Adaptive Remote Sensing Image Attribute Learning for Active Object Detection

Nuo Xu, Chunlei Huo, Chunhong Pan

Responsive image

Auto-TLDR; Adaptive Image Attribute Learning for Active Object Detection

Slides

In recent years, deep learning methods bring incredible progress to the field of object detection. However, in the field of remote sensing image processing, existing methods neglect the relationship between imaging configuration and detection performance, and do not take into account the importance of detection performance feedback for improving image quality. Therefore, detection performance is limited by the passive nature of the conventional object detection framework. In order to solve the above limitations, this paper takes adaptive brightness adjustment and scale adjustment as examples, and proposes an active object detection method based on deep reinforcement learning. The goal of adaptive image attribute learning is to maximize the detection performance. With the help of active object detection and image attribute adjustment strategies, low-quality images can be converted into high-quality images, and the overall performance is improved without retraining the detector.

Similar papers

Object Detection Model Based on Scene-Level Region Proposal Self-Attention

Yu Quan, Zhixin Li, Canlong Zhang, Huifang Ma

Responsive image

Auto-TLDR; Exploiting Semantic Informations for Object Detection

Slides Poster Similar

The improvement of object detection performance is mostly focused on the extraction of local information near the region of interest in the image, which results in detection performance in this area being unable to achieve the desired effect. First, a depth-wise separable convolution network(D_SCNet-127 R-CNN) is built on the backbone network. Considering the importance of scene and semantic informations for visual recognition, the feature map is sent into the branch of the semantic segmentation module, region proposal network module, and the region proposal self-attention module to build the network of scene-level and region proposal self-attention module. Second, a deep reinforcement learning was utilized to achieve accurate positioning of border regression, and the calculation speed of the whole model was improved through implementing a light-weight head network. This model can effectively solve the limitation of feature extraction in traditional object detection and obtain more comprehensive detailed features. The experimental verification on MSCOCO17, VOC12, and Cityscapes datasets shows that the proposed method has good validity and scalability.

Construction Worker Hardhat-Wearing Detection Based on an Improved BiFPN

Chenyang Zhang, Zhiqiang Tian, Jingyi Song, Yaoyue Zheng, Bo Xu

Responsive image

Auto-TLDR; A One-Stage Object Detection Method for Hardhat-Wearing in Construction Site

Slides Poster Similar

Work in the construction site is considered to be one of the occupations with the highest safety risk factor. Therefore, safety plays an important role in construction site. One of the most fundamental safety rules in construction site is to wear a hardhat. To strengthen the safety of the construction site, most of the current methods use multi-stage method for hardhat-wearing detection. These methods have limitations in terms of adaptability and generalizability. In this paper, we propose a one-stage object detection method based on convolutional neural network. We present a multi-scale strategy that selects the high-resolution feature maps of DarkNet-53 to effectively identify small-scale hardhats. In addition, we propose an improved weighted bi-directional feature pyramid network (BiFPN), which could fuse more semantic features from more scales. The proposed method can not only detect hardhat-wearing, but also identify the color of the hardhat. Experimental results show that the proposed method achieves a mAP of 87.04%, which outperforms several state-of-the-art methods on a public dataset.

Dynamic Low-Light Image Enhancement for Object Detection Via End-To-End Training

Haifeng Guo, Yirui Wu, Tong Lu

Responsive image

Auto-TLDR; Object Detection using Low-Light Image Enhancement for End-to-End Training

Slides Poster Similar

Object detection based on convolutional neural networks is a hot research topic in computer vision. The illumination component in the image has a great impact on object detection, and it will cause a sharp decline in detection performance under low-light conditions. Using low-light image enhancement technique as a pre-processing mechanism can improve image quality and obtain better detection results.However, due to the complexity of low-light environments, the existing enhancement methods may have negative effects on some samples. Therefore, it is difficult to improve the overall detection performance in low-light conditions. In this paper, our goal is to use image enhancement to improve object detection performance rather than perceptual quality for humans. We propose a novel framework that combines low-light enhancement and object detection for end-to-end training. The framework can dynamically select different enhancement subnetworks for each sample to improve the performance of the detector. Our proposed method consists of two stage: the enhancement stage and the detection stage. The enhancement stage dynamically enhances the low-light images under the supervision of several enhancement methods and output corresponding weights. During the detection stage, the weights offers information on object classification to generate high-quality region proposals and in turn result in accurate detection. Our experiments present promising results, which show that the proposed method can significantly improve the detection performance in low-light environment.

Object-Oriented Map Exploration and Construction Based on Auxiliary Task Aided DRL

Junzhe Xu, Jianhua Zhang, Shengyong Chen, Honghai Liu

Responsive image

Auto-TLDR; Auxiliary Task Aided Deep Reinforcement Learning for Environment Exploration by Autonomous Robots

Similar

Environment exploration by autonomous robots through deep reinforcement learning (DRL) based methods has attracted more and more attention. However, existing methods usually focus on robot navigation to single or multiple fixed goals, while ignoring the perception and construction of external environments. In this paper, we propose a novel environment exploration task based on DRL, which requires a robot fast and completely perceives all objects of interest, and reconstructs their poses in a global environment map, as much as the robot can do. To this end, we design an auxiliary task aided DRL model, which is integrated with the auxiliary object detection and 6-DoF pose estimation components. The outcome of auxiliary tasks can improve the learning speed and robustness of DRL, as well as the accuracy of object pose estimation. Comprehensive experimental results on the indoor simulation platform AI2-THOR have shown the effectiveness and robustness of our method.

Detecting Objects with High Object Region Percentage

Fen Fang, Qianli Xu, Liyuan Li, Ying Gu, Joo-Hwee Lim

Responsive image

Auto-TLDR; Faster R-CNN for High-ORP Object Detection

Slides Poster Similar

Object shape is a subtle but important factor for object detection. It has been observed that the object-region-percentage (ORP) can be utilized to improve detection accuracy for elongated objects, which have much lower ORPs than other types of objects. In this paper, we propose an approach to improve the detection performance for objects whose ORPs are relatively higher.To address the problem of high-ORP object detection, we propose a method consisting of three steps. First, we adjust the ground truth bounding boxes of high-ORP objects to an optimal range. Second, we train an object detector, Faster R-CNN, based on adjusted bounding boxes to achieve high recall. Finally, we train a DCNN to learn the adjustment ratios towards four directions and adjust detected bounding boxes of objects to get better localization for higher precision. We evaluate the effectiveness of our method on 12 high-ORP objects in COCO and 8 objects in a proprietary gearbox dataset. The experimental results show that our method can achieve state-of-the-art performance on these objects while costing less resources in training and inference stages.

RLST: A Reinforcement Learning Approach to Scene Text Detection Refinement

Xuan Peng, Zheng Huang, Kai Chen, Jie Guo, Weidong Qiu

Responsive image

Auto-TLDR; Saccadic Eye Movements and Peripheral Vision for Scene Text Detection using Reinforcement Learning

Slides Poster Similar

Within the research of scene text detection, some previous work has already achieved significant accuracy and efficiency. However, most of the work was generally done without considering about the implicit relationship between detection and eye movements. In this paper, we propose a new method for scene text detection especially for its refinement based on reinforcement learning. The idea of this method is inspired by Saccadic Eye Movements and Peripheral Vision. A saccade makes it possible for humans to orient the gaze to the location where a visual object has appeared. Peripheral vision gathers visual information of surroundings which provides supplement to foveal vision during gazing. We propose a simple pipeline, imitating the way human eyes do a saccade and collect peripheral information, to locate scene text roughly and to refine multi-scale vision field iteratively using reinforcement learning. For both training and evaluation, we use ICDAR2015 Challenge 4 dataset as a base and design several criteria to measure the feasibility of our work.

Forground-Guided Vehicle Perception Framework

Kun Tian, Tong Zhou, Shiming Xiang, Chunhong Pan

Responsive image

Auto-TLDR; A foreground segmentation branch for vehicle detection

Slides Poster Similar

As the basis of advanced visual tasks such as vehicle tracking and traffic flow analysis, vehicle detection needs to accurately predict the position and category of vehicle objects. In the past decade, deep learning based methods have made great progress. However, we also notice that some existing cases are not studied thoroughly. First, false positive on the background regions is one of the critical problems. Second, most of the previous approaches only optimize a single vehicle detection model, ignoring the relationship between different visual perception tasks. In response to the above two findings, we introduce a foreground segmentation branch for the first time, which can predict the pixel level of vehicles in advance. Furthermore, two attention modules are designed to guide the work of the detection branch. The proposed method can be easily grafted into the one-stage and two-stage detection framework. We evaluate the effectiveness of our model on LSVH, a dataset with large variations in vehicle scales, and achieve the state-of-the-art detection accuracy.

ACRM: Attention Cascade R-CNN with Mix-NMS for Metallic Surface Defect Detection

Junting Fang, Xiaoyang Tan, Yuhui Wang

Responsive image

Auto-TLDR; Attention Cascade R-CNN with Mix Non-Maximum Suppression for Robust Metal Defect Detection

Slides Poster Similar

Metallic surface defect detection is of great significance in quality control for production. However, this task is very challenging due to the noise disturbance, large appearance variation, and the ambiguous definition of the defect individual. Traditional image processing methods are unable to detect the damaged region effectively and efficiently. In this paper, we propose a new defect detection method, Attention Cascade R-CNN with Mix-NMS (ACRM), to classify and locate defects robustly. Three submodules are developed to achieve this goal: 1) a lightweight attention block is introduced, which can improve the ability in capture global and local feature both in the spatial and channel dimension; 2) we firstly apply the cascade R-CNN to our task, which exploits multiple detectors to sequentially refine the detection result robustly; 3) we introduce a new method named Mix Non-Maximum Suppression (Mix-NMS), which can significantly improve its ability in filtering the redundant detection result in our task. Extensive experiments on a real industrial dataset show that ACRM achieves state-of-the-art results compared to the existing methods, demonstrating the effectiveness and robustness of our detection method.

EDD-Net: An Efficient Defect Detection Network

Tianyu Guo, Linlin Zhang, Runwei Ding, Ge Yang

Responsive image

Auto-TLDR; EfficientNet: Efficient Network for Mobile Phone Surface defect Detection

Slides Poster Similar

As the most commonly used communication tool, the mobile phone has become an indispensable part of our daily life. The surface of the mobile phone as the main window of human-phone interaction directly affects the user experience. It is necessary to detect surface defects on the production line in order to ensure the high quality of the mobile phone. However, the existing mobile phone surface defect detection is mainly done manually, and currently there are few automatic defect detection methods to replace human eyes. How to quickly and accurately detect the surface defects of mobile phone is an urgent problem to be solved. Hence, an efficient defect detection network (EDD-Net) is proposed. Firstly, EfficientNet is used as the backbone network. Then, according to the small-scale of mobile phone surface defects, a feature pyramid module named GCSA-BiFPN is proposed to obtain more discriminative features. Finally, the box/class prediction network is used to achieve effective defect detection. We also build a mobile phone surface oil stain defect (MPSOSD) dataset to alleviate the lack of dataset in this field. The performance on the relevant datasets shows that the network we proposed is effective and has practical significance for industrial production.

Tiny Object Detection in Aerial Images

Jinwang Wang, Wen Yang, Haowen Guo, Ruixiang Zhang, Gui-Song Xia

Responsive image

Auto-TLDR; Tiny Object Detection in Aerial Images Using Multiple Center Points Based Learning Network

Slides Similar

Object detection in Earth Vision has achieved great progress in recent years. However, tiny object detection in aerial images remains a very challenging problem since the tiny objects contain a small number of pixels and are easily confused with the background. To advance tiny object detection research in aerial images, we present a new dataset for Tiny Object Detection in Aerial Images (AI-TOD). Specifically, AI-TOD comes with 700,621 object instances for eight categories across 28,036 aerial images. Compared to existing object detection datasets in aerial images, the mean size of objects in AI-TOD is about 12.8 pixels, which is much smaller than others. To build a benchmark for tiny object detection in aerial images, we evaluate the state-of-the-art object detectors on our AI-TOD dataset. Experimental results show that direct application of these approaches on AI-TOD produces suboptimal object detection results, thus new specialized detectors for tiny object detection need to be designed. Therefore, we propose a multiple center points based learning network (M-CenterNet) to improve the localization performance of tiny object detection, and experimental results show the significant performance gain over the competitors.

Mobile Phone Surface Defect Detection Based on Improved Faster R-CNN

Tao Wang, Can Zhang, Runwei Ding, Ge Yang

Responsive image

Auto-TLDR; Faster R-CNN for Mobile Phone Surface Defect Detection

Slides Poster Similar

Various surface defects will inevitably occur in the production process of mobile phones, which have a huge impact on the enterprise. Therefore, precise defect detection is of great significance in the production of mobile phones. However, the traditional manual inspection and machine vision inspection have low efficiency and accuracy respectively which cannot meet the rapid production needs of modern enterprises. In this paper, we proposed a mobile phone surface defect (MPSD) detection model based on deep learning, which greatly reduce the requirement of a large dataset and improve detection performance. First, Boundary Equilibrium Generative Adversarial Networks (BEGAN) is used to generate and augment the defect data. Then, based on Faster R-CNN model, Feature Pyramid Network (FPN) and ResNet 101 are combined as feature extraction network to get more small target defect features. Further, replacing the ROI pooling layer with an ROI Align layer reduces the quantization deviation during the pooling process. Finally, we train and evaluate our model on our own dataset. The experimental results indicate that compared with some traditional methods based on handcrafted feature extraction and the traditional Faster R-CNN, the improved Faster R-CNN achieves 99.43% mAP, which is more effective in MPSD defect detection area.

Small Object Detection by Generative and Discriminative Learning

Yi Gu, Jie Li, Chentao Wu, Weijia Jia, Jianping Chen

Responsive image

Auto-TLDR; Generative and Discriminative Learning for Small Object Detection

Slides Poster Similar

With the development of deep convolutional neural networks (CNNs), the object detection accuracy has been greatly improved. But the performance of small object detection is still far from satisfactory, mainly because small objects are so tiny that the information contained in the feature map is limited. Existing methods focus on improving classification accuracy but still suffer from the limitation of bounding box prediction. To solve this issue, we propose a detection framework by generative and discriminative learning. First, a reconstruction generator network is designed to reconstruct the mapping from low frequency to high frequency for anchor box prediction. Then, a detector module extracts the regions of interest (ROIs) from generated results and implements a RoI-Head to predict object category and refine bounding box. In order to guide the reconstructed image related to the corresponding one, a discriminator module is adopted to tell from the generated result and the original image. Extensive evaluations on the challenging MS-COCO dataset demonstrate that our model outperforms most state-of-the-art models in detecting small objects, especially the reconstruction module improves the average precision for small object (APs) by 7.7%.

Bidirectional Matrix Feature Pyramid Network for Object Detection

Wei Xu, Yi Gan, Jianbo Su

Responsive image

Auto-TLDR; BMFPN: Bidirectional Matrix Feature Pyramid Network for Object Detection

Slides Poster Similar

Feature pyramids are widely used to improve scale invariance for object detection. Most methods just map the objects to feature maps with relevant square receptive fields, but rarely pay attention to the aspect ratio variation, which is also an important property of object instances. It will lead to a poor match between rectangular objects and assigned features with square receptive fields, thus preventing from accurate recognition and location. Besides, the information propagation among feature layers is sparse, namely, each feature in the pyramid may mainly or only contain single-level information, which is not representative enough for classification and localization sub-tasks. In this paper, Bidirectional Matrix Feature Pyramid Network (BMFPN) is proposed to address these issues. It consists of three modules: Diagonal Layer Generation Module (DLGM), Top-down Module (TDM) and Bottom-up Module (BUM). First, multi-level features extracted by backbone are fed into DLGM to produce the base features. Then these base features are utilized to construct the final feature pyramid through TDM and BUM in series. The receptive fields of the designed feature layers in BMFPN have various scales and aspect ratios. Objects can be correctly assigned to appropriate and representative feature maps with relevant receptive fields depending on its scale and aspect ratio properties. Moreover, TDM and BUM form bidirectional and reticular information flow, which effectively fuses multi level information in top-down and bottom-up manner respectively. To evaluate the effectiveness of our proposed architecture, an end-toend anchor-free detector is designed and trained by integrating BMFPN into FCOS. And the center ness branch in FCOS is modified with our Gaussian center-ness branch (GCB), which brings another slight improvement. Without bells and whistles, our method gains +3.3%, +2.4% and +2.6% AP on MS COCO dataset from baselines with ResNet-50, ResNet-101 and ResNeXt-101 backbones, respectively.

SFPN: Semantic Feature Pyramid Network for Object Detection

Yi Gan, Wei Xu, Jianbo Su

Responsive image

Auto-TLDR; SFPN: Semantic Feature Pyramid Network to Address Information Dilution Issue in FPN

Slides Poster Similar

Feature Pyramid Network(FPN) employs a top-down path to enhance low level feature by utilizing high level feature.However, further improvement of detector is greatly hindered by the inner defect of FPN. The dilution issue in FPN is analyzed in this paper, and a new architecture named Semantic Feature Pyramid Network(SFPN) is introduced to address the information imbalance problem caused by information dilution. The proposed method consists of two simple and effective components: Semantic Pyramid Module(SPM) and Semantic Feature Fusion Module(SFFM). To compensate for the weaknesses of FPN, the semantic segmentation result is utilized as an extra information source in our architecture.By constructing a semantic pyramid based on the segmentation result and fusing it with FPN, feature maps at each level can obtain the necessary information without suffering from the dilution issue. The proposed architecture could be applied on many detectors, and non-negligible improvement could be achieved. Although this method is designed for object detection, other tasks such as instance segmentation can also largely benefit from it. The proposed method brings Faster R-CNN and Mask R-CNN with ResNet-50 as backbone both 1.8 AP improvements respectively. Furthermore, SFPN improves Cascade R-CNN with backbone ResNet-101 from 42.4 AP to 43.5 AP.

NAS-EOD: An End-To-End Neural Architecture Search Method for Efficient Object Detection

Huigang Zhang, Liuan Wang, Jun Sun, Li Sun, Hiromichi Kobashi, Nobutaka Imamura

Responsive image

Auto-TLDR; NAS-EOD: Neural Architecture Search for Object Detection on Edge Devices

Slides Similar

Model efficiency for object detection has become more and more important recently, especially when intelligent mobile devices are more and more convenient and developed today. Current small models for this task is either extended from the models for classification task, or pruned directly on the basis of large models. These pipelines are not task-specific or data-oriented so that their performance are not good enough for users. In this work, we propose a neural architecture search (NAS) method to build a detection model automatically that can perform well on edge devices. Specifically, the proposed method supports the search of not only multi-scale feature network, but also backbone network. This enables us to search out a global optimal model. To the best of our knowledge, it is a first attempt for searching an overall detection model via NAS. Additionally, we add latency information into the main objective during performance estimation, so that the search process can find a final model suitable for edge devices. Experiments on the PASCAL VOC benchmark indicate that the searched model (named NAS-EOD) can get good accuracy even without ImageNet pre-training. When using ImageNet pre-training, our model is superior to state-of-the-art small object detection models.

P2 Net: Augmented Parallel-Pyramid Net for Attention Guided Pose Estimation

Luanxuan Hou, Jie Cao, Yuan Zhao, Haifeng Shen, Jian Tang, Ran He

Responsive image

Auto-TLDR; Parallel-Pyramid Net with Partial Attention for Human Pose Estimation

Slides Poster Similar

The target of human pose estimation is to determine the body parts and joint locations of persons in the image. Angular changes, motion blur and occlusion etc. in the natural scenes make this task challenging, while some joints are more difficult to be detected than others. In this paper, we propose an augmented Parallel-Pyramid Net (P^2Net) with an partial attention module. During data preprocessing, we proposed a differentiable auto data augmentation (DA^2) method in which sequences of data augmentations are formulated as a trainable and operational Convolution Neural Network (CNN) component. DA^2 improves the training efficiency and effectiveness. A parallel pyramid structure is followed to compensate the information loss introduced by the network. For the information loss problem in the backbone network, we optimize the backbone network by adopting a new parallel structure without increasing the overall computational complexity. To further refine the predictions after completion of global predictions, an Partial Attention Module (PAM) is defined to extract weighted features from different scale feature maps generated by the parallel pyramid structure. Compared with the traditional up-sampling refining, PAM can better capture the relationship between channels. Experiments corroborate the effectiveness of our proposed method. Notably, our method achieves the best performance on the challenging MSCOCO and MPII datasets.

EAGLE: Large-Scale Vehicle Detection Dataset in Real-World Scenarios Using Aerial Imagery

Seyed Majid Azimi, Reza Bahmanyar, Corentin Henry, Kurz Franz

Responsive image

Auto-TLDR; EAGLE: A Large-Scale Dataset for Multi-class Vehicle Detection with Object Orientation Information in Airborne Imagery

Slides Similar

Multi-class vehicle detection from airborne imagery with orientation estimation is an important task in the near and remote vision domains with applications in traffic monitoring and disaster management. In the last decade, we have witnessed significant progress in object detection in ground imagery, but it is still in its infancy in airborne imagery, mostly due to the scarcity of diverse and large-scale datasets. Despite being a useful tool for different applications, current airborne datasets only partially reflect the challenges of real-world scenarios. To address this issue, we introduce EAGLE (oriEnted object detection using Aerial imaGery in real-worLd scEnarios), a large-scale dataset for multi-class vehicle detection with object orientation information in aerial imagery. It features high-resolution aerial images composed of different real-world situations with a wide variety of camera sensor, resolution, flight altitude, weather, illumination, haze, shadow, time, city, country, occlusion, and camera angle. The annotation was done by airborne imagery experts with small- and large-vehicle classes. EAGLE contains 215,986 instances annotated with oriented bounding boxes defined by four points and orientation, making it by far the largest dataset to date in this task. It also supports researches on the haze and shadow removal as well as super-resolution and in-painting applications. We define three tasks: detection by (1) horizontal bounding boxes, (2) rotated bounding boxes, and (3) oriented bounding boxes. We carried out several experiments to evaluate several state-of-the-art methods in object detection on our dataset to form a baseline. Experiments show that the EAGLE dataset accurately reflects real-world situations and correspondingly challenging applications. The dataset will be made publicly available.

MagnifierNet: Learning Efficient Small-Scale Pedestrian Detector towards Multiple Dense Regions

Qi Cheng, Mingqin Chen, Yingjie Wu, Fei Chen, Shiping Lin

Responsive image

Auto-TLDR; MagnifierNet: A Simple but Effective Small-Scale Pedestrian Detection Towards Multiple Dense Regions

Slides Poster Similar

Despite the success of pedestrian detection, there is still a significant gap in the performance of the detection of pedestrians at different scales. Detecting small-scale pedestrians is extremely challenging due to the low resolution of their convolution features which is essential for downstream classifiers. To address this issue, we observed pedestrian datasets and found that pedestrians often gather together in crowded public places. Then we propose MagnifierNet, a simple but effective small-scale pedestrian detector towards multiple dense regions. MagnifierNet uses our proposed sweep-line based grouping algorithm to find dense regions based on the number of pedestrians in the grouped region. And we adopt a new definition of small-scale pedestrians through grid search and KL-divergence. Besides, our grouping method can also be used as a new strategy for pedestrian data augmentation. The ablation study demonstrates that MagnifierNet improves the representation of small-scale pedestrians. We validate the effectiveness of MagnifierNet on CityPersons and KITTI datasets. Experimental results show that MagnifierNet achieves the best small-scale pedestrian detection performance on CityPersons benchmark without any external data, and also achieves competitive performance for detecting small-scale pedestrians on KITTI dataset without bells and whistles.

Hybrid Cascade Point Search Network for High Precision Bar Chart Component Detection

Junyu Luo, Jinpeng Wang, Chin-Yew Lin

Responsive image

Auto-TLDR; Object Detection of Chart Components in Chart Images Using Point-based and Region-Based Object Detection Framework

Slides Poster Similar

Charts are commonly used for data visualization. One common form of chart distribution is in its image form. To enable machine comprehension of chart images, precise detection of chart components in chart images is a critical step. Existing image object detection methods do not perform well in chart component detection which requires high boundary detection precision. And traditional rule-based approaches lack enough generalization ability. In order to address this problem, we design a novel two-stage object detection framework that combines point-based and region-based ideas, by simulating the process that human creating bounding boxes for objects. The experiment on our labeled ChartDet dataset shows our method greatly improves the performance of chart object detection. We further extend our method to a general object detection task and get comparable performance.

A Bayesian Approach to Reinforcement Learning of Vision-Based Vehicular Control

Zahra Gharaee, Karl Holmquist, Linbo He, Michael Felsberg

Responsive image

Auto-TLDR; Bayesian Reinforcement Learning for Autonomous Driving

Slides Poster Similar

In this paper, we present a state-of-the-art reinforcement learning method for autonomous driving. Our approach employs temporal difference learning in a Bayesian framework to learn vehicle control signals from sensor data. The agent has access to images from a forward facing camera, which are pre-processed to generate semantic segmentation maps. We trained our system using both ground truth and estimated semantic segmentation input. Based on our observations from a large set of experiments, we conclude that training the system on ground truth input data leads to better performance than training the system on estimated input even if estimated input is used for evaluation. The system is trained and evaluated in a realistic simulated urban environment using the CARLA simulator. The simulator also contains a benchmark that allows for comparing to other systems and methods. The required training time of the system is shown to be lower and the performance on the benchmark superior to competing approaches.

Detecting and Adapting to Crisis Pattern with Context Based Deep Reinforcement Learning

Eric Benhamou, David Saltiel Saltiel, Jean-Jacques Ohana Ohana, Jamal Atif Atif

Responsive image

Auto-TLDR; Deep Reinforcement Learning for Financial Crisis Detection and Dis-Investment

Slides Poster Similar

Deep reinforcement learning (DRL) has reached super human levels in complexes tasks like game solving (Go, StarCraft II), and autonomous driving. However, it remains an open question whether DRL can reach human level in applications to financial problems and in particular in detecting pattern crisis and consequently dis-investing. In this paper, we present an innovative DRL framework consisting in two sub-networks fed respectively with portfolio strategies past performances and standard deviation as well as additional contextual features. The second sub network plays an important role as it captures dependencies with common financial indicators features like risk aversion, economic surprise index and correlations between assets that allows taking into account context based information. We compare different network architectures either using layers of convolutions to reduce network's complexity or LSTM block to capture time dependency and whether previous allocations is important in the modeling. We also use adversarial training to make the final model more robust. Results on test set show this approach substantially over-performs traditional portfolio optimization methods like Markovitz and is able to detect and anticipate crisis like the current Covid one.

Efficient-Receptive Field Block with Group Spatial Attention Mechanism for Object Detection

Jiacheng Zhang, Zhicheng Zhao, Fei Su

Responsive image

Auto-TLDR; E-RFB: Efficient-Receptive Field Block for Deep Neural Network for Object Detection

Slides Poster Similar

Object detection has been paid rising attention in computer vision field. Convolutional Neural Networks (CNNs) extract high-level semantic features of images, which directly determine the performance of object detection. As a common solution, embedding integration modules into CNNs can enrich extracted features and thereby improve the performance. However, the instability and inconsistency of internal multiple branches exist in these modules. To address this problem, we propose a novel multibranch module called Efficient-Receptive Field Block (E-RFB), in which multiple levels of features are combined for network optimization. Specifically, by downsampling and increasing depth, the E-RFB provides sufficient RF. Second, in order to eliminate the inconsistency across different branches, a novel spatial attention mechanism, namely, Group Spatial Attention Module (GSAM) is proposed. The GSAM gradually narrows a feature map by channel grouping; thus it encodes the information between spatial and channel dimensions into the final attention heat map. Third, the proposed module can be easily joined in various CNNs to enhance feature representation as a plug-and-play component. With SSD-style detectors, our method halves the parameters of the original detection head and achieves high accuracy on the PASCAL VOC and MS COCO datasets. Moreover, the proposed method achieves superior performance compared with state-of-the-art methods based on similar framework.

AOAM: Automatic Optimization of Adjacency Matrix for Graph Convolutional Network

Yuhang Zhang, Hongshuai Ren, Jiexia Ye, Xitong Gao, Yang Wang, Kejiang Ye, Cheng-Zhong Xu

Responsive image

Auto-TLDR; Adjacency Matrix for Graph Convolutional Network in Non-Euclidean Space

Slides Poster Similar

Graph Convolutional Network (GCN) is adopted to tackle the problem of the convolution operation in non-Euclidean space. Although previous works on GCN have made some progress, one of their limitations is that their input Adjacency Matrix (AM) is designed manually and requires domain knowledge, which is cumbersome, tedious and error-prone. In addition, entries of this fixed Adjacency Matrix are generally designed as binary values (i.e., ones and zeros) which can not reflect more complex relationship between nodes. However, many applications require a weighted and dynamic Adjacency Matrix instead of an unweighted and fixed Adjacency Matrix. To this end, there are few works focusing on designing a more flexible Adjacency Matrix. In this paper, we propose an end-to-end algorithm to improve the GCN performance by focusing on the Adjacency Matrix. We first provide a calculation method that called node information entropy to update the matrix. Then, we analyze the search strategy in a continuous space and introduce the Deep Deterministic Policy Gradient (DDPG) method to overcome the demerit of the discrete space search. Finally, we integrate the GCN and reinforcement learning into an end-to-end framework. Our method can automatically define the adjacency matrix without artificial knowledge. At the same time, the proposed approach can deal with any size of the matrix and provide a better value for the network. Four popular datasets are selected to evaluate the capability of our algorithm. The method in this paper achieves the state-of-the-art performance on Cora and Pubmed datasets, respectively, with the accuracy of 84.6% and 81.6%.

Adaptive Word Embedding Module for Semantic Reasoning in Large-Scale Detection

Yu Zhang, Xiaoyu Wu, Ruolin Zhu

Responsive image

Auto-TLDR; Adaptive Word Embedding Module for Object Detection

Slides Poster Similar

In recent years, convolutional neural networks have achieved rapid development in the field of object detection. However, due to the imbalance of data, high costs in labor and uneven level of data labeling, the overall performance of the previous detection network has dropped sharply when dataset extended to the large-scale with hundreds and thousands categories. We present the Adaptive Word Embedding Module, extracting the adaptive semantic knowledge graph to reach semantic consistency within one image. Our method endows the ability to infer global semantic of detection networks without other attribute or relationship annotations. Compared with Faster RCNN, the algorithm on the MSCOCO dataset was significantly improved by 4.1%, and the mAP value has reached 32.8%. On the VG1000 dataset, it increased by 0.9% to 6.7% compared with Faster RCNN. Adaptive Word Embedding Module is lightweight, general-purpose and can be plugged into diverse detection networks. Code will be made available.

Scene Text Detection with Selected Anchors

Anna Zhu, Hang Du, Shengwu Xiong

Responsive image

Auto-TLDR; AS-RPN: Anchor Selection-based Region Proposal Network for Scene Text Detection

Slides Poster Similar

Object proposal technique with dense anchoring scheme for scene text detection were applied frequently to achieve high recall. It results in the significant improvement in accuracy but waste of computational searching, regression and classification. In this paper, we propose an anchor selection-based region proposal network (AS-RPN) using effective selected anchors instead of dense anchors to extract text proposals. The center, scales, aspect ratios and orientations of anchors are learnable instead of fixing, which leads to high recall and greatly reduced numbers of anchors. By replacing the anchor-based RPN in Faster RCNN, the AS-RPN-based Faster RCNN can achieve comparable performance with previous state-of-the-art text detecting approaches on standard benchmarks, including COCO-Text, ICDAR2013, ICDAR2015 and MSRA-TD500 when using single-scale and single model (ResNet50) testing only.

Visual Object Tracking in Drone Images with Deep Reinforcement Learning

Derya Gözen, Sedat Ozer

Responsive image

Auto-TLDR; A Deep Reinforcement Learning based Single Object Tracker for Drone Applications

Slides Poster Similar

There is an increasing demand on utilizing camera equipped drones and their applications in many domains varying from agriculture to entertainment and from sports events to surveillance. In such drone applications, an essential and a common task is tracking an object of interest visually. Drone (or UAV) images have different properties when compared to the ground taken (natural) images and those differences introduce additional complexities to the existing object trackers to be directly applied on drone applications. Some important differences among those complexities include (i) smaller object sizes to be tracked and (ii) different orientations and viewing angles yielding different texture and features to be observed. Therefore, new algorithms trained on drone images are needed for the drone-based applications. In this paper, we introduce a deep reinforcement learning (RL) based single object tracker that tracks an object of interest in drone images by estimating a series of actions to find the location of the object in the next frame. This is the first work introducing a single object tracker using a deep RL-based technique for drone images. Our proposed solution introduces a novel reward function that aims to reduce the total number of actions taken to estimate the object's location in the next frame and also introduces a different backbone network to be used on low resolution images. Additionally, we introduce a set of new actions into the action library to better deal with the above-mentioned complexities. We compare our proposed solutions to a state of the art tracking algorithm from the recent literature and demonstrate up to 3.87\% improvement in precision and 3.6\% improvement in IoU values on the VisDrone2019 dataset. We also provide additional results on OTB-100 dataset and show up to 3.15\% improvement in precision on the OTB-100 dataset when compared to the same previous state of the art algorithm. Lastly, we analyze the ability to handle some of the challenges faced during tracking, including but not limited to occlusion, deformation, and scale variation for our proposed solutions.

Vacant Parking Space Detection Based on Task Consistency and Reinforcement Learning

Manh Hung Nguyen, Tzu-Yin Chao, Ching-Chun Huang

Responsive image

Auto-TLDR; Vacant Space Detection via Semantic Consistency Learning

Slides Poster Similar

In this paper, we proposed a novel task-consistency learning method that allows training a vacant space detection network (target task) based on the logistic consistency with the semantic outcomes from a naive flow-based motion behavior classifier (source task) in a parking lot. By well designing the reward mechanism upon semantic consistency, we show the possibility to train the target network in a reinforcement learning setting. Compared with conventional supervised detection methods, the major contribution of this work is to learn a vacant space detector via semantic consistency rather than supervised labels. The dynamic learning property may make the proposed detector been deployed in different lots easily without heavy training loads. The experiments show that based on the task consistency rewards from the motion behavior classifier, the vacant space detector can be trained successfully.

ScarfNet: Multi-Scale Features with Deeply Fused and Redistributed Semantics for Enhanced Object Detection

Jin Hyeok Yoo, Dongsuk Kum, Jun Won Choi

Responsive image

Auto-TLDR; Semantic Fusion of Multi-scale Feature Maps for Object Detection

Slides Poster Similar

Convolutional neural networks (CNNs) have led us to achieve significant progress in object detection research. To detect objects of various sizes, object detectors often exploit the hierarchy of the multiscale feature maps called {\it feature pyramids}, which are readily obtained by the CNN architecture. However, the performance of these object detectors is limited because the bottom-level feature maps, which experience fewer convolutional layers, lack the semantic information needed to capture the characteristics of the small objects. To address such problems, various methods have been proposed to increase the depth for the bottom-level features used for object detection. While most approaches are based on the generation of additional features through the top-down pathway with lateral connections, our approach directly fuses multi-scale feature maps using bidirectional long short-term memory (biLSTM) in an effort to leverage the gating functions and parameter-sharing in generating deeply fused semantics. The resulting semantic information is redistributed to the individual pyramidal feature at each scale through the channel-wise attention model. We integrate our semantic combining and attentive redistribution feature network (ScarfNet) with the baseline object detectors, i.e., Faster R-CNN, single-shot multibox detector (SSD), and RetinaNet. Experimental results show that our method offers a significant performance gain over the baseline detectors and outperforms the competing multiscale fusion methods in the PASCAL VOC and COCO detection benchmarks.

Learning from Learners: Adapting Reinforcement Learning Agents to Be Competitive in a Card Game

Pablo Vinicius Alves De Barros, Ana Tanevska, Alessandra Sciutti

Responsive image

Auto-TLDR; Adaptive Reinforcement Learning for Competitive Card Games

Slides Poster Similar

Learning how to adapt to complex and dynamic environments is one of the most important factors that contribute to our intelligence. Endowing artificial agents with this ability is not a simple task, particularly in competitive scenarios. In this paper, we present a broad study on how popular reinforcement learning algorithms can be adapted and implemented to learn and to play a real-world implementation of a competitive multiplayer card game. We propose specific training and validation routines for the learning agents, in order to evaluate how the agents learn to be competitive and explain how they adapt to each others' playing style. Finally, we pinpoint how the behavior of each agent derives from their learning style and create a baseline for future research on this scenario.

Multiple-Step Sampling for Dense Object Detection and Counting

Zhaoli Deng, Yang Chenhui

Responsive image

Auto-TLDR; Multiple-Step Sampling for Dense Objects Detection

Slides Poster Similar

A multitude of similar or even identical objects are positioned closely in dense scenes, which brings about difficulties in object-detecting and object-counting. Since the poor performance of Faster R-CNN, recent works prefer to detect dense objects with the utilization of multi-layer feature maps. Nevertheless, they require complex post-processing to minimize overlap between adjacent bounding boxes, which reduce their detection speed. However, we find that such a multilayer prediction is not necessary. It is observed that there exists a waste of ground-truth boxes during sampling, causing the lack of positive samples and the final failure of Faster R-CNN training. Motivated by this observation we propose a multiple-step sampling method for anchor sampling. Our method reduces the waste of ground-truth boxes in three steps according to different rules. Besides, we balance the positive and negative samples, and samples at different quality. Our method improves base detector (Faster R-CNN), the detection tests on SKU-110K and CARPK benchmarks indicate that our approach offers a good trade-off between accuracy and speed.

ActionSpotter: Deep Reinforcement Learning Framework for Temporal Action Spotting in Videos

Guillaume Vaudaux-Ruth, Adrien Chan-Hon-Tong, Catherine Achard

Responsive image

Auto-TLDR; ActionSpotter: A Reinforcement Learning Algorithm for Action Spotting in Video

Slides Poster Similar

Action spotting has recently been proposed as an alternative to action detection and key frame extraction. However, the current state-of-the-art method of action spotting requires an expensive ground truth composed of the search sequences employed by human annotators spotting actions - a critical limitation. In this article, we propose to use a reinforcement learning algorithm to perform efficient action spotting using only the temporal segments from the action detection annotations, thus opening an interesting solution for video understanding. Experiments performed on THUMOS14 and ActivityNet datasets show that the proposed method, named ActionSpotter, leads to good results and outperforms state-of-the-art detection outputs redrawn for this application. In particular, the spotting mean Average Precision on THUMOS14 is significantly improved from 59.7% to 65.6% while skipping 23% of video.

AVD-Net: Attention Value Decomposition Network for Deep Multi-Agent Reinforcement Learning

Zhang Yuanxin, Huimin Ma, Yu Wang

Responsive image

Auto-TLDR; Attention Value Decomposition Network for Cooperative Multi-agent Reinforcement Learning

Slides Poster Similar

Multi-agent reinforcement learning (MARL) is of importance for variable real-world applications but remains more challenges like stationarity and scalability. While recently value function factorization methods have obtained empirical good results in cooperative multi-agent environment, these works mostly focus on the decomposable learning structures. Inspired by the application of attention mechanism in machine translation and other related domains, we propose an attention based approach called attention value decomposition network (AVD-Net), which capitalizes on the coordination relations between agents. AVD-Net employs centralized training with decentralized execution (CTDE) paradigm, which factorizes the joint action-value functions with only local observations and actions of agents. Our method is evaluated on multi-agent particle environment (MPE) and StarCraft micromanagement environment (SMAC). The experiment results show the strength of our approach compared to existing methods with state-of-the-art performance in cooperative scenarios.

End-To-End Deep Learning Methods for Automated Damage Detection in Extreme Events at Various Scales

Yongsheng Bai, Alper Yilmaz, Halil Sezen

Responsive image

Auto-TLDR; Robust Mask R-CNN for Crack Detection in Extreme Events

Slides Poster Similar

Robust Mask R-CNN (Mask Regional Convolutional Neural Network) methods are proposed and tested for automatic detection of cracks on structures or their components that may be damaged during extreme events, such as earth-quakes. We curated a new dataset with 2,021 labeled images for training and validation and aimed to find end-to-end deep neural networks for crack detection in the field. With data augmentation and parameters fine-tuning, Path Aggregation Network (PANet) with spatial attention mechanisms and High-resolution Network (HRNet) are introduced into Mask R-CNNs. The tests on three public datasets with low- or high-resolution images demonstrate that the proposed methods can achieve a big improvement over alternative networks, so the proposed method may be sufficient for crack detection for a variety of scales in real applications.

SyNet: An Ensemble Network for Object Detection in UAV Images

Berat Mert Albaba, Sedat Ozer

Responsive image

Auto-TLDR; SyNet: Combining Multi-Stage and Single-Stage Object Detection for Aerial Images

Poster Similar

Recent advances in camera equipped drone applications and their widespread use increased the demand on vision based object detection algorithms for aerial images. Object detection process is inherently a challenging task as a generic computer vision problem, however, since the use of object detection algorithms on UAVs (or on drones) is relatively a new area, it remains as a more challenging problem to detect objects in aerial images. There are several reasons for that including: (i) the lack of large drone datasets including large object variance, (ii) the large orientation and scale variance in drone images when compared to the ground images, and (iii) the difference in texture and shape features between the ground and the aerial images. Deep learning based object detection algorithms can be classified under two main categories: (a) single-stage detectors and (b) multi-stage detectors. Both single-stage and multi-stage solutions have their advantages and disadvantages over each other. However, a technique to combine the good sides of each of those solutions could yield even a stronger solution than each of those solutions individually. In this paper, we propose an ensemble network, SyNet, that combines a multi-stage method with a single-stage one with the motivation of decreasing the high false negative rate of multi-stage detectors and increasing the quality of the single-stage detector proposals. As building blocks, CenterNet and Cascade R-CNN with pretrained feature extractors are utilized along with an ensembling strategy. We report the state of the art results obtained by our proposed solution on two different datasets: namely MS-COCO and visDrone with \%52.1 $mAP_{IoU = 0.75}$ is obtained on MS-COCO $val2017$ dataset and \%26.2 $mAP_{IoU = 0.75}$ is obtained on VisDrone $test-set$. Our code is available at: https://github.com/mertalbaba/SyNet}{https://github.com/mer talbaba/SyNet

Deep Reinforcement Learning on a Budget: 3D Control and Reasoning without a Supercomputer

Edward Beeching, Jilles Steeve Dibangoye, Olivier Simonin, Christian Wolf

Responsive image

Auto-TLDR; Deep Reinforcement Learning in Mobile Robots Using 3D Environment Scenarios

Slides Poster Similar

An important goal of research in Deep Reinforcement Learning in mobile robotics is to train agents capableof solving complex tasks, which require a high level of scene understanding and reasoning from an egocentric perspective.When trained from simulations, optimal environments should satisfy a currently unobtainable combination of high-fidelity photographic observations, massive amounts of different environment configurations and fast simulation speeds. In this paper we argue that research on training agents capable of complex reasoning can be simplified by decoupling from the requirement of high fidelity photographic observations. We present a suite of tasks requiring complex reasoning and exploration in continuous,partially observable 3D environments. The objective is to provide challenging scenarios and a robust baseline agent architecture that can be trained on mid-range consumer hardware in under 24h. Our scenarios combine two key advantages: (i) they are based on a simple but highly efficient 3D environment (ViZDoom)which allows high speed simulation (12000fps); (ii) the scenarios provide the user with a range of difficulty settings, in order to identify the limitations of current state of the art algorithms and network architectures. We aim to increase accessibility to the field of Deep-RL by providing baselines for challenging scenarios where new ideas can be iterated on quickly. We argue that the community should be able to address challenging problems in reasoning of mobile agents without the need for a large compute infrastructure.

Object Detection in the DCT Domain: Is Luminance the Solution?

Benjamin Deguerre, Clement Chatelain, Gilles Gasso

Responsive image

Auto-TLDR; Jpeg Deep: Object Detection Using Compressed JPEG Images

Slides Poster Similar

Object detection in images has reached unprecedented performances. The state-of-the-art methods rely on deep architectures that extract salient features and predict bounding boxes enclosing the objects of interest. These methods essentially run on RGB images. However, the RGB images are often compressed by the acquisition devices for storage purpose and transfer efficiency. Hence, their decompression is required for object detectors. To gain in efficiency, this paper proposes to take advantage of the compressed representation of images to carry out object detection usable in constrained resources conditions. Specifically, we focus on JPEG images and propose a thorough analysis of detection architectures newly designed in regard of the peculiarities of the JPEG norm. This leads to a x1.7 speed up in comparison with a standard RGB-based architecture, while only reducing the detection performance by 5.5%. Additionally, our empirical findings demonstrate that only part of the compressed JPEG information, namely the luminance component, may be required to match detection accuracy of the full input methods. Code is made available at : https://github.com/D3lt4lph4/jpeg_deep.

A Novel Region of Interest Extraction Layer for Instance Segmentation

Leonardo Rossi, Akbar Karimi, Andrea Prati

Responsive image

Auto-TLDR; Generic RoI Extractor for Two-Stage Neural Network for Instance Segmentation

Slides Poster Similar

Given the wide diffusion of deep neural network architectures for computer vision tasks, several new applications are nowadays more and more feasible. Among them, a particular attention has been recently given to instance segmentation, by exploiting the results achievable by two-stage networks (such as Mask R-CNN or Faster R-CNN), derived from R-CNN. In these complex architectures, a crucial role is played by the Region of Interest (RoI) extraction layer, devoted to extract a coherent subset of features from a single Feature Pyramid Network (FPN) layer attached on top of a backbone. This paper is motivated by the need to overcome to the limitations of existing RoI extractors which select only one (the best) layer from FPN. Our intuition is that all the layers of FPN retain useful information. Therefore, the proposed layer (called Generic RoI Extractor - GRoIE) introduces non-local building blocks and attention mechanisms to boost the performance. A comprehensive ablation study at component level is conducted to find the best set of algorithms and parameters for the GRoIE layer. Moreover, GRoIE can be integrated seamlessly with every two-stage architecture for both object detection and instance segmentation tasks. Therefore, the improvements brought by the use of GRoIE in different state-of-the-art architectures are also evaluated. The proposed layer leads up to gain a 1.1% AP on bounding box detection and 1.7% AP on instance segmentation. The code is publicly available on GitHub repository at https://github.com/IMPLabUniPr/mmdetection-groie

Triplet-Path Dilated Network for Detection and Segmentation of General Pathological Images

Jiaqi Luo, Zhicheng Zhao, Fei Su, Limei Guo

Responsive image

Auto-TLDR; Triplet-path Network for One-Stage Object Detection and Segmentation in Pathological Images

Slides Similar

Deep learning has been widely applied in the field of medical image processing. However, compared with flourishing visual tasks in natural images, the progress achieved in pathological images is not remarkable, and detection and segmentation, which are among basic tasks of computer vision, are regarded as two independent tasks. In this paper, we make full use of existing datasets and construct a triplet-path network using dilated convolutions to cooperatively accomplish one-stage object detection and nuclei segmentation for general pathological images. First, in order to meet the requirement of detection and segmentation, a novel structure called triplet feature generation (TFG) is designed to extract high-resolution and multiscale features, where features from different layers can be properly integrated. Second, considering that pathological datasets are usually small, a location-aware and partially truncated loss function is proposed to improve the classification accuracy of datasets with few images and widely varying targets. We compare the performance of both object detection and instance segmentation with state-of-the-art methods. Experimental results demonstrate the effectiveness and efficiency of the proposed network on two datasets collected from multiple organs.

Low Dimensional State Representation Learning with Reward-Shaped Priors

Nicolò Botteghi, Ruben Obbink, Daan Geijs, Mannes Poel, Beril Sirmacek, Christoph Brune, Abeje Mersha, Stefano Stramigioli

Responsive image

Auto-TLDR; Unsupervised Learning for Unsupervised Reinforcement Learning in Robotics

Poster Similar

Reinforcement Learning has been able to solve many complicated robotics tasks without any need of feature engineering in an end-to-end fashion. However, learning the optimal policy directly from the sensory inputs, i.e the observations, often requires processing and storage of huge amount of data. In the context of robotics, the cost of data from real robotics hardware is usually very high, thus solutions that achieves high sample-efficiency are needed. We propose a method that aims at learning a mapping from the observations into a lower dimensional state space. This mapping is learned with unsupervised learning using loss functions shaped to incorporate prior knowledge of the environment and the task. Using the samples from the state space, the optimal policy is quickly and efficiently learned. We test the method on several mobile robot navigation tasks in simulation environment and also on a real robot.

CenterRepp: Predict Central Representative Point Set's Distribution for Detection

Yulin He, Limeng Zhang, Wei Chen, Xin Luo, Chen Li, Xiaogang Jia

Responsive image

Auto-TLDR; CRPDet: CenterRepp Detector for Object Detection

Slides Poster Similar

Object detection has long been an important issue in the discipline of scene understanding. Existing researches mainly focus on the object itself, ignoring its surrounding environment. In fact, the surrounding environment provides abundant information to help detectors classify and locate objects. This paper proposes CRPDet, viz. CenterRepp Detector, a framework for object detection. The main function of CRPDet is accomplished by the CenterRepp module, which takes into account the surrounding environment by predicting the distribution of the central representative points. CenterRepp converts labeled object frames into the mean and standard variance of the sampling points’ distribution. This helps increase the receptive field of objects, breaking the limitation of object frames. CenterRepp defines a position-fixed center point with significant weights, avoiding to sample all points in the surroundings. Experiments on the COCO test-dev detection benchmark demonstrates that our proposed CRPDet has comparable performance with state-of-the-art detectors, achieving 39.4 mAP with 51 FPS tested under single size input.

Cascade Saliency Attention Network for Object Detection in Remote Sensing Images

Dayang Yu, Rong Zhang, Shan Qin

Responsive image

Auto-TLDR; Cascade Saliency Attention Network for Object Detection in Remote Sensing Images

Slides Poster Similar

Object detection in remote sensing images is a challenging task due to objects in the bird-view perspective appearing with arbitrary orientations. Though considerable progress has been made, there still exist challenges with the interference from complex backgrounds, dense arrangement, and large-scale variations. In this paper, we propose an oriented detector named Cascade Saliency Attention Network (CSAN), designed for comprehensively suppressing interference in remote sensing images. Specifically, we first combine context and pixel attention on feature maps to enhance saliency of objects for suppressing interference from backgrounds. Then, in cascade network, we apply instance segmentation on ROI to increase saliency of the central object, thus preventing object features from mutual interference in dense arrangement. Additionally, to alleviate large-scale variations, we devise a multi-scale merge module during FPN merging process to learn richer scale representations. Experimental results on DOTA and HRSC2016 datasets outperform other state-of-the-art object detection methods and verify the effectiveness of our method.

Which Airline Is This? Airline Logo Detection in Real-World Weather Conditions

Christian Wilms, Rafael Heid, Mohammad Araf Sadeghi, Andreas Ribbrock, Simone Frintrop

Responsive image

Auto-TLDR; Airlines logo detection on airplane tails using data augmentation

Slides Poster Similar

The detection of logos in images, for instance, logos of airlines on airplane tails, is a difficult task in real-world weather conditions. Most systems used for logo detection are very good at detecting logos in clean images. However, they exhibit problems when images are degraded by effects of adverse weather conditions as they frequently occur in real-world scenarios. For investigating this problem on airline logo detection as a sub-problem of logo detection, we first present a new dataset for airline logo detection on airplane tails containing a test split with images degraded by adverse weather effects. Second, to handle the detection of airline logos effectively, a new two-stage airline logo detection system based on a state-of-the-art object proposal generation system and a specifically tailored classifier is proposed. Finally, improving the results on images degraded by adverse weather effects, we introduce a learning-free application-agnostic data augmentation strategy simulating effects like rain and fog. The results show the superior performance of our airline logo detection system compared to state-of-the-art. Furthermore, applying our data augmentation approach to a variety of systems, reduces the significant drop in performance on degraded images.

Object Detection Using Dual Graph Network

Shengjia Chen, Zhixin Li, Feicheng Huang, Canlong Zhang, Huifang Ma

Responsive image

Auto-TLDR; A Graph Convolutional Network for Object Detection with Key Relation Information

Slides Similar

Most object detection methods focus only on the local information near the region proposal and ignore the object's global semantic relation and local spatial relation information, resulting in limited performance. To capture and explore these important relations, we propose a detection method based on a graph convolutional network (GCN). Two independent relation graph networks are used to obtain the global semantic information of the object in labels and the local spatial information in images. Semantic relation networks can implicitly acquire global knowledge, and by constructing a directed graph on the dataset, each node is represented by the word embedding of labels and then sent to the GCN to obtain high-level semantic representation. The spatial relation network encodes the relation by the positional relation module and the visual connection module, and enriches the object features through local key information from objects. The feature representation is further improved by aggregating the outputs of the two networks. Instead of directly disseminating visual features in the network, the dual-graph network explores more advanced feature information, giving the detector the ability to obtain key relations in labels and region proposals. Experiments on the PASCAL VOC and MS COCO datasets demonstrate that key relation information significantly improve the performance of detection with better ability to detect small objects and reasonable boduning box. The results on COCO dataset demonstrate our method obtains around 32.3% improvement on AP in terms of small objects.

Cross-View Relation Networks for Mammogram Mass Detection

Ma Jiechao, Xiang Li, Hongwei Li, Ruixuan Wang, Bjoern Menze, Wei-Shi Zheng

Responsive image

Auto-TLDR; Multi-view Modeling for Mass Detection in Mammogram

Slides Poster Similar

In medical image analysis, multi-view modeling is crucial for pathology detection when the target lesion is presented in different views, e.g. mass lesions in breast. Currently mammogram is the most effective imaging modality for mass lesion detection of breast cancer at the early stage. The pathological information from the two paired views (i.e., medio-lateral oblique and cranio-caudal) are highly relational and complementary, which is crucial for diagnosis in clinical practice. Existing mass detection methods do not consider learning synergistic features from the two relational views. For the first time, we propose a novel mass detection framework to capture the latent relation information from the two paired views of a same mass in mammogram. We evaluate our model on a public mammogram dataset and a large-scale private dataset, demonstrating that the proposed method outperforms existing feature fusion approaches and state-of-the-art mass detection methods. We further analyze the performance gains from the relation modeling. Our quantitative and qualitative results suggest that jointly learning cross-view features boosts the detection performance of existing models, which is a promising avenue for mass detection task in mammogram.

Small Object Detection Leveraging on Simultaneous Super-Resolution

Hong Ji, Zhi Gao, Xiaodong Liu, Tiancan Mei

Responsive image

Auto-TLDR; Super-Resolution via Generative Adversarial Network for Small Object Detection

Poster Similar

Despite the impressive advancement achieved in object detection, the detection performance of small object is still far from satisfactory due to the lack of sufficient detailed appearance to distinguish it from similar objects. Inspired by the positive effects of super-resolution for object detection, we propose a general framework that can be incorporated with most available detector networks to significantly improve the performance of small object detection, in which the low-resolution image is super-resolved via generative adversarial network (GAN) in an unsupervised manner. In our method, the super-resolution network and the detection network are trained jointly and alternately with each other fixed. In particular, the detection loss is back-propagated into the super-resolution network during training to facilitate detection. Compared with available simultaneous super-resolution and detection methods which heavily rely on low-/high-resolution image pairs, our work breaks through such restriction via applying the CycleGAN strategy, achieving increased generality and applicability, while remaining an elegant structure. Extensive experiments on datasets from both computer vision and remote sensing communities demonstrate that our method works effectively on a wide range of complex scenarios, resulting in best performance that significantly outperforms many state-of-the-art approaches.

Thermal Image Enhancement Using Generative Adversarial Network for Pedestrian Detection

Mohamed Amine Marnissi, Hajer Fradi, Anis Sahbani, Najoua Essoukri Ben Amara

Responsive image

Auto-TLDR; Improving Visual Quality of Infrared Images for Pedestrian Detection Using Generative Adversarial Network

Slides Poster Similar

Infrared imaging has recently played an important role in a wide range of applications including surveillance, robotics and night vision. However, infrared cameras often suffer from some limitations, essentially about low-contrast and blurred details. These problems contribute to the loss of observation of target objects in infrared images, which could limit the feasibility of different infrared imaging applications. In this paper, we mainly focus on the problem of pedestrian detection on thermal images. Particularly, we emphasis the need for enhancing the visual quality of images beforehand performing the detection step. % to ensure effective results. To address that, we propose a novel thermal enhancement architecture based on Generative Adversarial Network, and composed of two modules contrast enhancement and denoising modules with a post-processing step for edge restoration in order to improve the overall quality. The effectiveness of the proposed architecture is assessed by means of visual quality metrics and better results are obtained compared to the original thermal images and to the obtained results by other existing enhancement methods. These results have been conduced on a subset of KAIST dataset. Using the same dataset, the impact of the proposed enhancement architecture has been demonstrated on the detection results by obtaining better performance with a significant margin using YOLOv3 detector.

Object Features and Face Detection Performance: Analyses with 3D-Rendered Synthetic Data

Jian Han, Sezer Karaoglu, Hoang-An Le, Theo Gevers

Responsive image

Auto-TLDR; Synthetic Data for Face Detection Using 3DU Face Dataset

Slides Poster Similar

This paper is to provide an overview of how object features from images influence face detection performance, and how to select synthetic faces to address specific features. To this end, we investigate the effects of occlusion, scale, viewpoint, background, and noise by using a novel synthetic image generator based on 3DU Face Dataset. To examine the effects of different features, we selected three detectors (Faster RCNN, HR, SSH) as representative of various face detection methodologies. Comparing different configurations of synthetic data on face detection systems, it showed that our synthetic dataset could complement face detectors to become more robust against features in the real world. Our analysis also demonstrated that a variety of data augmentation is necessary to address nuanced differences in performance.

PRF-Ped: Multi-Scale Pedestrian Detector with Prior-Based Receptive Field

Yuzhi Tan, Hongxun Yao, Haoran Li, Xiusheng Lu, Haozhe Xie

Responsive image

Auto-TLDR; Bidirectional Feature Enhancement Module for Multi-Scale Pedestrian Detection

Slides Poster Similar

Multi-scale feature representation is a common strategy to handle the scale variation in pedestrian detection. Existing methods simply utilize the convolutional pyramidal features for multi-scale representation. However, they rarely pay attention to the differences among different feature scales and extract multi-scale features from a single feature map, which may make the detectors sensitive to scale-variance in multi-scale pedestrian detection. In this paper, we introduce a bidirectional feature enhancement module (BFEM) to augment the semantic information of low-level features and the localization information of high-level features. In addition, we propose a prior-based receptive field block (PRFB) for multi-scale pedestrian feature extraction, where the receptive field is closer to the aspect ratio of the pedestrian target. Consequently, it is less affected by the surrounding background when extracting features. Experimental results indicate that the proposed method outperform the state-of-the-art methods on the CityPersons and Caltech datasets.