Object Features and Face Detection Performance: Analyses with 3D-Rendered Synthetic Data

Jian Han, Sezer Karaoglu, Hoang-An Le, Theo Gevers

Responsive image

Auto-TLDR; Synthetic Data for Face Detection Using 3DU Face Dataset

Slides Poster

This paper is to provide an overview of how object features from images influence face detection performance, and how to select synthetic faces to address specific features. To this end, we investigate the effects of occlusion, scale, viewpoint, background, and noise by using a novel synthetic image generator based on 3DU Face Dataset. To examine the effects of different features, we selected three detectors (Faster RCNN, HR, SSH) as representative of various face detection methodologies. Comparing different configurations of synthetic data on face detection systems, it showed that our synthetic dataset could complement face detectors to become more robust against features in the real world. Our analysis also demonstrated that a variety of data augmentation is necessary to address nuanced differences in performance.

Similar papers

Hybrid Approach for 3D Head Reconstruction: Using Neural Networks and Visual Geometry

Oussema Bouafif, Bogdan Khomutenko, Mohammed Daoudi

Responsive image

Auto-TLDR; Recovering 3D Head Geometry from a Single Image using Deep Learning and Geometric Techniques

Slides Poster Similar

Recovering the 3D geometric structure of a face from a single input image is a challenging active research area in computer vision. In this paper, we present a novel method for reconstructing 3D heads from a single or multiple image(s) using a hybrid approach based on deep learning and geometric techniques. We propose an encoder-decoder network based on the U-net architecture and trained on synthetic data only. It predicts both pixel-wise normal vectors and landmarks maps from a single input photo. Landmarks are used for the pose computation and the initialization of the optimization problem, which, in turn, reconstructs the 3D head geometry by using a parametric morphable model and normal vector fields. State-of-the-art results are achieved through qualitative and quantitative evaluation tests on both single and multi-view settings. Despite the fact that the model was trained only on synthetic data, it successfully recovers 3D geometry and precise poses for real-world images.

Boosting High-Level Vision with Joint Compression Artifacts Reduction and Super-Resolution

Xiaoyu Xiang, Qian Lin, Jan Allebach

Responsive image

Auto-TLDR; A Context-Aware Joint CAR and SR Neural Network for High-Resolution Text Recognition and Face Detection

Slides Poster Similar

Due to the limits of bandwidth and storage space, digital images are usually down-scaled and compressed when transmitted over networks, resulting in loss of details and jarring artifacts that can lower the performance of high-level visual tasks. In this paper, we aim to generate an artifact-free high-resolution image from a low-resolution one compressed with an arbitrary quality factor by exploring joint compression artifacts reduction (CAR) and super-resolution (SR) tasks. First, we propose a context-aware joint CAR and SR neural network (CAJNN) that integrates both local and non-local features to solve CAR and SR in one-stage. Finally, a deep reconstruction network is adopted to predict high quality and high-resolution images. Evaluation on CAR and SR benchmark datasets shows that our CAJNN model outperforms previous methods and also takes 26.2% less runtime. Based on this model, we explore addressing two critical challenges in high-level computer vision: optical character recognition of low-resolution texts, and extremely tiny face detection. We demonstrate that CAJNN can serve as an effective image preprocessing method and improve the accuracy for real-scene text recognition (from 85.30% to 85.75%) and the average precision for tiny face detection (from 0.317 to 0.611).

MagnifierNet: Learning Efficient Small-Scale Pedestrian Detector towards Multiple Dense Regions

Qi Cheng, Mingqin Chen, Yingjie Wu, Fei Chen, Shiping Lin

Responsive image

Auto-TLDR; MagnifierNet: A Simple but Effective Small-Scale Pedestrian Detection Towards Multiple Dense Regions

Slides Poster Similar

Despite the success of pedestrian detection, there is still a significant gap in the performance of the detection of pedestrians at different scales. Detecting small-scale pedestrians is extremely challenging due to the low resolution of their convolution features which is essential for downstream classifiers. To address this issue, we observed pedestrian datasets and found that pedestrians often gather together in crowded public places. Then we propose MagnifierNet, a simple but effective small-scale pedestrian detector towards multiple dense regions. MagnifierNet uses our proposed sweep-line based grouping algorithm to find dense regions based on the number of pedestrians in the grouped region. And we adopt a new definition of small-scale pedestrians through grid search and KL-divergence. Besides, our grouping method can also be used as a new strategy for pedestrian data augmentation. The ablation study demonstrates that MagnifierNet improves the representation of small-scale pedestrians. We validate the effectiveness of MagnifierNet on CityPersons and KITTI datasets. Experimental results show that MagnifierNet achieves the best small-scale pedestrian detection performance on CityPersons benchmark without any external data, and also achieves competitive performance for detecting small-scale pedestrians on KITTI dataset without bells and whistles.

Quality-Based Representation for Unconstrained Face Recognition

Nelson Méndez-Llanes, Katy Castillo-Rosado, Heydi Mendez-Vazquez, Massimo Tistarelli

Responsive image

Auto-TLDR; activation map for face recognition in unconstrained environments

Slides Similar

Significant advances have been achieved in face recognition in the last decade thanks to the development of deep learning methods. However, recognizing faces captured in uncontrolled environments is still a challenging problem for the scientific community. In these scenarios, the performance of most of existing deep learning based methods abruptly falls, due to the bad quality of the face images. In this work, we propose to use an activation map to represent the quality information in a face image. Different face regions are analyzed to determine their quality and then only those regions with good quality are used to perform the recognition using a given deep face model. For experimental evaluation, in order to simulate unconstrained environments, three challenging databases, with different variations in appearance, were selected: the Labeled Faces in the Wild Database, the Celebrities in Frontal-Profile in the Wild Database, and the AR Database. Three deep face models were used to evaluate the proposal on these databases and in all cases, the use of the proposed activation map allows the improvement of the recognition rates obtained by the original models in a range from 0.3 up to 31%. The obtained results experimentally demonstrated that the proposal is able to select those face areas with higher discriminative power and enough identifying information, while ignores the ones with spurious information.

Multi-Attribute Regression Network for Face Reconstruction

Xiangzheng Li, Suping Wu

Responsive image

Auto-TLDR; A Multi-Attribute Regression Network for Face Reconstruction

Slides Poster Similar

In this paper, we propose a multi-attribute regression network (MARN) to investigate the problem of face reconstruction, especially in challenging cases when faces undergo large variations including severe poses, extreme expressions, and partial occlusions in unconstrained environments. The traditional 3DMM parametric regression method is absent from the learning of identity, expression, and attitude attributes, resulting in lacking geometric details in the reconstructed face. Our MARN method is to enable the network to better extract the feature information of face identity, expression, and pose attributes. We introduced identity, expression, and pose attribute loss functions to enhance the learning of details in each attribute. At the same time, we carefully design the geometric contour constraint loss function and use the constraints of sparse 2D face landmarks to improve the reconstructed geometric contour information. The experimental results show that our face reconstruction method has achieved significant results on the AFLW2000-3D and AFLW datasets compared with the most advanced methods. In addition, there has been a great improvement in dense face alignment. .

Lightweight Low-Resolution Face Recognition for Surveillance Applications

Yoanna Martínez-Díaz, Heydi Mendez-Vazquez, Luis S. Luevano, Leonardo Chang, Miguel Gonzalez-Mendoza

Responsive image

Auto-TLDR; Efficiency of Lightweight Deep Face Networks on Low-Resolution Surveillance Imagery

Slides Poster Similar

Typically, real-world requirements to deploy face recognition models in unconstrained surveillance scenarios demand to identify low-resolution faces with extremely low computational cost. In the last years, several methods based on complex deep learning models have been proposed with promising recognition results but at a high computational cost. Inspired by the compactness and computation efficiency of lightweight deep face networks and their high accuracy on general face recognition tasks, in this work we propose to benchmark two recently introduced lightweight face models on low-resolution surveillance imagery to enable efficient system deployment. In this way, we conduct a comprehensive evaluation on the two typical settings: LR-to-HR and LR-to-LR matching. In addition, we investigate the effect of using trained models with down-sampled synthetic data from high-resolution images, as well as the combination of different models, for face recognition on real low-resolution images. Experimental results show that the used lightweight face models achieve state-of-the-art results on low-resolution benchmarks with low memory footprint and computational complexity. Moreover, we observed that combining models trained with different degradations improves the recognition accuracy on low-resolution surveillance imagery, which is feasible due to their low computational cost.

DualBox: Generating BBox Pair with Strong Correspondence Via Occlusion Pattern Clustering and Proposal Refinement

Zheng Ge, Chuyu Hu, Xin Huang, Baiqiao Qiu, Osamu Yoshie

Responsive image

Auto-TLDR; R2NMS: Combining Full and Visible Body Bounding Box for Dense Pedestrian Detection

Slides Poster Similar

Despite the rapid development of pedestrian detection, the problem of dense pedestrian detection is still unsolved, especially the upper limit of Recall caused by Non-Maximum-Suppression (NMS). Out of this reason, R2NMS is proposed to simultaneously detect full and visible body bounding boxes, by replacing the full body BBoxes with less occluded visible body BBoxes in the NMS algorithm, achieving a higher recall. However, the P-RPN and P-RCNN modules proposed in R2NMS for simultaneous high quality full and visible body prediction require non-trivial positive/negative assigning strategies for anchor BBoxes. To simplify the prerequisites and improve the utility of R2NMS, we incorporate clustering analysis into the learning of visible body proposals from full body proposals. Furthermore, to reduce the computation complexity caused by the large number of potential visible body proposals, we introduce a novel occlusion pattern prediction branch on top of the R-CNN module (i.e. F-RCNN) to select the best matched visible proposals for each full body proposals and then feed them into another R-CNN module (i.e. V-RCNN). Incorporated with R2NMS, our DualBox model can achieve competitive performance while only requires few hyper-parameters. We validate the effectiveness of the proposed approach on the CrowdHuman and CityPersons datasets. Experimental results show that our approach achieves promising performance for detecting both non-occluded and occluded pedestrians, especially heavily occluded ones.

Which Airline Is This? Airline Logo Detection in Real-World Weather Conditions

Christian Wilms, Rafael Heid, Mohammad Araf Sadeghi, Andreas Ribbrock, Simone Frintrop

Responsive image

Auto-TLDR; Airlines logo detection on airplane tails using data augmentation

Slides Poster Similar

The detection of logos in images, for instance, logos of airlines on airplane tails, is a difficult task in real-world weather conditions. Most systems used for logo detection are very good at detecting logos in clean images. However, they exhibit problems when images are degraded by effects of adverse weather conditions as they frequently occur in real-world scenarios. For investigating this problem on airline logo detection as a sub-problem of logo detection, we first present a new dataset for airline logo detection on airplane tails containing a test split with images degraded by adverse weather effects. Second, to handle the detection of airline logos effectively, a new two-stage airline logo detection system based on a state-of-the-art object proposal generation system and a specifically tailored classifier is proposed. Finally, improving the results on images degraded by adverse weather effects, we introduce a learning-free application-agnostic data augmentation strategy simulating effects like rain and fog. The results show the superior performance of our airline logo detection system compared to state-of-the-art. Furthermore, applying our data augmentation approach to a variety of systems, reduces the significant drop in performance on degraded images.

Inner Eye Canthus Localization for Human Body Temperature Screening

Claudio Ferrari, Lorenzo Berlincioni, Marco Bertini, Alberto Del Bimbo

Responsive image

Auto-TLDR; Automatic Localization of the Inner Eye Canthus in Thermal Face Images using 3D Morphable Face Model

Slides Poster Similar

In this paper, we propose an automatic approach for localizing the inner eye canthus in thermal face images. We first coarsely detect 5 facial keypoints corresponding to the center of the eyes, the nosetip and the ears. Then we compute a sparse 2D-3D points correspondence using a 3D Morphable Face Model (3DMM). This correspondence is used to project the entire 3D face onto the image, and subsequently locate the inner eye canthus. Detecting this location allows to obtain the most precise body temperature measurement for a person using a thermal camera. We evaluated the approach on a thermal face dataset provided with manually annotated landmarks. However, such manual annotations are normally conceived to identify facial parts such as eyes, nose and mouth, and are not specifically tailored for localizing the eye canthus region. As additional contribution, we enrich the original dataset by using the annotated landmarks to deform and project the 3DMM onto the images. Then, by manually selecting a small region corresponding to the eye canthus, we enrich the dataset with additional annotations. By using the manual landmarks, we ensure the correctness of the 3DMM projection, which can be used as ground-truth for future evaluations. Moreover, we supply the dataset with the 3D head poses and per-point visibility masks for detecting self-occlusions. The data will be publicly released.

Learning a Dynamic High-Resolution Network for Multi-Scale Pedestrian Detection

Mengyuan Ding, Shanshan Zhang, Jian Yang

Responsive image

Auto-TLDR; Learningable Dynamic HRNet for Pedestrian Detection

Slides Poster Similar

Pedestrian detection is a canonical instance of object detection in computer vision. In practice, scale variation is one of the key challenges, resulting in unbalanced performance across different scales. Recently, the High-Resolution Network (HRNet) has become popular because high-resolution feature representations are more friendly to small objects. However, when we apply HRNet for pedestrian detection, we observe that it improves for small pedestrians on one hand, but hurts the performance for larger ones on the other hand. To overcome this problem, we propose a learnable Dynamic HRNet (DHRNet) aiming to generate different network paths adaptive to different scales. Specifically, we construct a parallel multi-branch architecture and add a soft conditional gate module allowing for dynamic feature fusion. Both branches share all the same parameters except the soft gate module. Experimental results on CityPersons and Caltech benchmarks indicate that our proposed dynamic HRNet is more capable of dealing with pedestrians of various scales, and thus improves the performance across different scales consistently.

Small Object Detection by Generative and Discriminative Learning

Yi Gu, Jie Li, Chentao Wu, Weijia Jia, Jianping Chen

Responsive image

Auto-TLDR; Generative and Discriminative Learning for Small Object Detection

Slides Poster Similar

With the development of deep convolutional neural networks (CNNs), the object detection accuracy has been greatly improved. But the performance of small object detection is still far from satisfactory, mainly because small objects are so tiny that the information contained in the feature map is limited. Existing methods focus on improving classification accuracy but still suffer from the limitation of bounding box prediction. To solve this issue, we propose a detection framework by generative and discriminative learning. First, a reconstruction generator network is designed to reconstruct the mapping from low frequency to high frequency for anchor box prediction. Then, a detector module extracts the regions of interest (ROIs) from generated results and implements a RoI-Head to predict object category and refine bounding box. In order to guide the reconstructed image related to the corresponding one, a discriminator module is adopted to tell from the generated result and the original image. Extensive evaluations on the challenging MS-COCO dataset demonstrate that our model outperforms most state-of-the-art models in detecting small objects, especially the reconstruction module improves the average precision for small object (APs) by 7.7%.

Detecting Objects with High Object Region Percentage

Fen Fang, Qianli Xu, Liyuan Li, Ying Gu, Joo-Hwee Lim

Responsive image

Auto-TLDR; Faster R-CNN for High-ORP Object Detection

Slides Poster Similar

Object shape is a subtle but important factor for object detection. It has been observed that the object-region-percentage (ORP) can be utilized to improve detection accuracy for elongated objects, which have much lower ORPs than other types of objects. In this paper, we propose an approach to improve the detection performance for objects whose ORPs are relatively higher.To address the problem of high-ORP object detection, we propose a method consisting of three steps. First, we adjust the ground truth bounding boxes of high-ORP objects to an optimal range. Second, we train an object detector, Faster R-CNN, based on adjusted bounding boxes to achieve high recall. Finally, we train a DCNN to learn the adjustment ratios towards four directions and adjust detected bounding boxes of objects to get better localization for higher precision. We evaluate the effectiveness of our method on 12 high-ORP objects in COCO and 8 objects in a proprietary gearbox dataset. The experimental results show that our method can achieve state-of-the-art performance on these objects while costing less resources in training and inference stages.

Learning Semantic Representations Via Joint 3D Face Reconstruction and Facial Attribute Estimation

Zichun Weng, Youjun Xiang, Xianfeng Li, Juntao Liang, Wanliang Huo, Yuli Fu

Responsive image

Auto-TLDR; Joint Framework for 3D Face Reconstruction with Facial Attribute Estimation

Slides Poster Similar

We propose a novel joint framework for 3D face reconstruction (3DFR) that integrates facial attribute estimation (FAE) as an auxiliary task. One of the essential problems of 3DFR is to extract semantic facial features (e.g., Big Nose, High Cheekbones, and Asian) from in-the-wild 2D images, which is inherently involved with FAE. These two tasks, though heterogeneous, are highly relevant to each other. To achieve this, we leverage a Convolutional Neural Network to extract shared facial representations for both shape decoder and attribute classifier. We further develop an in-batch hybrid-task training scheme that enables our model to learn from heterogeneous facial datasets jointly within a mini-batch. Thanks to the joint loss that provides supervision from both 3DFR and FAE domains, our model learns the correlations between 3D shapes and facial attributes, which benefit both feature extraction and shape inference. Quantitative evaluation and qualitative visualization results confirm the effectiveness and robustness of our joint framework.

EAGLE: Large-Scale Vehicle Detection Dataset in Real-World Scenarios Using Aerial Imagery

Seyed Majid Azimi, Reza Bahmanyar, Corentin Henry, Kurz Franz

Responsive image

Auto-TLDR; EAGLE: A Large-Scale Dataset for Multi-class Vehicle Detection with Object Orientation Information in Airborne Imagery

Slides Similar

Multi-class vehicle detection from airborne imagery with orientation estimation is an important task in the near and remote vision domains with applications in traffic monitoring and disaster management. In the last decade, we have witnessed significant progress in object detection in ground imagery, but it is still in its infancy in airborne imagery, mostly due to the scarcity of diverse and large-scale datasets. Despite being a useful tool for different applications, current airborne datasets only partially reflect the challenges of real-world scenarios. To address this issue, we introduce EAGLE (oriEnted object detection using Aerial imaGery in real-worLd scEnarios), a large-scale dataset for multi-class vehicle detection with object orientation information in aerial imagery. It features high-resolution aerial images composed of different real-world situations with a wide variety of camera sensor, resolution, flight altitude, weather, illumination, haze, shadow, time, city, country, occlusion, and camera angle. The annotation was done by airborne imagery experts with small- and large-vehicle classes. EAGLE contains 215,986 instances annotated with oriented bounding boxes defined by four points and orientation, making it by far the largest dataset to date in this task. It also supports researches on the haze and shadow removal as well as super-resolution and in-painting applications. We define three tasks: detection by (1) horizontal bounding boxes, (2) rotated bounding boxes, and (3) oriented bounding boxes. We carried out several experiments to evaluate several state-of-the-art methods in object detection on our dataset to form a baseline. Experiments show that the EAGLE dataset accurately reflects real-world situations and correspondingly challenging applications. The dataset will be made publicly available.

Small Object Detection Leveraging on Simultaneous Super-Resolution

Hong Ji, Zhi Gao, Xiaodong Liu, Tiancan Mei

Responsive image

Auto-TLDR; Super-Resolution via Generative Adversarial Network for Small Object Detection

Poster Similar

Despite the impressive advancement achieved in object detection, the detection performance of small object is still far from satisfactory due to the lack of sufficient detailed appearance to distinguish it from similar objects. Inspired by the positive effects of super-resolution for object detection, we propose a general framework that can be incorporated with most available detector networks to significantly improve the performance of small object detection, in which the low-resolution image is super-resolved via generative adversarial network (GAN) in an unsupervised manner. In our method, the super-resolution network and the detection network are trained jointly and alternately with each other fixed. In particular, the detection loss is back-propagated into the super-resolution network during training to facilitate detection. Compared with available simultaneous super-resolution and detection methods which heavily rely on low-/high-resolution image pairs, our work breaks through such restriction via applying the CycleGAN strategy, achieving increased generality and applicability, while remaining an elegant structure. Extensive experiments on datasets from both computer vision and remote sensing communities demonstrate that our method works effectively on a wide range of complex scenarios, resulting in best performance that significantly outperforms many state-of-the-art approaches.

Foreground-Focused Domain Adaption for Object Detection

Yuchen Yang, Nilanjan Ray

Responsive image

Auto-TLDR; Unsupervised Domain Adaptation for Unsupervised Object Detection

Slides Similar

Object detectors suffer from accuracy loss caused by domain shift from a source to a target domain. Unsupervised domain adaptation (UDA) approaches mitigate this loss by training with unlabeled target domain images. A popular processing pipeline applies adversarial training that aligns the distributions of the features from the two domains. We advocate that aligning the full image level features is not ideal for UDA object detection due to the presence of varied background areas during inference. Thus, we propose a novel foreground-focused domain adaptation (FFDA) framework which mines the loss of the domain discriminators to concentrate on the backpropagation of foreground loss. We obtain mining masks by collecting target predictions and source labels to outline foreground regions, and apply the masks to image and instance level domain discriminators to allow backpropagation only on the mined regions. By reinforcing this foreground-focused adaptation throughout multiple layers in the detector model, we gain a significant accuracy boost on the target domain prediction. Compared to previous works, our method reaches the new state-of-the-art accuracy on adapting Cityscape to Foggy Cityscape dataset and demonstrates competitive accuracy on other datasets that include various scenarios for autonomous driving applications.

Joint Face Alignment and 3D Face Reconstruction with Efficient Convolution Neural Networks

Keqiang Li, Huaiyu Wu, Xiuqin Shang, Zhen Shen, Gang Xiong, Xisong Dong, Bin Hu, Fei-Yue Wang

Responsive image

Auto-TLDR; Mobile-FRNet: Efficient 3D Morphable Model Alignment and 3D Face Reconstruction from a Single 2D Facial Image

Slides Poster Similar

3D face reconstruction from a single 2D facial image is a challenging and concerned problem. Recent methods based on CNN typically aim to learn parameters of 3D Morphable Model (3DMM) from 2D images to render face alignment and 3D face reconstruction. Most algorithms are designed for faces with small, medium yaw angles, which is extremely challenging to align faces in large poses. At the same time, they are not efficient usually. The main challenge is that it takes time to determine the parameters accurately. In order to address this challenge with the goal of improving performance, this paper proposes a novel and efficient end-to-end framework. We design an efficient and lightweight network model combined with Depthwise Separable Convolution and Muti-scale Representation, Lightweight Attention Mechanism, named Mobile-FRNet. Simultaneously, different loss functions are used to constrain and optimize 3DMM parameters and 3D vertices during training to improve the performance of the network. Meanwhile, extensive experiments on the challenging datasets show that our method significantly improves the accuracy of face alignment and 3D face reconstruction. The model parameters and complexity of our method are also improved greatly.

SATGAN: Augmenting Age Biased Dataset for Cross-Age Face Recognition

Wenshuang Liu, Wenting Chen, Yuanlue Zhu, Linlin Shen

Responsive image

Auto-TLDR; SATGAN: Stable Age Translation GAN for Cross-Age Face Recognition

Slides Poster Similar

In this paper, we propose a Stable Age Translation GAN (SATGAN) to generate fake face images at different ages to augment age biased face datasets for Cross-Age Face Recognition (CAFR) . The proposed SATGAN consists of both generator and discriminator. As a part of the generator, a novel Mask Attention Module (MAM) is introduced to make the generator focus on the face area. In addition, the generator employs a Uniform Distribution Discriminator (UDD) to supervise the learning of latent feature map and enforce the uniform distribution. Besides, the discriminator employs a Feature Separation Module (FSM) to disentangle identity information from the age information. The quantitative and qualitative evaluations on Morph dataset prove that SATGAN achieves much better performance than existing methods. The face recognition model trained using dataset (VGGFace2 and MS-Celeb-1M) augmented using our SATGAN achieves better accuracy on cross age dataset like Cross-Age LFW and AgeDB-30.

TGCRBNW: A Dataset for Runner Bib Number Detection (and Recognition) in the Wild

Pablo Hernández-Carrascosa, Adrian Penate-Sanchez, Javier Lorenzo, David Freire Obregón, Modesto Castrillon

Responsive image

Auto-TLDR; Racing Bib Number Detection and Recognition in the Wild Using Faster R-CNN

Slides Poster Similar

Racing bib number (RBN) detection and recognition is a specific problem related to text recognition in natural scenes. In this paper, we present a novel dataset created after registering participants in a real ultrarunning competition which comprises a wide range of acquisition conditions in five different recording points, including nightlight and daylight. The dataset contains more than 3k samples of over 400 different individuals. The aim is at providing an in the wild benchmark for both RBN detection and recognition problems. To illustrate the present difficulties, the dataset is evaluated for RBN detection using different Faster R-CNN specific detection models, filtering its output with heuristics based on body detection to improve the overall detection performance. Initial results are promising, but there is still a significant room for improvement. And detection is just the first step to accomplish in the wild RBN recognition.

SyNet: An Ensemble Network for Object Detection in UAV Images

Berat Mert Albaba, Sedat Ozer

Responsive image

Auto-TLDR; SyNet: Combining Multi-Stage and Single-Stage Object Detection for Aerial Images

Poster Similar

Recent advances in camera equipped drone applications and their widespread use increased the demand on vision based object detection algorithms for aerial images. Object detection process is inherently a challenging task as a generic computer vision problem, however, since the use of object detection algorithms on UAVs (or on drones) is relatively a new area, it remains as a more challenging problem to detect objects in aerial images. There are several reasons for that including: (i) the lack of large drone datasets including large object variance, (ii) the large orientation and scale variance in drone images when compared to the ground images, and (iii) the difference in texture and shape features between the ground and the aerial images. Deep learning based object detection algorithms can be classified under two main categories: (a) single-stage detectors and (b) multi-stage detectors. Both single-stage and multi-stage solutions have their advantages and disadvantages over each other. However, a technique to combine the good sides of each of those solutions could yield even a stronger solution than each of those solutions individually. In this paper, we propose an ensemble network, SyNet, that combines a multi-stage method with a single-stage one with the motivation of decreasing the high false negative rate of multi-stage detectors and increasing the quality of the single-stage detector proposals. As building blocks, CenterNet and Cascade R-CNN with pretrained feature extractors are utilized along with an ensembling strategy. We report the state of the art results obtained by our proposed solution on two different datasets: namely MS-COCO and visDrone with \%52.1 $mAP_{IoU = 0.75}$ is obtained on MS-COCO $val2017$ dataset and \%26.2 $mAP_{IoU = 0.75}$ is obtained on VisDrone $test-set$. Our code is available at: https://github.com/mertalbaba/SyNet}{https://github.com/mer talbaba/SyNet

Construction Worker Hardhat-Wearing Detection Based on an Improved BiFPN

Chenyang Zhang, Zhiqiang Tian, Jingyi Song, Yaoyue Zheng, Bo Xu

Responsive image

Auto-TLDR; A One-Stage Object Detection Method for Hardhat-Wearing in Construction Site

Slides Poster Similar

Work in the construction site is considered to be one of the occupations with the highest safety risk factor. Therefore, safety plays an important role in construction site. One of the most fundamental safety rules in construction site is to wear a hardhat. To strengthen the safety of the construction site, most of the current methods use multi-stage method for hardhat-wearing detection. These methods have limitations in terms of adaptability and generalizability. In this paper, we propose a one-stage object detection method based on convolutional neural network. We present a multi-scale strategy that selects the high-resolution feature maps of DarkNet-53 to effectively identify small-scale hardhats. In addition, we propose an improved weighted bi-directional feature pyramid network (BiFPN), which could fuse more semantic features from more scales. The proposed method can not only detect hardhat-wearing, but also identify the color of the hardhat. Experimental results show that the proposed method achieves a mAP of 87.04%, which outperforms several state-of-the-art methods on a public dataset.

Tilting at Windmills: Data Augmentation for Deeppose Estimation Does Not Help with Occlusions

Rafal Pytel, Osman Semih Kayhan, Jan Van Gemert

Responsive image

Auto-TLDR; Targeted Keypoint and Body Part Occlusion Attacks for Human Pose Estimation

Slides Poster Similar

Occlusion degrades the performance of human poseestimation. In this paper, we introduce targeted keypoint andbody part occlusion attacks. The effects of the attacks are system-atically analyzed on the best performing methods. In addition, wepropose occlusion specific data augmentation techniques againstkeypoint and part attacks. Our extensive experiments show thathuman pose estimation methods are not robust to occlusion anddata augmentation does not solve the occlusion problems.

Tiny Object Detection in Aerial Images

Jinwang Wang, Wen Yang, Haowen Guo, Ruixiang Zhang, Gui-Song Xia

Responsive image

Auto-TLDR; Tiny Object Detection in Aerial Images Using Multiple Center Points Based Learning Network

Slides Similar

Object detection in Earth Vision has achieved great progress in recent years. However, tiny object detection in aerial images remains a very challenging problem since the tiny objects contain a small number of pixels and are easily confused with the background. To advance tiny object detection research in aerial images, we present a new dataset for Tiny Object Detection in Aerial Images (AI-TOD). Specifically, AI-TOD comes with 700,621 object instances for eight categories across 28,036 aerial images. Compared to existing object detection datasets in aerial images, the mean size of objects in AI-TOD is about 12.8 pixels, which is much smaller than others. To build a benchmark for tiny object detection in aerial images, we evaluate the state-of-the-art object detectors on our AI-TOD dataset. Experimental results show that direct application of these approaches on AI-TOD produces suboptimal object detection results, thus new specialized detectors for tiny object detection need to be designed. Therefore, we propose a multiple center points based learning network (M-CenterNet) to improve the localization performance of tiny object detection, and experimental results show the significant performance gain over the competitors.

Bidirectional Matrix Feature Pyramid Network for Object Detection

Wei Xu, Yi Gan, Jianbo Su

Responsive image

Auto-TLDR; BMFPN: Bidirectional Matrix Feature Pyramid Network for Object Detection

Slides Poster Similar

Feature pyramids are widely used to improve scale invariance for object detection. Most methods just map the objects to feature maps with relevant square receptive fields, but rarely pay attention to the aspect ratio variation, which is also an important property of object instances. It will lead to a poor match between rectangular objects and assigned features with square receptive fields, thus preventing from accurate recognition and location. Besides, the information propagation among feature layers is sparse, namely, each feature in the pyramid may mainly or only contain single-level information, which is not representative enough for classification and localization sub-tasks. In this paper, Bidirectional Matrix Feature Pyramid Network (BMFPN) is proposed to address these issues. It consists of three modules: Diagonal Layer Generation Module (DLGM), Top-down Module (TDM) and Bottom-up Module (BUM). First, multi-level features extracted by backbone are fed into DLGM to produce the base features. Then these base features are utilized to construct the final feature pyramid through TDM and BUM in series. The receptive fields of the designed feature layers in BMFPN have various scales and aspect ratios. Objects can be correctly assigned to appropriate and representative feature maps with relevant receptive fields depending on its scale and aspect ratio properties. Moreover, TDM and BUM form bidirectional and reticular information flow, which effectively fuses multi level information in top-down and bottom-up manner respectively. To evaluate the effectiveness of our proposed architecture, an end-toend anchor-free detector is designed and trained by integrating BMFPN into FCOS. And the center ness branch in FCOS is modified with our Gaussian center-ness branch (GCB), which brings another slight improvement. Without bells and whistles, our method gains +3.3%, +2.4% and +2.6% AP on MS COCO dataset from baselines with ResNet-50, ResNet-101 and ResNeXt-101 backbones, respectively.

Dynamic Low-Light Image Enhancement for Object Detection Via End-To-End Training

Haifeng Guo, Yirui Wu, Tong Lu

Responsive image

Auto-TLDR; Object Detection using Low-Light Image Enhancement for End-to-End Training

Slides Poster Similar

Object detection based on convolutional neural networks is a hot research topic in computer vision. The illumination component in the image has a great impact on object detection, and it will cause a sharp decline in detection performance under low-light conditions. Using low-light image enhancement technique as a pre-processing mechanism can improve image quality and obtain better detection results.However, due to the complexity of low-light environments, the existing enhancement methods may have negative effects on some samples. Therefore, it is difficult to improve the overall detection performance in low-light conditions. In this paper, our goal is to use image enhancement to improve object detection performance rather than perceptual quality for humans. We propose a novel framework that combines low-light enhancement and object detection for end-to-end training. The framework can dynamically select different enhancement subnetworks for each sample to improve the performance of the detector. Our proposed method consists of two stage: the enhancement stage and the detection stage. The enhancement stage dynamically enhances the low-light images under the supervision of several enhancement methods and output corresponding weights. During the detection stage, the weights offers information on object classification to generate high-quality region proposals and in turn result in accurate detection. Our experiments present promising results, which show that the proposed method can significantly improve the detection performance in low-light environment.

End-To-End Deep Learning Methods for Automated Damage Detection in Extreme Events at Various Scales

Yongsheng Bai, Alper Yilmaz, Halil Sezen

Responsive image

Auto-TLDR; Robust Mask R-CNN for Crack Detection in Extreme Events

Slides Poster Similar

Robust Mask R-CNN (Mask Regional Convolutional Neural Network) methods are proposed and tested for automatic detection of cracks on structures or their components that may be damaged during extreme events, such as earth-quakes. We curated a new dataset with 2,021 labeled images for training and validation and aimed to find end-to-end deep neural networks for crack detection in the field. With data augmentation and parameters fine-tuning, Path Aggregation Network (PANet) with spatial attention mechanisms and High-resolution Network (HRNet) are introduced into Mask R-CNNs. The tests on three public datasets with low- or high-resolution images demonstrate that the proposed methods can achieve a big improvement over alternative networks, so the proposed method may be sufficient for crack detection for a variety of scales in real applications.

A Modified Single-Shot Multibox Detector for Beyond Real-Time Object Detection

Georgios Orfanidis, Konstantinos Ioannidis, Stefanos Vrochidis, Anastasios Tefas, Ioannis Kompatsiaris

Responsive image

Auto-TLDR; Single Shot Detector in Resource-Restricted Systems with Lighter SSD Variations

Slides Poster Similar

This works focuses on examining the performance of the Single Shot Detector (SSD) model in resource restricted systems where maintaining the power of the full model comprises a significant prerequisite. The proposed SSD variations examine the behavior of lighter versions of SSD while propose measures to limit the unavoidable performance shortage. The outcomes of the conducted research demonstrate a remarkable trade-off between performance losses, speed improvement and the required resource reservation. Thus, the experimental results evidence the efficiency of the presented SSD alterations towards accomplishing higher frame rates and retaining the performance of the original model.

The DeepScoresV2 Dataset and Benchmark for Music Object Detection

Lukas Tuggener, Yvan Putra Satyawan, Alexander Pacha, Jürgen Schmidhuber, Thilo Stadelmann

Responsive image

Auto-TLDR; DeepScoresV2: an extended version of the DeepScores dataset for optical music recognition

Slides Poster Similar

In this paper, we present DeepScoresV2, an extended version of the DeepScores dataset for optical music recognition (OMR). We improve upon the original DeepScores dataset by providing much more detailed annotations, namely (a) annotations for 135 classes including fundamental symbols of non-fixed size and shape, increasing the number of annotated symbols by 23%; (b) oriented bounding boxes; (c) higher-level rhythm and pitch information (onset beat for all symbols and line position for noteheads); and (d) a compatibility mode for easy use in conjunction with the MUSCIMA++ dataset for OMR on handwritten documents. These additions open up the potential for future advancement in OMR research. Additionally, we release two state-of-the-art baselines for DeepScoresV2 based on Faster R-CNN and the Deep Watershed Detector. An analysis of the baselines shows that regular orthogonal bounding boxes are unsuitable for objects which are long, small, and potentially rotated, such as ties and beams, which demonstrates the need for detection algorithms that naturally incorporate object angles. Dataset, code and pre-trained models, as well as user instructions, are publicly available at https://tuggeluk.github.io/dsv2_preview/

Hybrid Cascade Point Search Network for High Precision Bar Chart Component Detection

Junyu Luo, Jinpeng Wang, Chin-Yew Lin

Responsive image

Auto-TLDR; Object Detection of Chart Components in Chart Images Using Point-based and Region-Based Object Detection Framework

Slides Poster Similar

Charts are commonly used for data visualization. One common form of chart distribution is in its image form. To enable machine comprehension of chart images, precise detection of chart components in chart images is a critical step. Existing image object detection methods do not perform well in chart component detection which requires high boundary detection precision. And traditional rule-based approaches lack enough generalization ability. In order to address this problem, we design a novel two-stage object detection framework that combines point-based and region-based ideas, by simulating the process that human creating bounding boxes for objects. The experiment on our labeled ChartDet dataset shows our method greatly improves the performance of chart object detection. We further extend our method to a general object detection task and get comparable performance.

Scene Text Detection with Selected Anchors

Anna Zhu, Hang Du, Shengwu Xiong

Responsive image

Auto-TLDR; AS-RPN: Anchor Selection-based Region Proposal Network for Scene Text Detection

Slides Poster Similar

Object proposal technique with dense anchoring scheme for scene text detection were applied frequently to achieve high recall. It results in the significant improvement in accuracy but waste of computational searching, regression and classification. In this paper, we propose an anchor selection-based region proposal network (AS-RPN) using effective selected anchors instead of dense anchors to extract text proposals. The center, scales, aspect ratios and orientations of anchors are learnable instead of fixing, which leads to high recall and greatly reduced numbers of anchors. By replacing the anchor-based RPN in Faster RCNN, the AS-RPN-based Faster RCNN can achieve comparable performance with previous state-of-the-art text detecting approaches on standard benchmarks, including COCO-Text, ICDAR2013, ICDAR2015 and MSRA-TD500 when using single-scale and single model (ResNet50) testing only.

How Important Are Faces for Person Re-Identification?

Julia Dietlmeier, Joseph Antony, Kevin Mcguinness, Noel E O'Connor

Responsive image

Auto-TLDR; Anonymization of Person Re-identification Datasets with Face Detection and Blurring

Slides Poster Similar

This paper investigates the dependence of existing state-of-the-art person re-identification models on the presence and visibility of human faces. We apply a face detection and blurring algorithm to create anonymized versions of several popular person re-identification datasets including Market1501, DukeMTMC-reID, CUHK03, Viper, and Airport. Using a cross-section of existing state-of-the-art models that range in accuracy and computational efficiency, we evaluate the effect of this anonymization on re-identification performance using standard metrics. Perhaps surprisingly, the effect on mAP is very small, and accuracy is recovered by simply training on the anonymized versions of the data rather than the original data. These findings are consistent across multiple models and datasets. These results indicate that datasets can be safely anonymized by blurring faces without significantly impacting the performance of person re-identification systems, and may allow for the release of new richer re-identification datasets where previously there were privacy or data protection concerns.

SFPN: Semantic Feature Pyramid Network for Object Detection

Yi Gan, Wei Xu, Jianbo Su

Responsive image

Auto-TLDR; SFPN: Semantic Feature Pyramid Network to Address Information Dilution Issue in FPN

Slides Poster Similar

Feature Pyramid Network(FPN) employs a top-down path to enhance low level feature by utilizing high level feature.However, further improvement of detector is greatly hindered by the inner defect of FPN. The dilution issue in FPN is analyzed in this paper, and a new architecture named Semantic Feature Pyramid Network(SFPN) is introduced to address the information imbalance problem caused by information dilution. The proposed method consists of two simple and effective components: Semantic Pyramid Module(SPM) and Semantic Feature Fusion Module(SFFM). To compensate for the weaknesses of FPN, the semantic segmentation result is utilized as an extra information source in our architecture.By constructing a semantic pyramid based on the segmentation result and fusing it with FPN, feature maps at each level can obtain the necessary information without suffering from the dilution issue. The proposed architecture could be applied on many detectors, and non-negligible improvement could be achieved. Although this method is designed for object detection, other tasks such as instance segmentation can also largely benefit from it. The proposed method brings Faster R-CNN and Mask R-CNN with ResNet-50 as backbone both 1.8 AP improvements respectively. Furthermore, SFPN improves Cascade R-CNN with backbone ResNet-101 from 42.4 AP to 43.5 AP.

Multiple-Step Sampling for Dense Object Detection and Counting

Zhaoli Deng, Yang Chenhui

Responsive image

Auto-TLDR; Multiple-Step Sampling for Dense Objects Detection

Slides Poster Similar

A multitude of similar or even identical objects are positioned closely in dense scenes, which brings about difficulties in object-detecting and object-counting. Since the poor performance of Faster R-CNN, recent works prefer to detect dense objects with the utilization of multi-layer feature maps. Nevertheless, they require complex post-processing to minimize overlap between adjacent bounding boxes, which reduce their detection speed. However, we find that such a multilayer prediction is not necessary. It is observed that there exists a waste of ground-truth boxes during sampling, causing the lack of positive samples and the final failure of Faster R-CNN training. Motivated by this observation we propose a multiple-step sampling method for anchor sampling. Our method reduces the waste of ground-truth boxes in three steps according to different rules. Besides, we balance the positive and negative samples, and samples at different quality. Our method improves base detector (Faster R-CNN), the detection tests on SKU-110K and CARPK benchmarks indicate that our approach offers a good trade-off between accuracy and speed.

Multi-Laplacian GAN with Edge Enhancement for Face Super Resolution

Shanlei Ko, Bi-Ru Dai

Responsive image

Auto-TLDR; Face Image Super-Resolution with Enhanced Edge Information

Slides Poster Similar

Face image super-resolution has become a research hotspot in the field of image processing. Nowadays, more and more researches add additional information, such as landmark, identity, to reconstruct high resolution images from low resolution ones, and have a good performance in quantitative terms and perceptual quality. However, these additional information is hard to obtain in many cases. In this work, we focus on reconstructing face images by extracting useful information from face images directly rather than using additional information. By observing edge information in each scale of face images, we propose a method to reconstruct high resolution face images with enhanced edge information. In additional, with the proposed training procedure, our method reconstructs photo-realistic images in upscaling factor 8x and outperforms state-of-the-art methods both in quantitative terms and perceptual quality.

Thermal Image Enhancement Using Generative Adversarial Network for Pedestrian Detection

Mohamed Amine Marnissi, Hajer Fradi, Anis Sahbani, Najoua Essoukri Ben Amara

Responsive image

Auto-TLDR; Improving Visual Quality of Infrared Images for Pedestrian Detection Using Generative Adversarial Network

Slides Poster Similar

Infrared imaging has recently played an important role in a wide range of applications including surveillance, robotics and night vision. However, infrared cameras often suffer from some limitations, essentially about low-contrast and blurred details. These problems contribute to the loss of observation of target objects in infrared images, which could limit the feasibility of different infrared imaging applications. In this paper, we mainly focus on the problem of pedestrian detection on thermal images. Particularly, we emphasis the need for enhancing the visual quality of images beforehand performing the detection step. % to ensure effective results. To address that, we propose a novel thermal enhancement architecture based on Generative Adversarial Network, and composed of two modules contrast enhancement and denoising modules with a post-processing step for edge restoration in order to improve the overall quality. The effectiveness of the proposed architecture is assessed by means of visual quality metrics and better results are obtained compared to the original thermal images and to the obtained results by other existing enhancement methods. These results have been conduced on a subset of KAIST dataset. Using the same dataset, the impact of the proposed enhancement architecture has been demonstrated on the detection results by obtaining better performance with a significant margin using YOLOv3 detector.

One-Stage Multi-Task Detector for 3D Cardiac MR Imaging

Weizeng Lu, Xi Jia, Wei Chen, Nicolò Savioli, Antonio De Marvao, Linlin Shen, Declan O'Regan, Jinming Duan

Responsive image

Auto-TLDR; Multi-task Learning for Real-Time, simultaneous landmark location and bounding box detection in 3D space

Slides Poster Similar

Fast and accurate landmark location and bounding box detection are important steps in 3D medical imaging. In this paper, we propose a novel multi-task learning framework, for real-time, simultaneous landmark location and bounding box detection in 3D space. Our method extends the famous single-shot multibox detector (SSD) from single-task learning to multi-task learning and from 2D to 3D. Furthermore, we propose a post-processing approach to refine the network landmark output, by averaging the candidate landmarks. Owing to these settings, the proposed framework is fast and accurate. For 3D cardiac magnetic resonance (MR) images with size 224 × 224 × 64, our framework runs about 128 volumes per second (VPS) on GPU and achieves 6.75mm average point-to-point distance error for landmark location, which outperforms both state-of-the-art and baseline methods. We also show that segmenting the 3D image cropped with the bounding box results in both improved performance and efficiency.

Mutual-Supervised Feature Modulation Network for Occluded Pedestrian Detection

Ye He, Chao Zhu, Xu-Cheng Yin

Responsive image

Auto-TLDR; A Mutual-Supervised Feature Modulation Network for Occluded Pedestrian Detection

Similar

State-of-the-art pedestrian detectors have achieved significant progress on non-occluded pedestrians, yet they are still struggling under heavy occlusions. The recent occlusion handling strategy of popular two-stage approaches is to build a two-branch architecture with the help of additional visible body annotations. Nonetheless, these methods still have some weaknesses. Either the two branches are trained independently with only score-level fusion, which cannot guarantee the detectors to learn robust enough pedestrian features. Or the attention mechanisms are exploited to only emphasize on the visible body features. However, the visible body features of heavily occluded pedestrians are concentrated on a relatively small area, which will easily cause missing detections. To address the above issues, we propose in this paper a novel Mutual-Supervised Feature Modulation (MSFM) network, to better handle occluded pedestrian detection. The key MSFM module in our network calculates the similarity loss of full body boxes and visible body boxes corresponding to the same pedestrian, so that the full-body detector could learn more complete and robust pedestrian features with the assist of contextual features from the occluding parts. To facilitate the MSFM module, we also propose a novel two-branch architecture, consisting of a standard full body detection branch and an extra visible body classification branch. These two branches are trained in a mutual-supervised way with full body annotations and visible body annotations, respectively. To verify the effectiveness of our proposed method, extensive experiments are conducted on two challenging pedestrian datasets: Caltech and CityPersons, and our approach achieves superior performances compared to other state-of-the-art methods on both datasets, especially in heavy occlusion cases.

P2 Net: Augmented Parallel-Pyramid Net for Attention Guided Pose Estimation

Luanxuan Hou, Jie Cao, Yuan Zhao, Haifeng Shen, Jian Tang, Ran He

Responsive image

Auto-TLDR; Parallel-Pyramid Net with Partial Attention for Human Pose Estimation

Slides Poster Similar

The target of human pose estimation is to determine the body parts and joint locations of persons in the image. Angular changes, motion blur and occlusion etc. in the natural scenes make this task challenging, while some joints are more difficult to be detected than others. In this paper, we propose an augmented Parallel-Pyramid Net (P^2Net) with an partial attention module. During data preprocessing, we proposed a differentiable auto data augmentation (DA^2) method in which sequences of data augmentations are formulated as a trainable and operational Convolution Neural Network (CNN) component. DA^2 improves the training efficiency and effectiveness. A parallel pyramid structure is followed to compensate the information loss introduced by the network. For the information loss problem in the backbone network, we optimize the backbone network by adopting a new parallel structure without increasing the overall computational complexity. To further refine the predictions after completion of global predictions, an Partial Attention Module (PAM) is defined to extract weighted features from different scale feature maps generated by the parallel pyramid structure. Compared with the traditional up-sampling refining, PAM can better capture the relationship between channels. Experiments corroborate the effectiveness of our proposed method. Notably, our method achieves the best performance on the challenging MSCOCO and MPII datasets.

Contrastive Data Learning for Facial Pose and Illumination Normalization

Gee-Sern Hsu, Chia-Hao Tang

Responsive image

Auto-TLDR; Pose and Illumination Normalization with Contrast Data Learning for Face Recognition

Slides Poster Similar

Face normalization can be a crucial step when handling generic face recognition. We propose the Pose and Illumination Normalization (PIN) framework with contrast data learning for face normalization. The PIN framework is designed to learn the transformation from a source set to a target set. The source set and the target set compose a contrastive data set for learning. The source set contains faces collected in the wild and thus covers a wide range of variation across illumination, pose, expression and other variables. The target set contains face images taken under controlled conditions and all faces are in frontal pose and balanced in illumination. The PIN framework is composed of an encoder, a decoder and two discriminators. The encoder is made of a state-of-the-art face recognition network and acts as a facial feature extractor, which is not updated during training. The decoder is trained on both the source and target sets, and aims to learn the transformation from the source set to the target set; and therefore, it can transform an arbitrary face into a illumination and pose normalized face. The discriminators are trained to ensure the photo-realistic quality of the normalized face images generated by the decoder. The loss functions employed in the decoder and discriminators are appropriately designed and weighted for yielding better normalization outcomes and recognition performance. We verify the performance of the propose framework on several benchmark databases, and compare with state-of-the-art approaches.

Adaptive Feature Fusion Network for Gaze Tracking in Mobile Tablets

Yiwei Bao, Yihua Cheng, Yunfei Liu, Feng Lu

Responsive image

Auto-TLDR; Adaptive Feature Fusion Network for Multi-stream Gaze Estimation in Mobile Tablets

Slides Poster Similar

Recently, many multi-stream gaze estimation methods have been proposed. They estimate gaze from eye and face appearances and achieve reasonable accuracy. However, most of the methods simply concatenate the features extracted from eye and face appearance. The feature fusion process has been ignored. In this paper, we propose a novel Adaptive Feature Fusion Network (AFF-Net), which performs gaze tracking task in mobile tablets. We stack two-eye feature maps and utilize Squeeze-and-Excitation layers to adaptively fuse two-eye features based on different eye features. Meanwhile, we also propose Adaptive Group Normalization to recalibrate eye features with the guidance of face appearance characteristics. Extensive experiments on both GazeCapture and MPIIFaceGaze datasets demonstrate consistently superior performance of the proposed method.

Forground-Guided Vehicle Perception Framework

Kun Tian, Tong Zhou, Shiming Xiang, Chunhong Pan

Responsive image

Auto-TLDR; A foreground segmentation branch for vehicle detection

Slides Poster Similar

As the basis of advanced visual tasks such as vehicle tracking and traffic flow analysis, vehicle detection needs to accurately predict the position and category of vehicle objects. In the past decade, deep learning based methods have made great progress. However, we also notice that some existing cases are not studied thoroughly. First, false positive on the background regions is one of the critical problems. Second, most of the previous approaches only optimize a single vehicle detection model, ignoring the relationship between different visual perception tasks. In response to the above two findings, we introduce a foreground segmentation branch for the first time, which can predict the pixel level of vehicles in advance. Furthermore, two attention modules are designed to guide the work of the detection branch. The proposed method can be easily grafted into the one-stage and two-stage detection framework. We evaluate the effectiveness of our model on LSVH, a dataset with large variations in vehicle scales, and achieve the state-of-the-art detection accuracy.

Pose-Robust Face Recognition by Deep Meta Capsule Network-Based Equivariant Embedding

Fangyu Wu, Jeremy Simon Smith, Wenjin Lu, Bailing Zhang

Responsive image

Auto-TLDR; Deep Meta Capsule Network-based Equivariant Embedding Model for Pose-Robust Face Recognition

Similar

Despite the exceptional success in face recognition related technologies, handling large pose variations still remains a key challenge. Current techniques for pose-robust face recognition either, directly extract pose-invariant features, or first synthesize a face that matches the target pose before feature extraction. It is more desirable to learn face representations equivariant to pose variations. To this end, this paper proposes a deep meta Capsule network-based Equivariant Embedding Model (DM-CEEM) with three distinct novelties. First, the proposed RB-CapsNet allows DM-CEEM to learn an equivariant embedding for pose variations and achieve the desired transformation for input face images. Second, we introduce a new version of a Capsule network called RB-CapsNet to extend CapsNet to perform a profile-to-frontal face transformation in deep feature space. Third, we train the DM-CEEM in a meta way by treating a single overall classification target as multiple sub-tasks that satisfy certain unknown probabilities. In each sub-task, we sample the support and query sets randomly. The experimental results on both controlled and in-the-wild databases demonstrate the superiority of DM-CEEM over state-of-the-art.

Nighttime Pedestrian Detection Based on Feature Attention and Transformation

Gang Li, Shanshan Zhang, Jian Yang

Responsive image

Auto-TLDR; FAM and FTM: Enhanced Feature Attention Module and Feature Transformation Module for nighttime pedestrian detection

Slides Poster Similar

Pedestrian detection at nighttime is an important yet challenging task, which is fundamental for many practical applications, e.g. autonomous driving, video surveillance. To address this problem, in this work we start with some analysis, from which we find that the nighttime features have much more noise than that of daytime, resulting in low discrimination ability. Besides, we also observe some pedestrian examples are under adverse illumination conditions, and they can hardly provide sufficient information for accurate detection. Based on these findings, we propose the Feature Attention Module (FAM) and Feature Transformation Module (FTM) to enhance nighttime features. In FAM, guided by progressive segmentation supervision, hierarchical feature attention is produced to enhance multi-level features. On the other hand, FTM is introduced to enforce features from adverse illumination to approach that from better illumination. Based on feature attention and transformation (FAT) mechanism, a two-stage detector called FATNet is constructed for nighttime pedestrian detection. We conduct extensive experiments on nighttime datasets of EuroCity Persons (Night) and NightOwls to demonstrate the effectiveness of our method. On both two datasets, our method achieves significant improvements to the baseline and also outperforms state-of-the-art detectors.

Unsupervised Face Manipulation Via Hallucination

Keerthy Kusumam, Enrique Sanchez, Georgios Tzimiropoulos

Responsive image

Auto-TLDR; Unpaired Face Image Manipulation using Autoencoders

Slides Poster Similar

This paper addresses the problem of manipulatinga face image in terms of changing its pose. To achieve this, wepropose a new method that can be trained under the very general“unpaired” setting. To this end, we firstly propose to modelthe general appearance, layout and background of the inputimage using a low-resolution version of it which is progressivelypassed through a hallucination network to generate featuresat higher resolutions. We show that such a formulation issignificantly simpler than previous approaches for appearancemodelling based on autoencoders. Secondly, we propose a fullylearnable and spatially-aware appearance transfer module whichcan cope with misalignment between the input source image andthe target pose and can effectively combine the features fromthe hallucination network with the features produced by ourgenerator. Thirdly, we introduce an identity preserving methodthat is trained in an unsupervised way, by using an auxiliaryfeature extractor and a contrastive loss between the real andgenerated images. We compare our method against the state-of-the-art reporting significant improvements both quantitatively, interms of FID and IS, and qualitatively.

StrongPose: Bottom-up and Strong Keypoint Heat Map Based Pose Estimation

Niaz Ahmad, Jongwon Yoon

Responsive image

Auto-TLDR; StrongPose: A bottom-up box-free approach for human pose estimation and action recognition

Slides Poster Similar

Adaptation of deep convolutional neural network has made revolutionary progress in human pose estimation, various applications in recent years have drawn considerable attention. However, prediction and localization of the keypoints in single and multi-person images are a challenging problem. Towards this purpose, we present a bottom-up box-free approach for the task of pose estimation and action recognition. We proposed a StrongPose system model that uses part-based modeling to tackle object-part associations. The model utilizes a convolution network that learns how to detect Strong Keypoints Heat Maps (SKHM) and predict their comparative displacements, enabling us to group keypoints into person pose instances. Further, we produce Body Heat Maps (BHM) with the help of keypoints which allows us to localize the human body in the picture. The StrongPose framework is based on fully-convolutional engineering and permits proficient inference, with runtime basically autonomous of the number of individuals display within the scene. Train and test on COCO data alone, our framework achieves COCO test-dev keypoint average precision of 0.708 using ResNet-101 and 0.725 using ResNet-152, which considerably outperforms all prior bottom-up pose estimation frameworks.

Hierarchical Head Design for Object Detectors

Shivang Agarwal, Frederic Jurie

Responsive image

Auto-TLDR; Hierarchical Anchor for SSD Detector

Slides Poster Similar

The notion of anchor plays a major role in modern detection algorithms such as the Faster-RCNN or the SSD detector. Anchors relate the features of the last layers of the detector with bounding boxes containing objects in images. Despite their importance, the literature on object detection has not paid real attention to them. The motivation of this paper comes from the observations that (i) each anchor learns to classify and regress candidate objects independently (ii) insufficient examples are available for each anchor in case of small-scale datasets. This paper addresses these questions by proposing a novel hierarchical head for the SSD detector. The new design has the added advantage of no extra weights, as compared to the original design at inference time, while improving detectors performance for small size training sets. Improved performance on PASCAL-VOC and state-of-the-art performance on FlickrLogos-47 validate the method. We also show when the proposed design does not give additional performance gain over the original design.

SynDHN: Multi-Object Fish Tracker Trained on Synthetic Underwater Videos

Mygel Andrei Martija, Prospero Naval

Responsive image

Auto-TLDR; Underwater Multi-Object Tracking in the Wild with Deep Hungarian Network

Slides Poster Similar

In this paper, we seek to extend multi-object tracking research on a relatively less explored domain, that of, underwater multi-object tracking in the wild. Multi-object fish tracking is an important task because it can provide fish monitoring systems with richer information (e.g. multiple views of the same fish) as compared to detections and it can be an invaluable input to fish behavior analysis. However, there is a lack of an annotated benchmark dataset with enough samples for this task. To circumvent the need for manual ground truth tracking annotation, we craft a synthetic dataset. Using this synthetic dataset, we train an integrated detector and tracker called SynDHN. SynDHN uses the Deep Hungarian Network (DHN), which is a differentiable approximation of the Hungarian assignment algorithm. We repurpose DHN to become the tracking component of our algorithm by performing the task of affinity estimation between detector predictions. We consider both spatial and appearance features for affinity estimation. Our results show that despite being trained on a synthetic dataset, SynDHN generalizes well to real underwater video tracking and performs better against our baseline algorithms.

Cascade Saliency Attention Network for Object Detection in Remote Sensing Images

Dayang Yu, Rong Zhang, Shan Qin

Responsive image

Auto-TLDR; Cascade Saliency Attention Network for Object Detection in Remote Sensing Images

Slides Poster Similar

Object detection in remote sensing images is a challenging task due to objects in the bird-view perspective appearing with arbitrary orientations. Though considerable progress has been made, there still exist challenges with the interference from complex backgrounds, dense arrangement, and large-scale variations. In this paper, we propose an oriented detector named Cascade Saliency Attention Network (CSAN), designed for comprehensively suppressing interference in remote sensing images. Specifically, we first combine context and pixel attention on feature maps to enhance saliency of objects for suppressing interference from backgrounds. Then, in cascade network, we apply instance segmentation on ROI to increase saliency of the central object, thus preventing object features from mutual interference in dense arrangement. Additionally, to alleviate large-scale variations, we devise a multi-scale merge module during FPN merging process to learn richer scale representations. Experimental results on DOTA and HRSC2016 datasets outperform other state-of-the-art object detection methods and verify the effectiveness of our method.