Yair Shemer
Paper download is intended for registered attendees only, and is
subjected to the IEEE Copyright Policy. Any other use is strongly forbidden.
Papers from this author
ILS-SUMM: Iterated Local Search for Unsupervised Video Summarization
Yair Shemer, Daniel Rotman, Nahum Shimkin
Auto-TLDR; ILS-SUMM: Iterated Local Search for Video Summarization
In recent years, there has been an increasing interest in building video summarization tools, where the goal is to automatically create a short summary of an input video that properly represents the original content. We consider shot-based video summarization where the summary consists of a subset of the video shots which can be of various lengths. A straightforward approach to maximize the representativeness of a subset of shots is by minimizing the total distance between shots and their nearest selected shots. We formulate the task of video summarization as an optimization problem with a knapsack-like constraint on the total summary duration. Previous studies have proposed greedy algorithms to solve this problem approximately, but no experiments were presented to measure the ability of these methods to obtain solutions with low total distance. Indeed, our experiments on video summarization datasets show that the success of current methods in obtaining results with low total distance still has much room for improvement. In this paper, we develop ILS-SUMM, a novel video summarization algorithm to solve the subset selection problem under the knapsack constraint. Our algorithm is based on the well-known metaheuristic optimization framework -- Iterated Local Search (ILS), known for its ability to avoid weak local minima and obtain a good near-global minimum. Extensive experiments show that our method finds solutions with significantly better total distance than previous methods. Moreover, to indicate the high scalability of ILS-SUMM, we introduce a new dataset consisting of videos of various lengths.