Alessio Del Bue

Papers from this author

Are Multiple Cross-Correlation Identities Better Than Just Two? Improving the Estimate of Time Differences-Of-Arrivals from Blind Audio Signals

Danilo Greco, Jacopo Cavazza, Alessio Del Bue

Responsive image

Auto-TLDR; Improving Blind Channel Identification Using Cross-Correlation Identity for Time Differences-of-Arrivals Estimation

Slides Poster Similar

Given an unknown audio source, the estimation of time differences-of-arrivals (TDOAs) can be efficiently and robustly solved using blind channel identification and exploiting the cross-correlation identity (CCI). Prior "blind" works have improved the estimate of TDOAs by means of different algorithmic solutions and optimization strategies, while always sticking to the case N = 2 microphones. But what if we can obtain a direct improvement in performance by just increasing N? In this paper we try to investigate this direction, showing that, despite the arguable simplicity, this is capable of (sharply) improving upon state-of-the-art blind channel identification methods based on CCI, without modifying the computational pipeline. Inspired by our results, we seek to warm up the community and the practitioners by paving the way (with two concrete, yet preliminary, examples) towards joint approaches in which advances in the optimization are combined with an increased number of microphones, in order to achieve further improvements.

A Versatile Crack Inspection Portable System Based on Classifier Ensemble and Controlled Illumination

Milind Gajanan Padalkar, Carlos Beltran-Gonzalez, Matteo Bustreo, Alessio Del Bue, Vittorio Murino

Responsive image

Auto-TLDR; Lighting Conditions for Crack Detection in Ceramic Tile

Slides Poster Similar

This paper presents a novel setup for automatic visual inspection of cracks in ceramic tile as well as studies the effect of various classifiers and height-varying illumination conditions for this task. The intuition behind this setup is that cracks can be better visualized under specific lighting conditions than others. Our setup, which is designed for field work with constraints in its maximum dimensions, can acquire images for crack detection with multiple lighting conditions using the illumination sources placed at multiple heights. Crack detection is then performed by classifying patches extracted from the acquired images in a sliding window fashion. We study the effect of lights placed at various heights by training classifiers both on customized as well as state-of-the-art architectures and evaluate their performance both at patch-level and image-level, demonstrating the effectiveness of our setup. More importantly, ours is the first study that demonstrates how height-varying illumination conditions can affect crack detection with the use of existing state-of-the-art classifiers. We provide an insight about the illumination conditions that can help in improving crack detection in a challenging real-world industrial environment.

Complex-Object Visual Inspection: Empirical Studies on a Multiple Lighting Solution

Maya Aghaei, Matteo Bustreo, Pietro Morerio, Nicolò Carissimi, Alessio Del Bue, Vittorio Murino

Responsive image

Auto-TLDR; A Novel Illumination Setup for Automatic Visual Inspection of Complex Objects

Slides Poster Similar

The design of an automatic visual inspection system is usually performed in two stages. While the first stage consists in selecting the most suitable hardware setup for highlighting most effectively the defects on the surface to be inspected, the second stage concerns the development of algorithmic solutions to exploit the potentials offered by the collected data. In this paper, first, we present a novel illumination setup embedding four illumination configurations to resemble diffused, dark-field, and front lighting techniques. Second, we analyze the contributions brought by deploying the proposed setup in the training phase only, mimicking the scenario in which an already developed visual inspection system cannot be modified on the customer site. Along with an exhaustive set of experiments, in this paper, we demonstrate the suitability of the proposed setup for effective illumination of complex-objects, defined as manufactured items with variable surface characteristics that cannot be determined a priori. Eventually, we provide insights into the importance of multiple light configurations availability during training and their natural boosting effect which, without the need to modify the system design in the evaluation phase, lead to improvements in the overall system performance.

Subspace Clustering for Action Recognition with Covariance Representations and Temporal Pruning

Giancarlo Paoletti, Jacopo Cavazza, Cigdem Beyan, Alessio Del Bue

Responsive image

Auto-TLDR; Unsupervised Learning for Human Action Recognition from Skeletal Data

Slides Similar

This paper tackles the problem of human action recognition, defined as classifying which action is displayed in a trimmed sequence, from skeletal data. Albeit state-of-the-art approaches designed for this application are all supervised, in this paper we pursue a more challenging direction: Solving the problem with unsupervised learning. To this end, we propose a novel subspace clustering method, which exploits covariance matrix to enhance the action’s discriminability and a timestamp pruning approach that allow us to better handle the temporal dimension of the data. Through a broad experimental validation, we show that our computational pipeline surpasses existing unsupervised approaches but also can result in favorable performances as compared to supervised methods.

Weakly Supervised Geodesic Segmentation of Egyptian Mummy CT Scans

Avik Hati, Matteo Bustreo, Diego Sona, Vittorio Murino, Alessio Del Bue

Responsive image

Auto-TLDR; A Weakly Supervised and Efficient Interactive Segmentation of Ancient Egyptian Mummies CT Scans Using Geodesic Distance Measure and GrabCut

Slides Poster Similar

In this paper, we tackle the task of automatically analyzing 3D volumetric scans obtained from computed tomography (CT) devices. In particular, we address a particular task for which data is very limited: the segmentation of ancient Egyptian mummies CT scans. We aim at digitally unwrapping the mummy and identify different segments such as body, bandages and jewelry. The problem is complex because of the lack of annotated data for the different semantic regions to segment, thus discouraging the use of strongly supervised approaches. We, therefore, propose a weakly supervised and efficient interactive segmentation method to solve this challenging problem. After segmenting the wrapped mummy from its exterior region using histogram analysis and template matching, we first design a voxel distance measure to find an approximate solution for the body and bandage segments. Here, we use geodesic distances since voxel features as well as spatial relationship among voxels is incorporated in this measure. Next, we refine the solution using a GrabCut based segmentation together with a tracking method on the slices of the scan that assigns labels to different regions in the volume, using limited supervision in the form of scribbles drawn by the user. The efficiency of the proposed method is demonstrated using visualizations and validated through quantitative measures and qualitative unwrapping of the mummy.