Scene Text Detection with Selected Anchors

Anna Zhu, Hang Du, Shengwu Xiong

Responsive image

Auto-TLDR; AS-RPN: Anchor Selection-based Region Proposal Network for Scene Text Detection

Slides Poster

Object proposal technique with dense anchoring scheme for scene text detection were applied frequently to achieve high recall. It results in the significant improvement in accuracy but waste of computational searching, regression and classification. In this paper, we propose an anchor selection-based region proposal network (AS-RPN) using effective selected anchors instead of dense anchors to extract text proposals. The center, scales, aspect ratios and orientations of anchors are learnable instead of fixing, which leads to high recall and greatly reduced numbers of anchors. By replacing the anchor-based RPN in Faster RCNN, the AS-RPN-based Faster RCNN can achieve comparable performance with previous state-of-the-art text detecting approaches on standard benchmarks, including COCO-Text, ICDAR2013, ICDAR2015 and MSRA-TD500 when using single-scale and single model (ResNet50) testing only.

Similar papers

Feature Embedding Based Text Instance Grouping for Largely Spaced and Occluded Text Detection

Pan Gao, Qi Wan, Renwu Gao, Linlin Shen

Responsive image

Auto-TLDR; Text Instance Embedding Based Feature Embeddings for Multiple Text Instance Grouping

Slides Poster Similar

A text instance can be easily detected as multiple ones due to the large space between texts/characters, curved shape and partial occlusion. In this paper, a feature embedding based text instance grouping algorithm is proposed to solve this problem. To learn the feature space, a TIEM (Text Instance Embedding Module) is trained to minimize the within instance scatter and maximize the between instance scatter. Similarity between different text instances are measured in the feature space and merged if they meet certain conditions. Experimental results show that our approach can effectively connect text regions that belong to the same text instance. Competitive performance of our approach has been achieved on CTW1500, Total-Text, IC15 and a subset consists of texts selected from the three datasets, with large spacing and occlusions.

An Accurate Threshold Insensitive Kernel Detector for Arbitrary Shaped Text

Xijun Qian, Yifan Liu, Yu-Bin Yang

Responsive image

Auto-TLDR; TIKD: threshold insensitive kernel detector for arbitrary shaped text

Slides Similar

Recently, segmentation-based methods are popular in scene text detection due to the segmentation results can easily represent scene text of arbitrary shapes. However, previous works segment text instances the same as normal objects. It is obvious that the edge of the text instance differs from normal objects. In this paper, we propose a threshold insensitive kernel detector for arbitrary shaped text called TIKD, which includes a simple but stable base model and a new loss weight called Decay Loss Weight (DLW). By suppressing outlier pixels in a gradual way, the DLW can lead the network to detect more accurate text instances. Our method shows great power in accuracy and stability. It is worth mentioning that we achieve the precision, recall, f-measure of 88.7%, 83.7%, 86.1% respectively on the Total-Text dataset, with a fast speed of 16.3 frames per second. What’s more, even if we set the threshold in an extreme situation range from 0.1 to 0.9, our method can always achieve a stable f-measure over 79.9% on the Total-Text dataset.

TCATD: Text Contour Attention for Scene Text Detection

Ziling Hu, Wu Xingjiao, Jing Yang

Responsive image

Auto-TLDR; Text Contour Attention Text Detector

Slides Poster Similar

Segmentation-based approaches have enabled state-of-the-art performance in long or curved text detection tasks. However, false detection still is a challenge when two text instances are close to each other. To address this problem, in this paper, we propose a Text Contour Attention Text Detector (TCATD), which can locate scene text with arbitrary orientation and shape accurately. Different from previous work, TCATD focus on text contour map (TC), text center intensity map (TCI) and text kernel maps (TK). The TC can introduce text contour information, the TCI can help to learn the accurate text segmentation and the TK can generate the complete shape of text instances. Besides, we propose a Text Contour Attention Module to deal with contour information. After the Text Contour Attention Module, TC, TCI and TK will be obtained. Extensive experiments on ICDAR2015, CTW1500 and Total-Text demonstrate that the proposed method achieves the state-of-the-art performance.

Mutually Guided Dual-Task Network for Scene Text Detection

Mengbiao Zhao, Wei Feng, Fei Yin, Xu-Yao Zhang, Cheng-Lin Liu

Responsive image

Auto-TLDR; A dual-task network for word-level and line-level text detection

Slides Similar

Scene text detection has been studied extensively. Existing methods detect either words or text lines and use either word-level or line-level annotated data for training. In this paper, we propose a dual-task network that can perform word-level and line-level text detection simultaneously and use training data of both levels of annotation to boost the performance. The dual-task network has two detection heads for word-level and line-level text detection, respectively. Then we propose a mutual guidance scheme for the joint training of the two tasks with two modules: line filtering module utilizes the output of the text line detector to filter out the non-text regions for the word detector, and word enhancing module provides prior positions of words for the text line detector depending on the output of the word detector. Experimental results of word-level and line-level text detection demonstrate the effectiveness of the proposed dual-task network and mutual guidance scheme, and the results of our method are competitive with state-of-the-art methods.

DUET: Detection Utilizing Enhancement for Text in Scanned or Captured Documents

Eun-Soo Jung, Hyeonggwan Son, Kyusam Oh, Yongkeun Yun, Soonhwan Kwon, Min Soo Kim

Responsive image

Auto-TLDR; Text Detection for Document Images Using Synthetic and Real Data

Slides Poster Similar

We present a novel approach to text detection for document images. For robust text detection of noisy scanned or captured document images, the advantages of multi-task learning are adopted by adding an auxiliary task of text enhancement. Consequently, our proposed model trains reducing noise and enhancing text regions as well as detecting text. To overcome the insufficiency of document image data for text detection, train data for our model are enriched with synthesized document images that are fully labeled for text detection and enhancement. For the effective use of synthetic and real data, the proposed model is trained in two phases. The first phase is training only synthetic data in a fully-supervised manner. Then real data with only detection labels are added in the second phase. The enhancement task for real data is weakly-supervised with information from detection labels. Our methods are demonstrated on a real document dataset with performances exceeding those of other methods. Also, we conducted ablations to analyze effects of the synthetic data, multi-task, and weak-supervision. Whereas the existing text detection studies mostly focus on the text in scenes, our proposed method is optimized to the applications for the text in scanned or captured documents.

Transferable Adversarial Attacks for Deep Scene Text Detection

Shudeng Wu, Tao Dai, Guanghao Meng, Bin Chen, Jian Lu, Shutao Xia

Responsive image

Auto-TLDR; Robustness of DNN-based STD methods against Adversarial Attacks

Slides Similar

Scene text detection (STD) aims to locate text in images and plays an important role in many computer vision tasks including automatic driving and text recognition systems. Recently, deep neural networks (DNNs) have been widely and successfully used in scene text detection, leading to plenty of DNN-based STD methods including regression-based and segmentation-based STD methods. However, recent studies have also shown that DNN is vulnerable to adversarial attacks, which can significantly degrade the performance of DNN models. In this paper, we investigate the robustness of DNN-based STD methods against adversarial attacks. To this end, we propose a generic and efficient attack method to generate adversarial examples, which are produced by adding small but imperceptible adversarial perturbation to the input images. Experiments on attacking four various models and a real-world STD engine of Google optical character recognition (OCR) show that the state-of-the-art DNN-based STD methods including regression-based and segmentation-based methods are vulnerable to adversarial attacks.

Stratified Multi-Task Learning for Robust Spotting of Scene Texts

Kinjal Dasgupta, Sudip Das, Ujjwal Bhattacharya

Responsive image

Auto-TLDR; Feature Representation Block for Multi-task Learning of Scene Text

Slides Similar

Gaining control over the dynamics of multi-task learning should help to unlock the potential of the deep network to a great extent. In the existing multi-task learning (MTL) approaches of deep network, all the parameters of its feature encoding part are subjected to adjustments corresponding to each of the underlying sub-tasks. On the other hand, different functional areas of human brain are responsible for distinct functions such as the Broca's area of the cerebrum is responsible for speech formation whereas its Wernicke's area is related to the language development etc. Inspired by this fact, in the present study, we propose to introduce a block (termed as Feature Representation Block) of connection weights spanned over a few successive layers of a deep multi-task learning architecture and stratify the same into distinct subsets for their adjustments exclusively corresponding to different sub-tasks. Additionally, we have introduced a novel regularization component for controlled training of this Feature Representation Block. The purpose of the development of this learning framework is efficient end-to-end recognition of scene texts. Simulation results of the proposed strategy on various benchmark scene text datasets such as ICDAR 2015, ICDAR 2017 MLT, COCO-Text and MSRA-TD500 have improved respective SOTA performance.

RLST: A Reinforcement Learning Approach to Scene Text Detection Refinement

Xuan Peng, Zheng Huang, Kai Chen, Jie Guo, Weidong Qiu

Responsive image

Auto-TLDR; Saccadic Eye Movements and Peripheral Vision for Scene Text Detection using Reinforcement Learning

Slides Poster Similar

Within the research of scene text detection, some previous work has already achieved significant accuracy and efficiency. However, most of the work was generally done without considering about the implicit relationship between detection and eye movements. In this paper, we propose a new method for scene text detection especially for its refinement based on reinforcement learning. The idea of this method is inspired by Saccadic Eye Movements and Peripheral Vision. A saccade makes it possible for humans to orient the gaze to the location where a visual object has appeared. Peripheral vision gathers visual information of surroundings which provides supplement to foveal vision during gazing. We propose a simple pipeline, imitating the way human eyes do a saccade and collect peripheral information, to locate scene text roughly and to refine multi-scale vision field iteratively using reinforcement learning. For both training and evaluation, we use ICDAR2015 Challenge 4 dataset as a base and design several criteria to measure the feasibility of our work.

Cascade Saliency Attention Network for Object Detection in Remote Sensing Images

Dayang Yu, Rong Zhang, Shan Qin

Responsive image

Auto-TLDR; Cascade Saliency Attention Network for Object Detection in Remote Sensing Images

Slides Poster Similar

Object detection in remote sensing images is a challenging task due to objects in the bird-view perspective appearing with arbitrary orientations. Though considerable progress has been made, there still exist challenges with the interference from complex backgrounds, dense arrangement, and large-scale variations. In this paper, we propose an oriented detector named Cascade Saliency Attention Network (CSAN), designed for comprehensively suppressing interference in remote sensing images. Specifically, we first combine context and pixel attention on feature maps to enhance saliency of objects for suppressing interference from backgrounds. Then, in cascade network, we apply instance segmentation on ROI to increase saliency of the central object, thus preventing object features from mutual interference in dense arrangement. Additionally, to alleviate large-scale variations, we devise a multi-scale merge module during FPN merging process to learn richer scale representations. Experimental results on DOTA and HRSC2016 datasets outperform other state-of-the-art object detection methods and verify the effectiveness of our method.

Bidirectional Matrix Feature Pyramid Network for Object Detection

Wei Xu, Yi Gan, Jianbo Su

Responsive image

Auto-TLDR; BMFPN: Bidirectional Matrix Feature Pyramid Network for Object Detection

Slides Poster Similar

Feature pyramids are widely used to improve scale invariance for object detection. Most methods just map the objects to feature maps with relevant square receptive fields, but rarely pay attention to the aspect ratio variation, which is also an important property of object instances. It will lead to a poor match between rectangular objects and assigned features with square receptive fields, thus preventing from accurate recognition and location. Besides, the information propagation among feature layers is sparse, namely, each feature in the pyramid may mainly or only contain single-level information, which is not representative enough for classification and localization sub-tasks. In this paper, Bidirectional Matrix Feature Pyramid Network (BMFPN) is proposed to address these issues. It consists of three modules: Diagonal Layer Generation Module (DLGM), Top-down Module (TDM) and Bottom-up Module (BUM). First, multi-level features extracted by backbone are fed into DLGM to produce the base features. Then these base features are utilized to construct the final feature pyramid through TDM and BUM in series. The receptive fields of the designed feature layers in BMFPN have various scales and aspect ratios. Objects can be correctly assigned to appropriate and representative feature maps with relevant receptive fields depending on its scale and aspect ratio properties. Moreover, TDM and BUM form bidirectional and reticular information flow, which effectively fuses multi level information in top-down and bottom-up manner respectively. To evaluate the effectiveness of our proposed architecture, an end-toend anchor-free detector is designed and trained by integrating BMFPN into FCOS. And the center ness branch in FCOS is modified with our Gaussian center-ness branch (GCB), which brings another slight improvement. Without bells and whistles, our method gains +3.3%, +2.4% and +2.6% AP on MS COCO dataset from baselines with ResNet-50, ResNet-101 and ResNeXt-101 backbones, respectively.

Detecting Objects with High Object Region Percentage

Fen Fang, Qianli Xu, Liyuan Li, Ying Gu, Joo-Hwee Lim

Responsive image

Auto-TLDR; Faster R-CNN for High-ORP Object Detection

Slides Poster Similar

Object shape is a subtle but important factor for object detection. It has been observed that the object-region-percentage (ORP) can be utilized to improve detection accuracy for elongated objects, which have much lower ORPs than other types of objects. In this paper, we propose an approach to improve the detection performance for objects whose ORPs are relatively higher.To address the problem of high-ORP object detection, we propose a method consisting of three steps. First, we adjust the ground truth bounding boxes of high-ORP objects to an optimal range. Second, we train an object detector, Faster R-CNN, based on adjusted bounding boxes to achieve high recall. Finally, we train a DCNN to learn the adjustment ratios towards four directions and adjust detected bounding boxes of objects to get better localization for higher precision. We evaluate the effectiveness of our method on 12 high-ORP objects in COCO and 8 objects in a proprietary gearbox dataset. The experimental results show that our method can achieve state-of-the-art performance on these objects while costing less resources in training and inference stages.

A Fast and Accurate Object Detector for Handwritten Digit String Recognition

Jun Guo, Wenjing Wei, Yifeng Ma, Cong Peng

Responsive image

Auto-TLDR; ChipNet: An anchor-free object detector for handwritten digit string recognition

Slides Poster Similar

Focusing on handwritten digit string recognition (HDSR), we propose an anchor-free object detector called ChipNet, where a novel encoding method is designed. The input image is divided into columns, and then these columns are encoded by the ground truth. The adjacent columns are responsible for detecting the same target so that it can well address the class-imbalanced problem meanwhile reducing the network computation. ChipNet is composed of convolutional and bidirectional long short term memory networks. Different from the typical detectors, it doesn't use region proposals, anchors or regions of interest pooling. Hence, it can overcome the shortages of anchor-based and dense detectors in HDSR. The experiments are implemented on the synthetic digit strings, the CVL HDS database, and the ORAND-CAR-A & B databases. The high accuracies, which surpass the reported results by a large margin (up to 6.62%), are achieved. Furthermore, it gets 219 FPS speed on 160*32 px resolution images when using a Tesla P100 GPU. The results also show that ChipNet can handle touching, connecting and arbitrary length digit strings, and the obtained accuracies in HDSR are as high as the ones in single handwritten digit recognition.

Learning a Dynamic High-Resolution Network for Multi-Scale Pedestrian Detection

Mengyuan Ding, Shanshan Zhang, Jian Yang

Responsive image

Auto-TLDR; Learningable Dynamic HRNet for Pedestrian Detection

Slides Poster Similar

Pedestrian detection is a canonical instance of object detection in computer vision. In practice, scale variation is one of the key challenges, resulting in unbalanced performance across different scales. Recently, the High-Resolution Network (HRNet) has become popular because high-resolution feature representations are more friendly to small objects. However, when we apply HRNet for pedestrian detection, we observe that it improves for small pedestrians on one hand, but hurts the performance for larger ones on the other hand. To overcome this problem, we propose a learnable Dynamic HRNet (DHRNet) aiming to generate different network paths adaptive to different scales. Specifically, we construct a parallel multi-branch architecture and add a soft conditional gate module allowing for dynamic feature fusion. Both branches share all the same parameters except the soft gate module. Experimental results on CityPersons and Caltech benchmarks indicate that our proposed dynamic HRNet is more capable of dealing with pedestrians of various scales, and thus improves the performance across different scales consistently.

Hybrid Cascade Point Search Network for High Precision Bar Chart Component Detection

Junyu Luo, Jinpeng Wang, Chin-Yew Lin

Responsive image

Auto-TLDR; Object Detection of Chart Components in Chart Images Using Point-based and Region-Based Object Detection Framework

Slides Poster Similar

Charts are commonly used for data visualization. One common form of chart distribution is in its image form. To enable machine comprehension of chart images, precise detection of chart components in chart images is a critical step. Existing image object detection methods do not perform well in chart component detection which requires high boundary detection precision. And traditional rule-based approaches lack enough generalization ability. In order to address this problem, we design a novel two-stage object detection framework that combines point-based and region-based ideas, by simulating the process that human creating bounding boxes for objects. The experiment on our labeled ChartDet dataset shows our method greatly improves the performance of chart object detection. We further extend our method to a general object detection task and get comparable performance.

CenterRepp: Predict Central Representative Point Set's Distribution for Detection

Yulin He, Limeng Zhang, Wei Chen, Xin Luo, Chen Li, Xiaogang Jia

Responsive image

Auto-TLDR; CRPDet: CenterRepp Detector for Object Detection

Slides Poster Similar

Object detection has long been an important issue in the discipline of scene understanding. Existing researches mainly focus on the object itself, ignoring its surrounding environment. In fact, the surrounding environment provides abundant information to help detectors classify and locate objects. This paper proposes CRPDet, viz. CenterRepp Detector, a framework for object detection. The main function of CRPDet is accomplished by the CenterRepp module, which takes into account the surrounding environment by predicting the distribution of the central representative points. CenterRepp converts labeled object frames into the mean and standard variance of the sampling points’ distribution. This helps increase the receptive field of objects, breaking the limitation of object frames. CenterRepp defines a position-fixed center point with significant weights, avoiding to sample all points in the surroundings. Experiments on the COCO test-dev detection benchmark demonstrates that our proposed CRPDet has comparable performance with state-of-the-art detectors, achieving 39.4 mAP with 51 FPS tested under single size input.

MagnifierNet: Learning Efficient Small-Scale Pedestrian Detector towards Multiple Dense Regions

Qi Cheng, Mingqin Chen, Yingjie Wu, Fei Chen, Shiping Lin

Responsive image

Auto-TLDR; MagnifierNet: A Simple but Effective Small-Scale Pedestrian Detection Towards Multiple Dense Regions

Slides Poster Similar

Despite the success of pedestrian detection, there is still a significant gap in the performance of the detection of pedestrians at different scales. Detecting small-scale pedestrians is extremely challenging due to the low resolution of their convolution features which is essential for downstream classifiers. To address this issue, we observed pedestrian datasets and found that pedestrians often gather together in crowded public places. Then we propose MagnifierNet, a simple but effective small-scale pedestrian detector towards multiple dense regions. MagnifierNet uses our proposed sweep-line based grouping algorithm to find dense regions based on the number of pedestrians in the grouped region. And we adopt a new definition of small-scale pedestrians through grid search and KL-divergence. Besides, our grouping method can also be used as a new strategy for pedestrian data augmentation. The ablation study demonstrates that MagnifierNet improves the representation of small-scale pedestrians. We validate the effectiveness of MagnifierNet on CityPersons and KITTI datasets. Experimental results show that MagnifierNet achieves the best small-scale pedestrian detection performance on CityPersons benchmark without any external data, and also achieves competitive performance for detecting small-scale pedestrians on KITTI dataset without bells and whistles.

SFPN: Semantic Feature Pyramid Network for Object Detection

Yi Gan, Wei Xu, Jianbo Su

Responsive image

Auto-TLDR; SFPN: Semantic Feature Pyramid Network to Address Information Dilution Issue in FPN

Slides Poster Similar

Feature Pyramid Network(FPN) employs a top-down path to enhance low level feature by utilizing high level feature.However, further improvement of detector is greatly hindered by the inner defect of FPN. The dilution issue in FPN is analyzed in this paper, and a new architecture named Semantic Feature Pyramid Network(SFPN) is introduced to address the information imbalance problem caused by information dilution. The proposed method consists of two simple and effective components: Semantic Pyramid Module(SPM) and Semantic Feature Fusion Module(SFFM). To compensate for the weaknesses of FPN, the semantic segmentation result is utilized as an extra information source in our architecture.By constructing a semantic pyramid based on the segmentation result and fusing it with FPN, feature maps at each level can obtain the necessary information without suffering from the dilution issue. The proposed architecture could be applied on many detectors, and non-negligible improvement could be achieved. Although this method is designed for object detection, other tasks such as instance segmentation can also largely benefit from it. The proposed method brings Faster R-CNN and Mask R-CNN with ResNet-50 as backbone both 1.8 AP improvements respectively. Furthermore, SFPN improves Cascade R-CNN with backbone ResNet-101 from 42.4 AP to 43.5 AP.

Multiple-Step Sampling for Dense Object Detection and Counting

Zhaoli Deng, Yang Chenhui

Responsive image

Auto-TLDR; Multiple-Step Sampling for Dense Objects Detection

Slides Poster Similar

A multitude of similar or even identical objects are positioned closely in dense scenes, which brings about difficulties in object-detecting and object-counting. Since the poor performance of Faster R-CNN, recent works prefer to detect dense objects with the utilization of multi-layer feature maps. Nevertheless, they require complex post-processing to minimize overlap between adjacent bounding boxes, which reduce their detection speed. However, we find that such a multilayer prediction is not necessary. It is observed that there exists a waste of ground-truth boxes during sampling, causing the lack of positive samples and the final failure of Faster R-CNN training. Motivated by this observation we propose a multiple-step sampling method for anchor sampling. Our method reduces the waste of ground-truth boxes in three steps according to different rules. Besides, we balance the positive and negative samples, and samples at different quality. Our method improves base detector (Faster R-CNN), the detection tests on SKU-110K and CARPK benchmarks indicate that our approach offers a good trade-off between accuracy and speed.

Hierarchical Head Design for Object Detectors

Shivang Agarwal, Frederic Jurie

Responsive image

Auto-TLDR; Hierarchical Anchor for SSD Detector

Slides Poster Similar

The notion of anchor plays a major role in modern detection algorithms such as the Faster-RCNN or the SSD detector. Anchors relate the features of the last layers of the detector with bounding boxes containing objects in images. Despite their importance, the literature on object detection has not paid real attention to them. The motivation of this paper comes from the observations that (i) each anchor learns to classify and regress candidate objects independently (ii) insufficient examples are available for each anchor in case of small-scale datasets. This paper addresses these questions by proposing a novel hierarchical head for the SSD detector. The new design has the added advantage of no extra weights, as compared to the original design at inference time, while improving detectors performance for small size training sets. Improved performance on PASCAL-VOC and state-of-the-art performance on FlickrLogos-47 validate the method. We also show when the proposed design does not give additional performance gain over the original design.

Forground-Guided Vehicle Perception Framework

Kun Tian, Tong Zhou, Shiming Xiang, Chunhong Pan

Responsive image

Auto-TLDR; A foreground segmentation branch for vehicle detection

Slides Poster Similar

As the basis of advanced visual tasks such as vehicle tracking and traffic flow analysis, vehicle detection needs to accurately predict the position and category of vehicle objects. In the past decade, deep learning based methods have made great progress. However, we also notice that some existing cases are not studied thoroughly. First, false positive on the background regions is one of the critical problems. Second, most of the previous approaches only optimize a single vehicle detection model, ignoring the relationship between different visual perception tasks. In response to the above two findings, we introduce a foreground segmentation branch for the first time, which can predict the pixel level of vehicles in advance. Furthermore, two attention modules are designed to guide the work of the detection branch. The proposed method can be easily grafted into the one-stage and two-stage detection framework. We evaluate the effectiveness of our model on LSVH, a dataset with large variations in vehicle scales, and achieve the state-of-the-art detection accuracy.

Small Object Detection by Generative and Discriminative Learning

Yi Gu, Jie Li, Chentao Wu, Weijia Jia, Jianping Chen

Responsive image

Auto-TLDR; Generative and Discriminative Learning for Small Object Detection

Slides Poster Similar

With the development of deep convolutional neural networks (CNNs), the object detection accuracy has been greatly improved. But the performance of small object detection is still far from satisfactory, mainly because small objects are so tiny that the information contained in the feature map is limited. Existing methods focus on improving classification accuracy but still suffer from the limitation of bounding box prediction. To solve this issue, we propose a detection framework by generative and discriminative learning. First, a reconstruction generator network is designed to reconstruct the mapping from low frequency to high frequency for anchor box prediction. Then, a detector module extracts the regions of interest (ROIs) from generated results and implements a RoI-Head to predict object category and refine bounding box. In order to guide the reconstructed image related to the corresponding one, a discriminator module is adopted to tell from the generated result and the original image. Extensive evaluations on the challenging MS-COCO dataset demonstrate that our model outperforms most state-of-the-art models in detecting small objects, especially the reconstruction module improves the average precision for small object (APs) by 7.7%.

Self-Training for Domain Adaptive Scene Text Detection

Yudi Chen, Wei Wang, Yu Zhou, Fei Yang, Dongbao Yang, Weiping Wang

Responsive image

Auto-TLDR; A self-training framework for image-based scene text detection

Slides Similar

Though deep learning based scene text detection has achieved great progress, well-trained detectors suffer from severe performance degradation for different domains. In general, a tremendous amount of data is indispensable to train the detector in the target domain. However, data collection and annotation are expensive and time-consuming. To address this problem, we propose a self-training framework to automatically mine hard examples with pseudo-labels from unannotated videos or images. To reduce the noise of hard examples, a novel text mining module is implemented based on the fusion of detection and tracking results. Then, an image-to-video generation method is designed for the tasks that videos are unavailable and only images can be used. Experimental results on standard benchmarks, including ICDAR2015, MSRA-TD500, ICDAR2017 MLT, demonstrate the effectiveness of our self-training method. The simple Mask R-CNN adapted with self-training and fine-tuned on real data can achieve comparable or even superior results with the state-of-the-art methods.

Recognizing Multiple Text Sequences from an Image by Pure End-To-End Learning

Zhenlong Xu, Shuigeng Zhou, Fan Bai, Cheng Zhanzhan, Yi Niu, Shiliang Pu

Responsive image

Auto-TLDR; Pure End-to-End Learning for Multiple Text Sequences Recognition from Images

Slides Poster Similar

We address a challenging problem: recognizing multiple text sequences from an image by pure end-to-end learning. It is twofold: 1) Multiple text sequences recognition. Each image may contain multiple text sequences of different content, location and orientation, we try to recognize all these texts in the image. 2) Pure end-to-end (PEE) learning.We solve the problem in a pure end-to-end learning way where each training image is labeled by only text transcripts of the contained sequences, without any geometric annotations. Most existing works recognize multiple text sequences from an image in a non-end-to-end (NEE) or quasi-end-to-end (QEE) way, in which each image is trained with both text transcripts and text locations. Only recently, a PEE method was proposed to recognize text sequences from an image where the text sequence was split to several lines in the image. However, it cannot be directly applied to recognizing multiple text sequences from an image. So in this paper, we propose a pure end-to-end learning method to recognize multiple text sequences from an image. Our method directly learns the probability distribution of multiple sequences conditioned on each input image, and outputs multiple text transcripts with a well-designed decoding strategy. To evaluate the proposed method, we construct several datasets mainly based on an existing public dataset and two real application scenarios. Experimental results show that the proposed method can effectively recognize multiple text sequences from images, and outperforms CTC-based and attention-based baseline methods.

DualBox: Generating BBox Pair with Strong Correspondence Via Occlusion Pattern Clustering and Proposal Refinement

Zheng Ge, Chuyu Hu, Xin Huang, Baiqiao Qiu, Osamu Yoshie

Responsive image

Auto-TLDR; R2NMS: Combining Full and Visible Body Bounding Box for Dense Pedestrian Detection

Slides Poster Similar

Despite the rapid development of pedestrian detection, the problem of dense pedestrian detection is still unsolved, especially the upper limit of Recall caused by Non-Maximum-Suppression (NMS). Out of this reason, R2NMS is proposed to simultaneously detect full and visible body bounding boxes, by replacing the full body BBoxes with less occluded visible body BBoxes in the NMS algorithm, achieving a higher recall. However, the P-RPN and P-RCNN modules proposed in R2NMS for simultaneous high quality full and visible body prediction require non-trivial positive/negative assigning strategies for anchor BBoxes. To simplify the prerequisites and improve the utility of R2NMS, we incorporate clustering analysis into the learning of visible body proposals from full body proposals. Furthermore, to reduce the computation complexity caused by the large number of potential visible body proposals, we introduce a novel occlusion pattern prediction branch on top of the R-CNN module (i.e. F-RCNN) to select the best matched visible proposals for each full body proposals and then feed them into another R-CNN module (i.e. V-RCNN). Incorporated with R2NMS, our DualBox model can achieve competitive performance while only requires few hyper-parameters. We validate the effectiveness of the proposed approach on the CrowdHuman and CityPersons datasets. Experimental results show that our approach achieves promising performance for detecting both non-occluded and occluded pedestrians, especially heavily occluded ones.

S-VoteNet: Deep Hough Voting with Spherical Proposal for 3D Object Detection

Yanxian Chen, Huimin Ma, Xi Li, Xiong Luo

Responsive image

Auto-TLDR; S-VoteNet: 3D Object Detection with Spherical Bounded Box Prediction

Slides Poster Similar

Current 3D object detection methods adopt an analogous box prediction structure with the 2D methods, which predict center and size of the object simultaneously in a box regression procedure, leading to the poor performance of 3D detector to a great extent. In this work, we propose S-VoteNet, which converts the prediction of 3D bounding box into two parts: center prediction and size prediction. By introducing a novel spherical proposal, S-VoteNet uses vote groups to predict the center and radius of object rather than all parameters of 3D bounding box. The prediction of radius is used to constrain the object size, and the radius-based spherical center loss is applied to measure the geometric distance between the proposal and ground-truth. To make better use of the geometric information provided by point cloud, S-VoteNet gathers seed points whose corresponding votes are within the vote groups for seed group generation. Seed groups are then consumed for box size regression and orientation estimation. By decoupling the localization and size estimation, our method effectively reduces the regression pressure of the 3D detector. Experimental results on SUN RGB-D 3D detection benchmark demonstrate that our S-VoteNet achieves state-of-the-art performance by using only point cloud as input.

Object Detection Model Based on Scene-Level Region Proposal Self-Attention

Yu Quan, Zhixin Li, Canlong Zhang, Huifang Ma

Responsive image

Auto-TLDR; Exploiting Semantic Informations for Object Detection

Slides Poster Similar

The improvement of object detection performance is mostly focused on the extraction of local information near the region of interest in the image, which results in detection performance in this area being unable to achieve the desired effect. First, a depth-wise separable convolution network(D_SCNet-127 R-CNN) is built on the backbone network. Considering the importance of scene and semantic informations for visual recognition, the feature map is sent into the branch of the semantic segmentation module, region proposal network module, and the region proposal self-attention module to build the network of scene-level and region proposal self-attention module. Second, a deep reinforcement learning was utilized to achieve accurate positioning of border regression, and the calculation speed of the whole model was improved through implementing a light-weight head network. This model can effectively solve the limitation of feature extraction in traditional object detection and obtain more comprehensive detailed features. The experimental verification on MSCOCO17, VOC12, and Cityscapes datasets shows that the proposed method has good validity and scalability.

Construction Worker Hardhat-Wearing Detection Based on an Improved BiFPN

Chenyang Zhang, Zhiqiang Tian, Jingyi Song, Yaoyue Zheng, Bo Xu

Responsive image

Auto-TLDR; A One-Stage Object Detection Method for Hardhat-Wearing in Construction Site

Slides Poster Similar

Work in the construction site is considered to be one of the occupations with the highest safety risk factor. Therefore, safety plays an important role in construction site. One of the most fundamental safety rules in construction site is to wear a hardhat. To strengthen the safety of the construction site, most of the current methods use multi-stage method for hardhat-wearing detection. These methods have limitations in terms of adaptability and generalizability. In this paper, we propose a one-stage object detection method based on convolutional neural network. We present a multi-scale strategy that selects the high-resolution feature maps of DarkNet-53 to effectively identify small-scale hardhats. In addition, we propose an improved weighted bi-directional feature pyramid network (BiFPN), which could fuse more semantic features from more scales. The proposed method can not only detect hardhat-wearing, but also identify the color of the hardhat. Experimental results show that the proposed method achieves a mAP of 87.04%, which outperforms several state-of-the-art methods on a public dataset.

Tiny Object Detection in Aerial Images

Jinwang Wang, Wen Yang, Haowen Guo, Ruixiang Zhang, Gui-Song Xia

Responsive image

Auto-TLDR; Tiny Object Detection in Aerial Images Using Multiple Center Points Based Learning Network

Slides Similar

Object detection in Earth Vision has achieved great progress in recent years. However, tiny object detection in aerial images remains a very challenging problem since the tiny objects contain a small number of pixels and are easily confused with the background. To advance tiny object detection research in aerial images, we present a new dataset for Tiny Object Detection in Aerial Images (AI-TOD). Specifically, AI-TOD comes with 700,621 object instances for eight categories across 28,036 aerial images. Compared to existing object detection datasets in aerial images, the mean size of objects in AI-TOD is about 12.8 pixels, which is much smaller than others. To build a benchmark for tiny object detection in aerial images, we evaluate the state-of-the-art object detectors on our AI-TOD dataset. Experimental results show that direct application of these approaches on AI-TOD produces suboptimal object detection results, thus new specialized detectors for tiny object detection need to be designed. Therefore, we propose a multiple center points based learning network (M-CenterNet) to improve the localization performance of tiny object detection, and experimental results show the significant performance gain over the competitors.

Vision-Based Layout Detection from Scientific Literature Using Recurrent Convolutional Neural Networks

Huichen Yang, William Hsu

Responsive image

Auto-TLDR; Transfer Learning for Scientific Literature Layout Detection Using Convolutional Neural Networks

Slides Poster Similar

We present an approach for adapting convolutional neural networks for object recognition and classification to scientific literature layout detection (SLLD), a shared subtask of several information extraction problems. Scientific publications contain multiple types of information sought by researchers in various disciplines, organized into an abstract, bibliography, and sections documenting related work, experimental methods, and results; however, there is no effective way to extract this information due to their diverse layout. In this paper, we present a novel approach to developing an end-to-end learning framework to segment and classify major regions of a scientific document. We consider scientific document layout analysis as an object detection task over digital images, without any additional text features that need to be added into the network during the training process. Our technical objective is to implement transfer learning via fine-tuning of pre-trained networks and thereby demonstrate that this deep learning architecture is suitable for tasks that lack very large document corpora for training. As part of the experimental test bed for empirical evaluation of this approach, we created a merged multi-corpus data set for scientific publication layout detection tasks. Our results show good improvement with fine-tuning of a pre-trained base network using this merged data set, compared to the baseline convolutional neural network architecture.

Text Recognition - Real World Data and Where to Find Them

Klára Janoušková, Lluis Gomez, Dimosthenis Karatzas, Jiri Matas

Responsive image

Auto-TLDR; Exploiting Weakly Annotated Images for Text Extraction

Slides Poster Similar

We present a method for exploiting weakly annotated images to improve text extraction pipelines. The approach uses an arbitrary end-to-end text recognition system to obtain text region proposals and their, possibly erroneous, transcriptions. The proposed method includes matching of imprecise transcription to weak annotations and edit distance guided neighbourhood search. It produces nearly error-free, localised instances of scene text, which we treat as "pseudo ground truth" (PGT). We apply the method to two weakly-annotated datasets. Training with the extracted PGT consistently improves the accuracy of a state of the art recognition model, by 3.7 % on average, across different benchmark datasets (image domains) and 24.5 % on one of the weakly annotated datasets.

SyNet: An Ensemble Network for Object Detection in UAV Images

Berat Mert Albaba, Sedat Ozer

Responsive image

Auto-TLDR; SyNet: Combining Multi-Stage and Single-Stage Object Detection for Aerial Images

Poster Similar

Recent advances in camera equipped drone applications and their widespread use increased the demand on vision based object detection algorithms for aerial images. Object detection process is inherently a challenging task as a generic computer vision problem, however, since the use of object detection algorithms on UAVs (or on drones) is relatively a new area, it remains as a more challenging problem to detect objects in aerial images. There are several reasons for that including: (i) the lack of large drone datasets including large object variance, (ii) the large orientation and scale variance in drone images when compared to the ground images, and (iii) the difference in texture and shape features between the ground and the aerial images. Deep learning based object detection algorithms can be classified under two main categories: (a) single-stage detectors and (b) multi-stage detectors. Both single-stage and multi-stage solutions have their advantages and disadvantages over each other. However, a technique to combine the good sides of each of those solutions could yield even a stronger solution than each of those solutions individually. In this paper, we propose an ensemble network, SyNet, that combines a multi-stage method with a single-stage one with the motivation of decreasing the high false negative rate of multi-stage detectors and increasing the quality of the single-stage detector proposals. As building blocks, CenterNet and Cascade R-CNN with pretrained feature extractors are utilized along with an ensembling strategy. We report the state of the art results obtained by our proposed solution on two different datasets: namely MS-COCO and visDrone with \%52.1 $mAP_{IoU = 0.75}$ is obtained on MS-COCO $val2017$ dataset and \%26.2 $mAP_{IoU = 0.75}$ is obtained on VisDrone $test-set$. Our code is available at: https://github.com/mertalbaba/SyNet}{https://github.com/mer talbaba/SyNet

Local Gradient Difference Based Mass Features for Classification of 2D-3D Natural Scene Text Images

Lokesh Nandanwar, Shivakumara Palaiahnakote, Raghavendra Ramachandra, Tong Lu, Umapada Pal, Daniel Lopresti, Nor Badrul Anuar

Responsive image

Auto-TLDR; Classification of 2D and 3D Natural Scene Images Using COLD

Slides Poster Similar

Methods developed for normal 2D text detection do not work well for a text that is rendered using decorative, 3D effects. This paper proposes a new method for classification of 2D and 3D natural scene images such that an appropriate method can be chosen or modified according to the complexity of the individual classes. The proposed method explores local gradient differences for obtaining candidate pixels, which represent a stroke. To study the spatial distribution of candidate pixels, we propose a measure we call COLD, which is denser for pixels toward the center of strokes and scattered for non-stroke pixels. This observation leads us to introduce mass features for extracting the regular spatial pattern of COLD, which indicates a 2D text image. The extracted features are fed to a Neural Network (NN) for classification. The proposed method is tested on both a new dataset introduced in this work and a standard dataset assembled from different natural scene datasets, and compared to from existing methods to show its effectiveness. The approach improves text detection performance significantly after classification.

CASNet: Common Attribute Support Network for Image Instance and Panoptic Segmentation

Xiaolong Liu, Yuqing Hou, Anbang Yao, Yurong Chen, Keqiang Li

Responsive image

Auto-TLDR; Common Attribute Support Network for instance segmentation and panoptic segmentation

Slides Poster Similar

Instance segmentation and panoptic segmentation is being paid more and more attention in recent years. In comparison with bounding box based object detection and semantic segmentation, instance segmentation can provide more analytical results at pixel level. Given the insight that pixels belonging to one instance have one or more common attributes of current instance, we bring up an one-stage instance segmentation network named Common Attribute Support Network (CASNet), which realizes instance segmentation by predicting and clustering common attributes. CASNet is designed in the manner of fully convolutional and can implement training and inference from end to end. And CASNet manages predicting the instance without overlaps and holes, which problem exists in most of current instance segmentation algorithms. Furthermore, it can be easily extended to panoptic segmentation through minor modifications with little computation overhead. CASNet builds a bridge between semantic and instance segmentation from finding pixel class ID to obtaining class and instance ID by operations on common attribute. Through experiment for instance and panoptic segmentation, CASNet gets mAP 32.8\% and PQ 59.0\% on Cityscapes validation dataset by joint training, and mAP 36.3\% and PQ 66.1\% by separated training mode. For panoptic segmentation, CASNet gets state-of-the-art performance on the Cityscapes validation dataset.

EAGLE: Large-Scale Vehicle Detection Dataset in Real-World Scenarios Using Aerial Imagery

Seyed Majid Azimi, Reza Bahmanyar, Corentin Henry, Kurz Franz

Responsive image

Auto-TLDR; EAGLE: A Large-Scale Dataset for Multi-class Vehicle Detection with Object Orientation Information in Airborne Imagery

Slides Similar

Multi-class vehicle detection from airborne imagery with orientation estimation is an important task in the near and remote vision domains with applications in traffic monitoring and disaster management. In the last decade, we have witnessed significant progress in object detection in ground imagery, but it is still in its infancy in airborne imagery, mostly due to the scarcity of diverse and large-scale datasets. Despite being a useful tool for different applications, current airborne datasets only partially reflect the challenges of real-world scenarios. To address this issue, we introduce EAGLE (oriEnted object detection using Aerial imaGery in real-worLd scEnarios), a large-scale dataset for multi-class vehicle detection with object orientation information in aerial imagery. It features high-resolution aerial images composed of different real-world situations with a wide variety of camera sensor, resolution, flight altitude, weather, illumination, haze, shadow, time, city, country, occlusion, and camera angle. The annotation was done by airborne imagery experts with small- and large-vehicle classes. EAGLE contains 215,986 instances annotated with oriented bounding boxes defined by four points and orientation, making it by far the largest dataset to date in this task. It also supports researches on the haze and shadow removal as well as super-resolution and in-painting applications. We define three tasks: detection by (1) horizontal bounding boxes, (2) rotated bounding boxes, and (3) oriented bounding boxes. We carried out several experiments to evaluate several state-of-the-art methods in object detection on our dataset to form a baseline. Experiments show that the EAGLE dataset accurately reflects real-world situations and correspondingly challenging applications. The dataset will be made publicly available.

PRF-Ped: Multi-Scale Pedestrian Detector with Prior-Based Receptive Field

Yuzhi Tan, Hongxun Yao, Haoran Li, Xiusheng Lu, Haozhe Xie

Responsive image

Auto-TLDR; Bidirectional Feature Enhancement Module for Multi-Scale Pedestrian Detection

Slides Poster Similar

Multi-scale feature representation is a common strategy to handle the scale variation in pedestrian detection. Existing methods simply utilize the convolutional pyramidal features for multi-scale representation. However, they rarely pay attention to the differences among different feature scales and extract multi-scale features from a single feature map, which may make the detectors sensitive to scale-variance in multi-scale pedestrian detection. In this paper, we introduce a bidirectional feature enhancement module (BFEM) to augment the semantic information of low-level features and the localization information of high-level features. In addition, we propose a prior-based receptive field block (PRFB) for multi-scale pedestrian feature extraction, where the receptive field is closer to the aspect ratio of the pedestrian target. Consequently, it is less affected by the surrounding background when extracting features. Experimental results indicate that the proposed method outperform the state-of-the-art methods on the CityPersons and Caltech datasets.

An Integrated Approach of Deep Learning and Symbolic Analysis for Digital PDF Table Extraction

Mengshi Zhang, Daniel Perelman, Vu Le, Sumit Gulwani

Responsive image

Auto-TLDR; Deep Learning and Symbolic Reasoning for Unstructured PDF Table Extraction

Slides Poster Similar

Deep learning has shown great success at interpreting unstructured data such as object recognition in images. Symbolic/logical-reasoning techniques have shown great success in interpreting structured data such as table extraction in webpages, custom text files, spreadsheets. The tables in PDF documents are often generated from such structured sources (text-based Word/Latex documents, spreadsheets, webpages) but end up being unstructured. We thus explore novel combinations of deep learning and symbolic reasoning techniques to build an effective solution for PDF table extraction. We evaluate effectiveness without granting partial credit for matching part of a table (which may cause silent errors in downstream data processing). Our method achieves a 0.725 F1 score (vs. 0.339 for the state-of-the-art) on detecting correct table bounds---a much stricter metric than the common one of detecting characters within tables---in a well known public benchmark (ICDAR 2013) and a 0.404 F1 score (vs. 0.144 for the state-of-the-art) on our private benchmark with more widely varied table structures.

One-Stage Multi-Task Detector for 3D Cardiac MR Imaging

Weizeng Lu, Xi Jia, Wei Chen, Nicolò Savioli, Antonio De Marvao, Linlin Shen, Declan O'Regan, Jinming Duan

Responsive image

Auto-TLDR; Multi-task Learning for Real-Time, simultaneous landmark location and bounding box detection in 3D space

Slides Poster Similar

Fast and accurate landmark location and bounding box detection are important steps in 3D medical imaging. In this paper, we propose a novel multi-task learning framework, for real-time, simultaneous landmark location and bounding box detection in 3D space. Our method extends the famous single-shot multibox detector (SSD) from single-task learning to multi-task learning and from 2D to 3D. Furthermore, we propose a post-processing approach to refine the network landmark output, by averaging the candidate landmarks. Owing to these settings, the proposed framework is fast and accurate. For 3D cardiac magnetic resonance (MR) images with size 224 × 224 × 64, our framework runs about 128 volumes per second (VPS) on GPU and achieves 6.75mm average point-to-point distance error for landmark location, which outperforms both state-of-the-art and baseline methods. We also show that segmenting the 3D image cropped with the bounding box results in both improved performance and efficiency.

Gaussian Constrained Attention Network for Scene Text Recognition

Zhi Qiao, Xugong Qin, Yu Zhou, Fei Yang, Weiping Wang

Responsive image

Auto-TLDR; Gaussian Constrained Attention Network for Scene Text Recognition

Slides Poster Similar

Scene text recognition has been a hot topic in computer vision. Recent methods adopt the attention mechanism for sequence prediction which achieve convincing results. However, we argue that the existing attention mechanism faces the problem of attention diffusion, in which the model may not focus on a certain character area. In this paper, we propose Gaussian Constrained Attention Network to deal with this problem. It is a 2D attention-based method integrated with a novel Gaussian Constrained Refinement Module, which predicts an additional Gaussian mask to refine the attention weights. Different from adopting an additional supervision on the attention weights simply, our proposed method introduce an explicit refinement. In this way, the attention weights will be more concentrated and the attention-based recognition network achieves better performance. The proposed Gaussian Constrained Refinement Module is flexible and can be applied to existing attention-based methods directly. The experiments on several benchmark datasets demonstrate the effectiveness of our proposed method. Our code has been available at https://github.com/Pay20Y/GCAN.

Automated Whiteboard Lecture Video Summarization by Content Region Detection and Representation

Bhargava Urala Kota, Alexander Stone, Kenny Davila, Srirangaraj Setlur, Venu Govindaraju

Responsive image

Auto-TLDR; A Framework for Summarizing Whiteboard Lecture Videos Using Feature Representations of Handwritten Content Regions

Poster Similar

Lecture videos are rapidly becoming an invaluable source of information for students across the globe. Given the large number of online courses currently available, it is important to condense the information within these videos into a compact yet representative summary that can be used for search-based applications. We propose a framework to summarize whiteboard lecture videos by finding feature representations of detected handwritten content regions to determine unique content. We investigate multi-scale histogram of gradients and embeddings from deep metric learning for feature representation. We explicitly handle occluded, growing and disappearing handwritten content. Our method is capable of producing two kinds of lecture video summaries - the unique regions themselves or so-called key content and keyframes (which contain all unique content in a video segment). We use weighted spatio-temporal conflict minimization to segment the lecture and produce keyframes from detected regions and features. We evaluate both types of summaries and find that we obtain state-of-the-art peformance in terms of number of summary keyframes while our unique content recall and precision are comparable to state-of-the-art.

CDeC-Net: Composite Deformable Cascade Network for Table Detection in Document Images

Madhav Agarwal, Ajoy Mondal, C. V. Jawahar

Responsive image

Auto-TLDR; CDeC-Net: An End-to-End Trainable Deep Network for Detecting Tables in Document Images

Slides Similar

Localizing page elements/objects such as tables, figures, equations, etc. is the primary step in extracting information from document images. We propose a novel end-to-end trainable deep network, (CDeC-Net) for detecting tables present in the documents. The proposed network consists of a multistage extension of Mask R-CNN with a dual backbone having deformable convolution for detecting tables varying in scale with high detection accuracy at higher IoU threshold. We empirically evaluate CDeC-Net on all the publicly available benchmark datasets— ICDAR-2013, ICDAR-2017, ICDAR-2019, UNLV, Marmot, PubLayNet, TableBank, and IIIT-AR-13K —with extensive experiments. Our solution has three important properties:(i) a single trained model CDeC-Net‡ performs well across all the popular benchmark datasets; (ii) we report excellent performances across multiple, including higher, thresholds of IoU; (iii) by following the same protocol of the recent papers for each of the benchmarks, we consistently demonstrate the superior quantitative performance. Our code and models will be publicly released for enabling reproducibility of the results.

A Novel Region of Interest Extraction Layer for Instance Segmentation

Leonardo Rossi, Akbar Karimi, Andrea Prati

Responsive image

Auto-TLDR; Generic RoI Extractor for Two-Stage Neural Network for Instance Segmentation

Slides Poster Similar

Given the wide diffusion of deep neural network architectures for computer vision tasks, several new applications are nowadays more and more feasible. Among them, a particular attention has been recently given to instance segmentation, by exploiting the results achievable by two-stage networks (such as Mask R-CNN or Faster R-CNN), derived from R-CNN. In these complex architectures, a crucial role is played by the Region of Interest (RoI) extraction layer, devoted to extract a coherent subset of features from a single Feature Pyramid Network (FPN) layer attached on top of a backbone. This paper is motivated by the need to overcome to the limitations of existing RoI extractors which select only one (the best) layer from FPN. Our intuition is that all the layers of FPN retain useful information. Therefore, the proposed layer (called Generic RoI Extractor - GRoIE) introduces non-local building blocks and attention mechanisms to boost the performance. A comprehensive ablation study at component level is conducted to find the best set of algorithms and parameters for the GRoIE layer. Moreover, GRoIE can be integrated seamlessly with every two-stage architecture for both object detection and instance segmentation tasks. Therefore, the improvements brought by the use of GRoIE in different state-of-the-art architectures are also evaluated. The proposed layer leads up to gain a 1.1% AP on bounding box detection and 1.7% AP on instance segmentation. The code is publicly available on GitHub repository at https://github.com/IMPLabUniPr/mmdetection-groie

Feature Pyramid Hierarchies for Multi-Scale Temporal Action Detection

Jiayu He, Guohui Li, Jun Lei

Responsive image

Auto-TLDR; Temporal Action Detection using Pyramid Hierarchies and Multi-scale Feature Maps

Slides Poster Similar

Temporal action detection is a challenging but promising task in video content analysis. It is in great demand in the field of public safety. The main difficulty of the task is precisely localizing activities in the video especially those short duration activities. And most of the existing methods can not achieve a satisfactory detection result. Our method addresses a key point to improve detection accuracy, which is to use multi-scale feature maps for regression and classification. In this paper, we introduce a novel network based on classification following proposal framework. In our network, a 3D feature pyramid hierarchies is built to enhance the ability of detecting short duration activities. The input RGB/Flow frames are first encoded by a 3D feature pyramid hierarchies, and this subnet produces multi-level feature maps. Then temporal proposal subnet uses these features to pick out proposals which might contain activity segments. Finally a pyramid region of interest (RoI) pooling pipeline and two fully connected layers reuse muti-level feature maps to refine the temporal boundaries of proposals and classify them. We use late feature fusion scheme to combine RGB and Flow information. The network is trained end-to-end and we evaluate it in THUMOS'14 dataset. Our network achieves a good result among typical methods. A further ablation test demonstrate that pyramid hierarchies is effective to improve detecting short duration activity segments.

ACRM: Attention Cascade R-CNN with Mix-NMS for Metallic Surface Defect Detection

Junting Fang, Xiaoyang Tan, Yuhui Wang

Responsive image

Auto-TLDR; Attention Cascade R-CNN with Mix Non-Maximum Suppression for Robust Metal Defect Detection

Slides Poster Similar

Metallic surface defect detection is of great significance in quality control for production. However, this task is very challenging due to the noise disturbance, large appearance variation, and the ambiguous definition of the defect individual. Traditional image processing methods are unable to detect the damaged region effectively and efficiently. In this paper, we propose a new defect detection method, Attention Cascade R-CNN with Mix-NMS (ACRM), to classify and locate defects robustly. Three submodules are developed to achieve this goal: 1) a lightweight attention block is introduced, which can improve the ability in capture global and local feature both in the spatial and channel dimension; 2) we firstly apply the cascade R-CNN to our task, which exploits multiple detectors to sequentially refine the detection result robustly; 3) we introduce a new method named Mix Non-Maximum Suppression (Mix-NMS), which can significantly improve its ability in filtering the redundant detection result in our task. Extensive experiments on a real industrial dataset show that ACRM achieves state-of-the-art results compared to the existing methods, demonstrating the effectiveness and robustness of our detection method.

TGCRBNW: A Dataset for Runner Bib Number Detection (and Recognition) in the Wild

Pablo Hernández-Carrascosa, Adrian Penate-Sanchez, Javier Lorenzo, David Freire Obregón, Modesto Castrillon

Responsive image

Auto-TLDR; Racing Bib Number Detection and Recognition in the Wild Using Faster R-CNN

Slides Poster Similar

Racing bib number (RBN) detection and recognition is a specific problem related to text recognition in natural scenes. In this paper, we present a novel dataset created after registering participants in a real ultrarunning competition which comprises a wide range of acquisition conditions in five different recording points, including nightlight and daylight. The dataset contains more than 3k samples of over 400 different individuals. The aim is at providing an in the wild benchmark for both RBN detection and recognition problems. To illustrate the present difficulties, the dataset is evaluated for RBN detection using different Faster R-CNN specific detection models, filtering its output with heuristics based on body detection to improve the overall detection performance. Initial results are promising, but there is still a significant room for improvement. And detection is just the first step to accomplish in the wild RBN recognition.

Triplet-Path Dilated Network for Detection and Segmentation of General Pathological Images

Jiaqi Luo, Zhicheng Zhao, Fei Su, Limei Guo

Responsive image

Auto-TLDR; Triplet-path Network for One-Stage Object Detection and Segmentation in Pathological Images

Slides Similar

Deep learning has been widely applied in the field of medical image processing. However, compared with flourishing visual tasks in natural images, the progress achieved in pathological images is not remarkable, and detection and segmentation, which are among basic tasks of computer vision, are regarded as two independent tasks. In this paper, we make full use of existing datasets and construct a triplet-path network using dilated convolutions to cooperatively accomplish one-stage object detection and nuclei segmentation for general pathological images. First, in order to meet the requirement of detection and segmentation, a novel structure called triplet feature generation (TFG) is designed to extract high-resolution and multiscale features, where features from different layers can be properly integrated. Second, considering that pathological datasets are usually small, a location-aware and partially truncated loss function is proposed to improve the classification accuracy of datasets with few images and widely varying targets. We compare the performance of both object detection and instance segmentation with state-of-the-art methods. Experimental results demonstrate the effectiveness and efficiency of the proposed network on two datasets collected from multiple organs.

Object Detection on Monocular Images with Two-Dimensional Canonical Correlation Analysis

Zifan Yu, Suya You

Responsive image

Auto-TLDR; Multi-Task Object Detection from Monocular Images Using Multimodal RGB and Depth Data

Slides Poster Similar

Accurate and robust detection objects from monocular images is a fundamental vision task. This paper describes a novel approach of holistic scene understanding that can simultaneously achieve multiple tasks of scene reconstruction and object detection from a single monocular camera. Rather than pursuing an independent solution for each individual task as most existing work does, we seek a globally optimal solution that holistically resolves the multiple perception and reasoning tasks in an effective manner. The approach explores the complementary properties of multimodal RGB imagery and depth data to improve scene perception tasks. It uniquely combines the techniques of canonical correlation analysis and deep learning to learn the most correlated features to maximize the modal cross-correlation for improving the performance and robustness of object detection in complex environments. Extensive experiments have been conducted to evaluate and demonstrate the performances of the proposed approach.

HPERL: 3D Human Pose Estimastion from RGB and LiDAR

Michael Fürst, Shriya T.P. Gupta, René Schuster, Oliver Wasenmüler, Didier Stricker

Responsive image

Auto-TLDR; 3D Human Pose Estimation Using RGB and LiDAR Using Weakly-Supervised Approach

Slides Poster Similar

In-the-wild human pose estimation has a huge potential for various fields, ranging from animation and action recognition to intention recognition and prediction for autonomous driving. The current state-of-the-art is focused only on RGB and RGB-D approaches for predicting the 3D human pose. However, not using precise LiDAR depth information limits the performance and leads to very inaccurate absolute pose estimation. With LiDAR sensors becoming more affordable and common on robots and autonomous vehicle setups, we propose an end-to-end architecture using RGB and LiDAR to predict the absolute 3D human pose with unprecedented precision. Additionally, we introduce a weakly-supervised approach to generate 3D predictions using 2D pose annotations from PedX. This allows for many new opportunities in the field of 3D human pose estimation.

Mobile Phone Surface Defect Detection Based on Improved Faster R-CNN

Tao Wang, Can Zhang, Runwei Ding, Ge Yang

Responsive image

Auto-TLDR; Faster R-CNN for Mobile Phone Surface Defect Detection

Slides Poster Similar

Various surface defects will inevitably occur in the production process of mobile phones, which have a huge impact on the enterprise. Therefore, precise defect detection is of great significance in the production of mobile phones. However, the traditional manual inspection and machine vision inspection have low efficiency and accuracy respectively which cannot meet the rapid production needs of modern enterprises. In this paper, we proposed a mobile phone surface defect (MPSD) detection model based on deep learning, which greatly reduce the requirement of a large dataset and improve detection performance. First, Boundary Equilibrium Generative Adversarial Networks (BEGAN) is used to generate and augment the defect data. Then, based on Faster R-CNN model, Feature Pyramid Network (FPN) and ResNet 101 are combined as feature extraction network to get more small target defect features. Further, replacing the ROI pooling layer with an ROI Align layer reduces the quantization deviation during the pooling process. Finally, we train and evaluate our model on our own dataset. The experimental results indicate that compared with some traditional methods based on handcrafted feature extraction and the traditional Faster R-CNN, the improved Faster R-CNN achieves 99.43% mAP, which is more effective in MPSD defect detection area.