Antonis Argyros
Paper download is intended for registered attendees only, and is
subjected to the IEEE Copyright Policy. Any other use is strongly forbidden.
Papers from this author
Extracting Action Hierarchies from Action Labels and their Use in Deep Action Recognition
Konstadinos Bacharidis, Antonis Argyros
Auto-TLDR; Exploiting the Information Content of Language Label Associations for Human Action Recognition
Abstract Slides Poster Similar
Human activity recognition is a fundamental and challenging task in computer vision. Its solution can support multiple and diverse applications in areas including but not limited to smart homes, surveillance, daily living assistance, Human-Robot Collaboration (HRC), etc. In realistic conditions, the complexity of human activities ranges from simple coarse actions, such as siting or standing up, to more complex activities that consist of multiple actions with subtle variations in appearance and motion patterns. A large variety of existing datasets target specific action classes, with some of them being coarse and others being fine-grained. In all of them, a description of the action and its complexity is manifested in the action label sentence. As the action/activity complexity increases, so is the label sentence size and the amount of action-related semantic information contained in this description. In this paper, we propose an approach to exploit the information content of these action labels to formulate a coarse-to-fine action hierarchy based on linguistic label associations, and investigate the potential benefits and drawbacks. Moreover, in a series of quantitative and qualitative experiments, we show that the exploitation of this hierarchical organization of action classes in different levels of granularity improves the learning speed and overall performance of a range of baseline and mid-range deep architectures for human action recognition (HAR).
Occlusion-Tolerant and Personalized 3D Human Pose Estimation in RGB Images
Auto-TLDR; Real-Time 3D Human Pose Estimation in BVH using Inverse Kinematics Solver and Neural Networks
We introduce a real-time method that estimates the 3D human pose directly in the popular BVH format, given estimations of the 2D body joints in RGB images. Our contributions include: (a) A novel and compact 2D pose representation. (b) A human body orientation classifier and an ensemble of orientation-tuned neural networks that regress the 3D human pose by also allowing for the decomposition of the body to an upper and lower kinematic hierarchy. This permits the recovery of the human pose even in the case of significant occlusions. (c) An efficient Inverse Kinematics solver that refines the neural-network-based solution providing 3D human pose estimations that are consistent with the limb sizes of a target person (if known). All the above yield a 33% accuracy improvement on the H3.6M dataset compared to the baseline MocapNET method while maintaining real-time performance (70 fps in CPU-only execution).