural network, and temporally consistent geolocation can be predicted with both of the proposed strategies.

Wireless Localisation in WiFi Using Novel Deep Architectures

Peizheng Li, Han Cui, Aftab Khan, Usman Raza, Robert Piechocki, Angela Doufexi, Tim Farnham

Responsive image

Auto-TLDR; Deep Neural Network for Indoor Localisation of WiFi Devices in Indoor Environments

Slides Poster Similar

This paper studies the indoor localisation of WiFi devices based on a commodity chipset and standard channel sounding. First, we present a novel shallow neural network (SNN) in which features are extracted from the channel state information (CSI) corresponding to WiFi subcarriers received on different antennas and used to train the model. The single layer architecture of this localisation neural network makes it lightweight and easy-to-deploy on devices with stringent constraints on computational resources. We further investigate for localisation the use of deep learning models and design novel architectures for convolutional neural network (CNN) and long-short term memory (LSTM). We extensively evaluate these localisation algorithms for continuous tracking in indoor environments. Experimental results prove that even an SNN model, after a careful handcrafted feature extraction, can achieve accurate localisation. Meanwhile, using a well-organised architecture, the neural network models can be trained directly with raw data from the CSI and localisation features can be automatically extracted to achieve accurate position estimates. We also found that the performance of neural network-based methods are directly affected by the number of anchor access points (APs) regardless of their structure. With three APs, all neural network models proposed in this paper can obtain localisation accuracy of around 0.5 metres. In addition the proposed deep NN architecture reduces the data pre-processing time by 6.5 hours compared with a shallow NN using the data collected in our testbed. In the deployment phase, the inference time is also significantly reduced to 0.1 ms per sample. We also demonstrate the generalisation capability of the proposed method by evaluating models using different target movement characteristics to the ones in which they were trained.

What and How? Jointly Forecasting Human Action and Pose

Yanjun Zhu, Yanxia Zhang, Qiong Liu, Andreas Girgensohn

Responsive image

Auto-TLDR; Forecasting Human Actions and Motion Trajectories with Joint Action Classification and Pose Regression

Slides Poster Similar

Forecasting human actions and motion trajectories addresses the problem of predicting what a person is going to do next and how they will perform it. This is crucial in a wide range of applications such as assisted living and future co-robotic settings. We propose to simultaneously learn actions and action-related human motion dynamics, while existing works perform them independently. In this paper, we present a method to jointly forecast categories of human action and the pose of skeletal joints in the hope that the two tasks can help each other. As a result, our system can predict not only the future actions but also the motion trajectories that will result. To achieve this, we define a task of joint action classification and pose regression. We employ a sequence to sequence encoder-decoder model combined with multi-task learning to forecast future actions and poses progressively before the action happens. Experimental results on two public datasets, IkeaDB and OAD, demonstrate the effectiveness of the proposed method.

Single View Learning in Action Recognition

Gaurvi Goyal, Nicoletta Noceti, Francesca Odone

Responsive image

Auto-TLDR; Cross-View Action Recognition Using Domain Adaptation for Knowledge Transfer

Slides Poster Similar

Viewpoint is an essential aspect of how an action is visually perceived, with the motion appearing substantially different for some viewpoint pairs. Data driven action recognition algorithms compensate for this by including a variety of viewpoints in their training data, adding to the cost of data acquisition as well as training. We propose a novel methodology that leverages deeply pretrained features to learn actions from a single viewpoint using domain adaptation for knowledge transfer. We demonstrate the effectiveness of this pipeline on 3 different datasets: IXMAS, MoCA and NTU RGBD+, and compare with both classical and deep learning methods. Our method requires low training data and demonstrates unparalleled cross-view action recognition accuracies for single view learning.

Location Prediction in Real Homes of Older Adults based on K-Means in Low-Resolution Depth Videos

Simon Simonsson, Flávia Dias Casagrande, Evi Zouganeli

Responsive image

Auto-TLDR; Semi-supervised Learning for Location Recognition and Prediction in Smart Homes using Depth Video Cameras

Slides Poster Similar

In this paper we propose a novel method for location recognition and prediction in smart homes based on semi-supervised learning. We use data collected from low-resolution depth video cameras installed in four apartments with older adults over 70 years of age, and collected during a period of one to seven weeks. The location of the person in the depth images is detected by a person detection algorithm adapted from YOLO (You Only Look Once). The locations extracted from the videos are then clustered using K-means clustering. Sequence prediction algorithms are used to predict the next cluster (location) based on the previous clusters (locations). The accuracy of predicting the next location is up to 91%, a significant improvement compared to the case where binary sensors are placed in the apartment based on human intuition. The paper presents an analysis on the effect of the memory length (i.e. the number of previous clusters used to predict the next one), and on the amount of recorded data required to converge.

Visual Localization for Autonomous Driving: Mapping the Accurate Location in the City Maze

Dongfang Liu, Yiming Cui, Xiaolei Guo, Wei Ding, Baijian Yang, Yingjie Chen

Responsive image

Auto-TLDR; Feature Voting for Robust Visual Localization in Urban Settings

Slides Poster Similar

Accurate localization is a foundational capacity, required for autonomous vehicles to accomplish other tasks such as navigation or path planning. It is a common practice for vehicles to use GPS to acquire location information. However, the application of GPS can result in severe challenges when vehicles run within the inner city where different kinds of structures may shadow the GPS signal and lead to inaccurate location results. To address the localization challenges of urban settings, we propose a novel feature voting technique for visual localization. Different from the conventional front-view-based method, our approach employs views from three directions (front, left, and right) and thus significantly improves the robustness of location prediction. In our work, we craft the proposed feature voting method into three state-of-the-art visual localization networks and modify their architectures properly so that they can be applied for vehicular operation. Extensive field test results indicate that our approach can predict location robustly even in challenging inner-city settings. Our research sheds light on using the visual localization approach to help autonomous vehicles to find accurate location information in a city maze, within a desirable time constraint.