Lokesh Nandanwar

Papers from this author

Chebyshev-Harmonic-Fourier-Moments and Deep CNNs for Detecting Forged Handwriting

Lokesh Nandanwar, Shivakumara Palaiahnakote, Kundu Sayani, Umapada Pal, Tong Lu, Daniel Lopresti

Responsive image

Auto-TLDR; Chebyshev-Harmonic-Fourier-Moments and Deep Convolutional Neural Networks for forged handwriting detection

Slides Poster Similar

Recently developed sophisticated image processing techniques and tools have made easier the creation of high-quality forgeries of handwritten documents including financial and property records. To detect such forgeries of handwritten documents, this paper presents a new method by exploring the combination of Chebyshev-Harmonic-Fourier-Moments (CHFM) and deep Convolutional Neural Networks (D-CNNs). Unlike existing methods work based on abrupt changes due to distortion created by forgery operation, the proposed method works based on inconsistencies and irregular changes created by forgery operations. Inspired by the special properties of CHFM, such as its reconstruction ability by removing redundant information, the proposed method explores CHFM to obtain reconstructed images for the color components of the Original, Forged Noisy and Blurred classes. Motivated by the strong discriminative power of deep CNNs, for the reconstructed images of respective color components, the proposed method used deep CNNs for forged handwriting detection. Experimental results on our dataset and benchmark datasets (namely, ACPR 2019, ICPR 2018 FCD and IMEI datasets) show that the proposed method outperforms existing methods in terms of classification rate.

Local Gradient Difference Based Mass Features for Classification of 2D-3D Natural Scene Text Images

Lokesh Nandanwar, Shivakumara Palaiahnakote, Raghavendra Ramachandra, Tong Lu, Umapada Pal, Daniel Lopresti, Nor Badrul Anuar

Responsive image

Auto-TLDR; Classification of 2D and 3D Natural Scene Images Using COLD

Slides Poster Similar

Methods developed for normal 2D text detection do not work well for a text that is rendered using decorative, 3D effects. This paper proposes a new method for classification of 2D and 3D natural scene images such that an appropriate method can be chosen or modified according to the complexity of the individual classes. The proposed method explores local gradient differences for obtaining candidate pixels, which represent a stroke. To study the spatial distribution of candidate pixels, we propose a measure we call COLD, which is denser for pixels toward the center of strokes and scattered for non-stroke pixels. This observation leads us to introduce mass features for extracting the regular spatial pattern of COLD, which indicates a 2D text image. The extracted features are fed to a Neural Network (NN) for classification. The proposed method is tested on both a new dataset introduced in this work and a standard dataset assembled from different natural scene datasets, and compared to from existing methods to show its effectiveness. The approach improves text detection performance significantly after classification.