Roberto Paredes

Papers from this author

Confidence Calibration for Deep Renal Biopsy Immunofluorescence Image Classification

Federico Pollastri, Juan Maroñas, Federico Bolelli, Giulia Ligabue, Roberto Paredes, Riccardo Magistroni, Costantino Grana

Responsive image

Auto-TLDR; A Probabilistic Convolutional Neural Network for Immunofluorescence Classification in Renal Biopsy

Slides Poster Similar

With this work we tackle immunofluorescence classification in renal biopsy, employing state-of-the-art Convolutional Neural Networks. In this setting, the aim of the probabilistic model is to assist an expert practitioner towards identifying the location pattern of antibody deposits within a glomerulus. Since modern neural networks often provide overconfident outputs, we stress the importance of having a reliable prediction, demonstrating that Temperature Scaling, a recently introduced re-calibration technique, can be successfully applied to immunofluorescence classification in renal biopsy. Experimental results demonstrate that the designed model yields good accuracy on the specific task, and that Temperature Scaling is able to provide reliable probabilities, which are highly valuable for such a task given the low inter-rater agreement.

The DeepHealth Toolkit: A Unified Framework to Boost Biomedical Applications

Michele Cancilla, Laura Canalini, Federico Bolelli, Stefano Allegretti, Salvador Carrión, Roberto Paredes, Jon Ander Gómez, Simone Leo, Marco Enrico Piras, Luca Pireddu, Asaf Badouh, Santiago Marco-Sola, Lluc Alvarez, Miquel Moreto, Costantino Grana

Responsive image

Auto-TLDR; DeepHealth Toolkit: An Open Source Deep Learning Toolkit for Cloud Computing and HPC

Slides Poster Similar

Given the overwhelming impact of machine learning on the last decade, several libraries and frameworks have been developed in recent years to simplify the design and training of neural networks, providing array-based programming, automatic differentiation and user-friendly access to hardware accelerators. None of those tools, however, was designed with native and transparent support for Cloud Computing or heterogeneous High-Performance Computing (HPC). The DeepHealth Toolkit is an open source deep learning toolkit aimed at boosting productivity of data scientists operating in the medical field by providing a unified framework for the distributed training of neural networks, that is able to leverage hybrid HPC and Cloud environments in a way transparent to the user. The toolkit is composed of a computer vision library, a deep learning library, and a front-end for non-expert users; all of the components are focused on the medical domain, but they are general purpose and can be applied to any other field. In this paper, the principles driving the design of the DeepHealth libraries are described, along with details about the implementation and the interaction between the different elements composing the toolkit. Finally, experiments on common benchmarks prove the efficiency of each separate component, and of the DeepHealth Toolkit overall.