Frederic Jurie

Papers from this author

Generating Private Data Surrogates for Vision Related Tasks

Ryan Webster, Julien Rabin, Loic Simon, Frederic Jurie

Responsive image

Auto-TLDR; Generative Adversarial Networks for Membership Inference Attacks

Slides Poster Similar

With the widespread application of deep networks in industry, membership inference attacks, i.e. the ability to discern training data from a model, become more and more problematic for data privacy. Recent work suggests that generative networks may be robust against membership attacks. In this work, we build on this observation, offering a general-purpose solution to the membership privacy problem. As the primary contribution, we demonstrate how to construct surrogate datasets, using images from GAN generators, labelled with a classifier trained on the private dataset. Next, we show this surrogate data can further be used for a variety of downstream tasks (here classification and regression), while being resistant to membership attacks. We study a variety of different GANs proposed in the literature, concluding that higher quality GANs result in better surrogate data with respect to the task at hand.

Hierarchical Head Design for Object Detectors

Shivang Agarwal, Frederic Jurie

Responsive image

Auto-TLDR; Hierarchical Anchor for SSD Detector

Slides Poster Similar

The notion of anchor plays a major role in modern detection algorithms such as the Faster-RCNN or the SSD detector. Anchors relate the features of the last layers of the detector with bounding boxes containing objects in images. Despite their importance, the literature on object detection has not paid real attention to them. The motivation of this paper comes from the observations that (i) each anchor learns to classify and regress candidate objects independently (ii) insufficient examples are available for each anchor in case of small-scale datasets. This paper addresses these questions by proposing a novel hierarchical head for the SSD detector. The new design has the added advantage of no extra weights, as compared to the original design at inference time, while improving detectors performance for small size training sets. Improved performance on PASCAL-VOC and state-of-the-art performance on FlickrLogos-47 validate the method. We also show when the proposed design does not give additional performance gain over the original design.

Semi-Supervised Class Incremental Learning

Alexis Lechat, Stéphane Herbin, Frederic Jurie

Responsive image

Auto-TLDR; incremental class learning with non-annotated batches

Slides Poster Similar

This paper makes a contribution to the problem of incremental class learning, the principle of which is to sequentially introduce batches of samples annotated with new classes during the learning phase. The main objective is to reduce the drop in classification performance on old classes, a phenomenon commonly called catastrophic forgetting. We propose in this paper a new method which exploits the availability of a large quantity of non-annotated images in addition to the annotated batches. These images are used to regularize the classifier and give the feature space a more stable structure. We demonstrate on several image data sets that our approach is able to improve the global performance of classifiers learned using an incremental learning protocol, even with annotated batches of small size.