Occlusion-Tolerant and Personalized 3D Human Pose Estimation in RGB Images

Ammar Qammaz, Antonis Argyros

Responsive image

Auto-TLDR; Real-Time 3D Human Pose Estimation in BVH using Inverse Kinematics Solver and Neural Networks

Poster

We introduce a real-time method that estimates the 3D human pose directly in the popular BVH format, given estimations of the 2D body joints in RGB images. Our contributions include: (a) A novel and compact 2D pose representation. (b) A human body orientation classifier and an ensemble of orientation-tuned neural networks that regress the 3D human pose by also allowing for the decomposition of the body to an upper and lower kinematic hierarchy. This permits the recovery of the human pose even in the case of significant occlusions. (c) An efficient Inverse Kinematics solver that refines the neural-network-based solution providing 3D human pose estimations that are consistent with the limb sizes of a target person (if known). All the above yield a 33% accuracy improvement on the H3.6M dataset compared to the baseline MocapNET method while maintaining real-time performance (70 fps in CPU-only execution).

Similar papers

Orthographic Projection Linear Regression for Single Image 3D Human Pose Estimation

Yahui Zhang, Shaodi You, Theo Gevers

Responsive image

Auto-TLDR; A Deep Neural Network for 3D Human Pose Estimation from a Single 2D Image in the Wild

Slides Poster Similar

3D human pose estimation from a single 2D image in the wild is an important computer vision task but yet extremely challenging. Unlike images taken from indoor and well constrained environments, 2D outdoor images in the wild are extremely complex because of varying imaging conditions. Furthermore, 2D images usually do not have corresponding 3D pose ground truth making a supervised approach ill constrained. Therefore, in this paper, we propose to associate the 3D human pose, the 2D human pose projection and the 2D image appearance through a new orthographic projection based linear regression module. Unlike existing reprojection based approaches, our orthographic projection and regression do not suffer from small angle problems, which usually lead to overfitting in the depth dimension. Hence, we propose a deep neural network which adopts the 2D pose, 3D pose regression and orthographic projection linear regression module. The proposed method shows state-of-the art performance on the Human3.6M dataset and generalizes well to in-the-wild images.

RefiNet: 3D Human Pose Refinement with Depth Maps

Andrea D'Eusanio, Stefano Pini, Guido Borghi, Roberto Vezzani, Rita Cucchiara

Responsive image

Auto-TLDR; RefiNet: A Multi-stage Framework for 3D Human Pose Estimation

Slides Similar

Human Pose Estimation is a fundamental task for many applications in the Computer Vision community and it has been widely investigated in the 2D domain, i.e. intensity images. Therefore, most of the available methods for this task are mainly based on 2D Convolutional Neural Networks and huge manually-annotated RGB datasets, achieving stunning results. In this paper, we propose RefiNet, a multi-stage framework that regresses an extremely-precise 3D human pose estimation from a given 2D pose and a depth map. The framework consists of three different modules, each one specialized in a particular refinement and data representation, i.e. depth patches, 3D skeleton and point clouds. Moreover, we collect a new dataset, namely Baracca, acquired with RGB, depth and thermal cameras and specifically created for the automotive context. Experimental results confirm the quality of the refinement procedure that largely improves the human pose estimations of off-the-shelf 2D methods.

Exploring Severe Occlusion: Multi-Person 3D Pose Estimation with Gated Convolution

Renshu Gu, Gaoang Wang, Jenq-Neng Hwang

Responsive image

Auto-TLDR; 3D Human Pose Estimation for Multi-Human Videos with Occlusion

Slides Similar

3D human pose estimation (HPE) is crucial in human behavior analysis, augmented reality/virtual reality (AR/VR) applications, and self-driving industry. Videos that contain multiple potentially occluded people captured from freely moving monocular cameras are very common in real-world scenarios, while 3D HPE for such scenarios is quite challenging, partially because there is a lack of such data with accurate 3D ground truth labels in existing datasets. In this paper, we propose a temporal regression network with a gated convolution module to transform 2D joints to 3D and recover the missing occluded joints in the meantime. A simple yet effective localization approach is further conducted to transform the normalized pose to the global trajectory. To verify the effectiveness of our approach, we also collect a new moving camera multi-human (MMHuman) dataset that includes multiple people with heavy occlusion captured by moving cameras. The 3D ground truth joints are provided by accurate motion capture (MoCap) system. From the experiments on static-camera based Human3.6M data and our own collected moving-camera based data, we show that our proposed method outperforms most state-of-the-art 2D-to-3D pose estimation methods, especially for the scenarios with heavy occlusions.

Light3DPose: Real-Time Multi-Person 3D Pose Estimation from Multiple Views

Alessio Elmi, Davide Mazzini, Pietro Tortella

Responsive image

Auto-TLDR; 3D Pose Estimation of Multiple People from a Few calibrated Camera Views using Deep Learning

Slides Poster Similar

We present an approach to perform 3D pose estimation of multiple people from a few calibrated camera views. Our architecture, leveraging the recently proposed unprojection layer, aggregates feature-maps from a 2D pose estimator backbone into a comprehensive representation of the 3D scene. Such intermediate representation is then elaborated by a fully-convolutional volumetric network and a decoding stage to extract 3D skeletons with sub-voxel accuracy. Our method achieves state of the art MPJPE on the CMU Panoptic dataset using a few unseen views and obtains competitive results even with a single input view. We also assess the transfer learning capabilities of the model by testing it against the publicly available Shelf dataset obtaining good performance metrics. The proposed method is inherently efficient: as a pure bottom-up approach, it is computationally independent of the number of people in the scene. Furthermore, even though the computational burden of the 2D part scales linearly with the number of input views, the overall architecture is able to exploit a very lightweight 2D backbone which is orders of magnitude faster than the volumetric counterpart, resulting in fast inference time. The system can run at 6 FPS, processing up to 10 camera views on a single 1080Ti GPU.

Rotational Adjoint Methods for Learning-Free 3D Human Pose Estimation from IMU Data

Caterina Emilia Agelide Buizza, Yiannis Demiris

Responsive image

Auto-TLDR; Learning-free 3D Human Pose Estimation from Inertial Measurement Unit Data

Poster Similar

We present a new framework for learning-free 3D human pose estimation from Inertial Measurement Unit (IMU) data. The proposed method does not rely on a full motion sequence to calculate a pose for any particular time point and thus can operate in real-time. A cost function based only on joint rotations is used, removing the need for frequent transformations between rotations and 3D Cartesian coordinates. A Jacobian that preserves skeleton structure is derived using Adjoint methods from Variational Data Assimilation. To facilitate further research in IMU-based Motion Capture, we provide a dataset that combines RGB and depth images from an Intel RealSense camera, marker-based motion capture from an Optitrack system and Xsens IMU data. We have evaluated our method on both our dataset and the Total Capture dataset, showing an average error across 24 joints of 0.45 and 0.48 radians respectively.

Better Prior Knowledge Improves Human-Pose-Based Extrinsic Camera Calibration

Olivier Moliner, Sangxia Huang, Kalle Åström

Responsive image

Auto-TLDR; Improving Human-pose-based Extrinsic Calibration for Multi-Camera Systems

Slides Poster Similar

Accurate extrinsic calibration of wide baseline multi-camera systems enables better understanding of 3D scenes for many applications and is of great practical importance. Classical Structure-from-Motion calibration methods require special calibration equipment so that accurate point correspondences can be detected between different views. In addition, an operator with some training is usually needed to ensure that data is collected in a way that leads to good calibration accuracy. This limits the ease of adoption of such technologies. Recently, methods have been proposed to use human pose estimation models to establish point correspondences, thus removing the need for any special equipment. The challenge with this approach is that human pose estimation algorithms typically produce much less accurate feature points compared to classical patch-based methods. Another problem is that ambient human motion might not be optimal for calibration. We build upon prior works and introduce several novel ideas to improve the accuracy of human-pose-based extrinsic calibration. Our first contribution is a robust reprojection loss based on a better understanding of the sources of pose estimation error. Our second contribution is a 3D human pose likelihood model learned from motion capture data. We demonstrate significant improvements in calibration accuracy by evaluating our method on four publicly available datasets.

PEAN: 3D Hand Pose Estimation Adversarial Network

Linhui Sun, Yifan Zhang, Jing Lu, Jian Cheng, Hanqing Lu

Responsive image

Auto-TLDR; PEAN: 3D Hand Pose Estimation with Adversarial Learning Framework

Slides Poster Similar

Despite recent emerging research attention, 3D hand pose estimation still suffers from the problems of predicting inaccurate or invalid poses which conflict with physical and kinematic constraints. To address these problems, we propose a novel 3D hand pose estimation adversarial network (PEAN) which can implicitly utilize such constraints to regularize the prediction in an adversarial learning framework. PEAN contains two parts: a 3D hierarchical estimation network (3DHNet) to predict hand pose, which decouples the task into multiple subtasks with a hierarchical structure; a pose discrimination network (PDNet) to judge the reasonableness of the estimated 3D hand pose, which back-propagates the constraints to the estimation network. During the adversarial learning process, PDNet is expected to distinguish the estimated 3D hand pose and the ground truth, while 3DHNet is expected to estimate more valid pose to confuse PDNet. In this way, 3DHNet is capable of generating 3D poses with accurate positions and adaptively adjusting the invalid poses without additional prior knowledge. Experiments show that the proposed 3DHNet does a good job in predicting hand poses, and introducing PDNet to 3DHNet does further improve the accuracy and reasonableness of the predicted results. As a result, the proposed PEAN achieves the state-of-the-art performance on three public hand pose estimation datasets.

Unsupervised 3D Human Pose Estimation in Multi-view-multi-pose Video

Cheng Sun, Diego Thomas, Hiroshi Kawasaki

Responsive image

Auto-TLDR; Unsupervised 3D Human Pose Estimation from 2D Videos Using Generative Adversarial Network

Slides Poster Similar

3D human pose estimation from a single 2D video is an extremely difficult task because computing 3D geometry from 2D images is an ill-posed problem. Recent popular solutions adopt fully-supervised learning strategy, which requires to train a deep network on a large-scale ground truth dataset of 3D poses and 2D images. However, such a large-scale dataset with natural images does not exist, which limits the usability of existing methods. While building a complete 3D dataset is tedious and expensive, abundant 2D in-the-wild data is already publicly available. As a consequence, there is a growing interest in the computer vision community to design efficient techniques that use the unsupervised learning strategy, which does not require any ground truth 3D data. Such methods can be trained with only natural 2D images of humans. In this paper we propose an unsupervised method for estimating 3D human pose in videos. The standard approach for unsupervised learning is to use the Generative Adversarial Network (GAN) framework. To improve the performance of 3D human pose estimation in videos, we propose a new GAN network that enforces body consistency over frames in a video. We evaluate the efficiency of our proposed method on a public 3D human body dataset.

HPERL: 3D Human Pose Estimastion from RGB and LiDAR

Michael Fürst, Shriya T.P. Gupta, René Schuster, Oliver Wasenmüler, Didier Stricker

Responsive image

Auto-TLDR; 3D Human Pose Estimation Using RGB and LiDAR Using Weakly-Supervised Approach

Slides Poster Similar

In-the-wild human pose estimation has a huge potential for various fields, ranging from animation and action recognition to intention recognition and prediction for autonomous driving. The current state-of-the-art is focused only on RGB and RGB-D approaches for predicting the 3D human pose. However, not using precise LiDAR depth information limits the performance and leads to very inaccurate absolute pose estimation. With LiDAR sensors becoming more affordable and common on robots and autonomous vehicle setups, we propose an end-to-end architecture using RGB and LiDAR to predict the absolute 3D human pose with unprecedented precision. Additionally, we introduce a weakly-supervised approach to generate 3D predictions using 2D pose annotations from PedX. This allows for many new opportunities in the field of 3D human pose estimation.

JUMPS: Joints Upsampling Method for Pose Sequences

Lucas Mourot, Francois Le Clerc, Cédric Thébault, Pierre Hellier

Responsive image

Auto-TLDR; JUMPS: Increasing the Number of Joints in 2D Pose Estimation and Recovering Occluded or Missing Joints

Slides Poster Similar

Human Pose Estimation is a low-level task useful for surveillance, human action recognition, and scene understanding at large. It also offers promising perspectives for the animation of synthetic characters. For all these applications, and especially the latter, estimating the positions of many joints is desirable for improved performance and realism. To this purpose, we propose a novel method called JUMPS for increasing the number of joints in 2D pose estimates and recovering occluded or missing joints. We believe this is the first attempt to address the issue. We build on a deep generative model that combines a GAN and an encoder. The GAN learns the distribution of high-resolution human pose sequences, the encoder maps the input low-resolution sequences to its latent space. Inpainting is obtained by computing the latent representation whose decoding by the GAN generator optimally matches the joints locations at the input. Post-processing a 2D pose sequence using our method provides a richer representation of the character motion. We show experimentally that the localization accuracy of the additional joints is on average on par with the original pose estimates.

A Multi-Task Neural Network for Action Recognition with 3D Key-Points

Rongxiao Tang, Wang Luyang, Zhenhua Guo

Responsive image

Auto-TLDR; Multi-task Neural Network for Action Recognition and 3D Human Pose Estimation

Slides Poster Similar

Action recognition and 3D human pose estimation are the fundamental problems in computer vision and closely related. In this work, we propose a multi-task neural network for action recognition and 3D human pose estimation. The results of the previous methods are still error-prone especially when tested against the images taken in-the-wild, leading error results in action recognition. To solve this problem, we propose a principled approach to generate high quality 3D pose ground truth given any in-the-wild image with a person inside. We achieve this by first devising a novel stereo inspired neural network to directly map any 2D pose to high quality 3D counterpart. Based on the high-quality 3D labels, we carefully design the multi-task framework for action recognition and 3D human pose estimation. The proposed architecture can utilize the shallow, deep features of the images, and the in-the-wild 3D human key-points to guide a more precise result. High quality 3D key-points can fully reflect the morphological features of motions, thus boosting the performance on action recognition. Experiments demonstrate that 3D pose estimation leads to significantly higher performance on action recognition than separated learning. We also evaluate the generalization ability of our method both quantitatively and qualitatively. The proposed architecture performs favorably against the baseline 3D pose estimation methods. In addition, the reported results on Penn Action and NTU datasets demonstrate the effectiveness of our method on the action recognition task.

On the Robustness of 3D Human Pose Estimation

Zerui Chen, Yan Huang, Liang Wang

Responsive image

Auto-TLDR; Robustness of 3D Human Pose Estimation Methods to Adversarial Attacks

Slides Similar

It is widely shown that Convolutional Neural Networks (CNNs) are vulnerable to adversarial examples on most recognition tasks, such as image classification and segmentation. However, few work studies the more complicated task -- 3D human pose estimation. This task often requires large-scale datasets, specialized network architectures, and it can be solved either from single-view RGB images or from multi-view RGB images. In this paper, we make the first attempt to investigate the robustness of current state-of-the-art 3D human pose estimation methods. To this end, we build four representative baseline models, where most of the current methods can be generally classified as one of them. Furthermore, we design targeted adversarial attacks to detect whether 3D pose estimators are robust to different camera parameters. For different types of methods, we present a comprehensive study of their robustness on the large-scale \emph{Human3.6M} benchmark. Our work shows that different methods vary significantly in their resistance to adversarial attacks. Through extensive experiments, we show that multi-view 3D pose estimators can be more vulnerable to adversarial examples. We believe that our efforts can shed light on future works to design more robust 3D human pose estimators.

A Grid-Based Representation for Human Action Recognition

Soufiane Lamghari, Guillaume-Alexandre Bilodeau, Nicolas Saunier

Responsive image

Auto-TLDR; GRAR: Grid-based Representation for Action Recognition in Videos

Slides Poster Similar

Human action recognition (HAR) in videos is a fundamental research topic in computer vision. It consists mainly in understanding actions performed by humans based on a sequence of visual observations. In recent years, HAR have witnessed significant progress, especially with the emergence of deep learning models. However, most of existing approaches for action recognition rely on information that is not always relevant for the task, and are limited in the way they fuse temporal information. In this paper, we propose a novel method for human action recognition that encodes efficiently the most discriminative appearance information of an action with explicit attention on representative pose features, into a new compact grid representation. Our GRAR (Grid-based Representation for Action Recognition) method is tested on several benchmark datasets that demonstrate that our model can accurately recognize human actions, despite intra-class appearance variations and occlusion challenges.

What and How? Jointly Forecasting Human Action and Pose

Yanjun Zhu, Yanxia Zhang, Qiong Liu, Andreas Girgensohn

Responsive image

Auto-TLDR; Forecasting Human Actions and Motion Trajectories with Joint Action Classification and Pose Regression

Slides Poster Similar

Forecasting human actions and motion trajectories addresses the problem of predicting what a person is going to do next and how they will perform it. This is crucial in a wide range of applications such as assisted living and future co-robotic settings. We propose to simultaneously learn actions and action-related human motion dynamics, while existing works perform them independently. In this paper, we present a method to jointly forecast categories of human action and the pose of skeletal joints in the hope that the two tasks can help each other. As a result, our system can predict not only the future actions but also the motion trajectories that will result. To achieve this, we define a task of joint action classification and pose regression. We employ a sequence to sequence encoder-decoder model combined with multi-task learning to forecast future actions and poses progressively before the action happens. Experimental results on two public datasets, IkeaDB and OAD, demonstrate the effectiveness of the proposed method.

Silhouette Body Measurement Benchmarks

Song Yan, Johan Wirta, Joni-Kristian Kamarainen

Responsive image

Auto-TLDR; BODY-fit: A Realistic 3D Body Measurement Dataset for Anthropometric Measurement

Slides Poster Similar

Anthropometric body measurements are important for industrial design, garment fitting, medical diagnosis and ergonomics. A number of methods have been proposed to estimate the body measurements from images, but progress has been slow due to the lack of realistic and publicly available datasets. The existing works train and test on silhouettes of 3D body meshes obtained by fitting a human body model to the commercial CAESAR scans. In this work, we introduce the BODY-fit dataset that contains fitted meshes of 2,675 female and 1,474 male 3D body scans. We unify evaluation on the CAESAR-fit and BODY-fit datasets by computing body measurements from geodesic surface paths as the ground truth and by generating two-view silhouette images. We also introduce BODY-rgb - a realistic dataset of 86 male and 108 female subjects captured with an RGB camera and manually tape measured ground truth. We propose a simple yet effective deep CNN architecture as a baseline method which obtains competitive accuracy on the three datasets.

Learning to Implicitly Represent 3D Human Body from Multi-Scale Features and Multi-View Images

Zhongguo Li, Magnus Oskarsson, Anders Heyden

Responsive image

Auto-TLDR; Reconstruction of 3D human bodies from multi-view images using multi-stage end-to-end neural networks

Slides Poster Similar

Reconstruction of 3D human bodies, from images, faces many challenges, due to it generally being an ill-posed problem. In this paper we present a method to reconstruct 3D human bodies from multi-view images, through learning an implicit function to represent 3D shape, based on multi-scale features extracted by multi-stage end-to-end neural networks. Our model consists of several end-to-end hourglass networks for extracting multi-scale features from multi-view images, and a fully connected network for implicit function classification from these features. Given a 3D point, it is projected to multi-view images and these images are fed into our model to extract multi-scale features. The scales of features extracted by the hourglass networks decrease with the depth of our model, which represents the information from local to global scale. Then, the multi-scale features as well as the depth of the 3D point are combined to a new feature vector and the fully connected network classifies the feature vector, in order to predict if the point lies inside or outside of the 3D mesh. The advantage of our method is that we use both local and global features in the fully connected network and represent the 3D mesh by an implicit function, which is more memory-efficient. Experiments on public datasets demonstrate that our method surpasses previous approaches in terms of the accuracy of 3D reconstruction of human bodies from images.

Space-Time Domain Tensor Neural Networks: An Application on Human Pose Classification

Konstantinos Makantasis, Athanasios Voulodimos, Anastasios Doulamis, Nikolaos Doulamis, Nikolaos Bakalos

Responsive image

Auto-TLDR; Tensor-Based Neural Network for Spatiotemporal Pose Classifiaction using Three-Dimensional Skeleton Data

Slides Poster Similar

Recent advances in sensing technologies require the design and development of pattern recognition models capable of processing spatiotemporal data efficiently. In this study, we propose a spatially and temporally aware tensor-based neural network for human pose classifiaction using three-dimensional skeleton data. Our model employs three novel components. First, an input layer capable of constructing highly discriminative spatiotemporal features. Second, a tensor fusion operation that produces compact yet rich representations of the data, and third, a tensor-based neural network that processes data representations in their original tensor form. Our model is end-to-end trainable and characterized by a small number of trainable parameters making it suitable for problems where the annotated data is limited. Experimental evaluation of the proposed model indicates that it can achieve state-of-the-art performance.

StrongPose: Bottom-up and Strong Keypoint Heat Map Based Pose Estimation

Niaz Ahmad, Jongwon Yoon

Responsive image

Auto-TLDR; StrongPose: A bottom-up box-free approach for human pose estimation and action recognition

Slides Poster Similar

Adaptation of deep convolutional neural network has made revolutionary progress in human pose estimation, various applications in recent years have drawn considerable attention. However, prediction and localization of the keypoints in single and multi-person images are a challenging problem. Towards this purpose, we present a bottom-up box-free approach for the task of pose estimation and action recognition. We proposed a StrongPose system model that uses part-based modeling to tackle object-part associations. The model utilizes a convolution network that learns how to detect Strong Keypoints Heat Maps (SKHM) and predict their comparative displacements, enabling us to group keypoints into person pose instances. Further, we produce Body Heat Maps (BHM) with the help of keypoints which allows us to localize the human body in the picture. The StrongPose framework is based on fully-convolutional engineering and permits proficient inference, with runtime basically autonomous of the number of individuals display within the scene. Train and test on COCO data alone, our framework achieves COCO test-dev keypoint average precision of 0.708 using ResNet-101 and 0.725 using ResNet-152, which considerably outperforms all prior bottom-up pose estimation frameworks.

Pose-Based Body Language Recognition for Emotion and Psychiatric Symptom Interpretation

Zhengyuan Yang, Amanda Kay, Yuncheng Li, Wendi Cross, Jiebo Luo

Responsive image

Auto-TLDR; Body Language Based Emotion Recognition for Psychiatric Symptoms Prediction

Slides Poster Similar

Inspired by the human ability to infer emotions from body language, we propose an automated framework for body language based emotion recognition starting from regular RGB videos. In collaboration with psychologists, we further extend the framework for psychiatric symptom prediction. Because a specific application domain of the proposed framework may only supply a limited amount of data, the framework is designed to work on a small training set and possess a good transferability. The proposed system in the first stage generates sequences of body language predictions based on human poses estimated from input videos. In the second stage, the predicted sequences are fed into a temporal network for emotion interpretation and psychiatric symptom prediction. We first validate the accuracy and transferability of the proposed body language recognition method on several public action recognition datasets. We then evaluate the framework on a proposed URMC dataset, which consists of conversations between a standardized patient and a behavioral health professional, along with expert annotations of body language, emotions, and potential psychiatric symptoms. The proposed framework outperforms other methods on the URMC dataset.

Hybrid Approach for 3D Head Reconstruction: Using Neural Networks and Visual Geometry

Oussema Bouafif, Bogdan Khomutenko, Mohammed Daoudi

Responsive image

Auto-TLDR; Recovering 3D Head Geometry from a Single Image using Deep Learning and Geometric Techniques

Slides Poster Similar

Recovering the 3D geometric structure of a face from a single input image is a challenging active research area in computer vision. In this paper, we present a novel method for reconstructing 3D heads from a single or multiple image(s) using a hybrid approach based on deep learning and geometric techniques. We propose an encoder-decoder network based on the U-net architecture and trained on synthetic data only. It predicts both pixel-wise normal vectors and landmarks maps from a single input photo. Landmarks are used for the pose computation and the initialization of the optimization problem, which, in turn, reconstructs the 3D head geometry by using a parametric morphable model and normal vector fields. State-of-the-art results are achieved through qualitative and quantitative evaluation tests on both single and multi-view settings. Despite the fact that the model was trained only on synthetic data, it successfully recovers 3D geometry and precise poses for real-world images.

Attention-Oriented Action Recognition for Real-Time Human-Robot Interaction

Ziyang Song, Ziyi Yin, Zejian Yuan, Chong Zhang, Wanchao Chi, Yonggen Ling, Shenghao Zhang

Responsive image

Auto-TLDR; Attention-Oriented Multi-Level Network for Action Recognition in Interaction Scenes

Slides Poster Similar

Despite the notable progress made in action recognition tasks, not much work has been done in action recognition specifically for human-robot interaction. In this paper, we deeply explore the characteristics of the action recognition task in interaction scenes and propose an attention-oriented multi-level network framework to meet the need for real-time interaction. Specifically, a Pre-Attention network is employed to roughly focus on the interactor in the scene at low resolution firstly and then perform fine-grained pose estimation at high resolution. The other compact CNN receives the extracted skeleton sequence as input for action recognition, utilizing attention-like mechanisms to capture local spatial-temporal patterns and global semantic information effectively. To evaluate our approach, we construct a new action dataset specially for the recognition task in interaction scenes. Experimental results on our dataset and high efficiency (112 fps at 640 x 480 RGBD) on the mobile computing platform (Nvidia Jetson AGX Xavier) demonstrate excellent applicability of our method on action recognition in real-time human-robot interaction.

Inner Eye Canthus Localization for Human Body Temperature Screening

Claudio Ferrari, Lorenzo Berlincioni, Marco Bertini, Alberto Del Bimbo

Responsive image

Auto-TLDR; Automatic Localization of the Inner Eye Canthus in Thermal Face Images using 3D Morphable Face Model

Slides Poster Similar

In this paper, we propose an automatic approach for localizing the inner eye canthus in thermal face images. We first coarsely detect 5 facial keypoints corresponding to the center of the eyes, the nosetip and the ears. Then we compute a sparse 2D-3D points correspondence using a 3D Morphable Face Model (3DMM). This correspondence is used to project the entire 3D face onto the image, and subsequently locate the inner eye canthus. Detecting this location allows to obtain the most precise body temperature measurement for a person using a thermal camera. We evaluated the approach on a thermal face dataset provided with manually annotated landmarks. However, such manual annotations are normally conceived to identify facial parts such as eyes, nose and mouth, and are not specifically tailored for localizing the eye canthus region. As additional contribution, we enrich the original dataset by using the annotated landmarks to deform and project the 3DMM onto the images. Then, by manually selecting a small region corresponding to the eye canthus, we enrich the dataset with additional annotations. By using the manual landmarks, we ensure the correctness of the 3DMM projection, which can be used as ground-truth for future evaluations. Moreover, we supply the dataset with the 3D head poses and per-point visibility masks for detecting self-occlusions. The data will be publicly released.

Learning to Take Directions One Step at a Time

Qiyang Hu, Adrian Wälchli, Tiziano Portenier, Matthias Zwicker, Paolo Favaro

Responsive image

Auto-TLDR; Generating a Sequence of Motion Strokes from a Single Image

Slides Poster Similar

We present a method to generate a video sequence given a single image. Because items in an image can be animated in arbitrarily many different ways, we introduce as control signal a sequence of motion strokes. Such control signal can be automatically transferred from other videos, e.g., via bounding box tracking. Each motion stroke provides the direction to the moving object in the input image and we aim to train a network to generate an animation following a sequence of such directions. To address this task we design a novel recurrent architecture, which can be trained easily and effectively thanks to an explicit separation of past, future and current states. As we demonstrate in the experiments, our proposed architecture is capable of generating an arbitrary number of frames from a single image and a sequence of motion strokes. Key components of our architecture are an autoencoding constraint to ensure consistency with the past and a generative adversarial scheme to ensure that images look realistic and are temporally smooth. We demonstrate the effectiveness of our approach on the MNIST, KTH, Human3.6M, Push and Weizmann datasets.

PROPEL: Probabilistic Parametric Regression Loss for Convolutional Neural Networks

Muhammad Asad, Rilwan Basaru, S M Masudur Rahman Al Arif, Greg Slabaugh

Responsive image

Auto-TLDR; PRObabilistic Parametric rEgression Loss for Probabilistic Regression Using Convolutional Neural Networks

Slides Similar

In recent years, Convolutional Neural Networks (CNNs) have enabled significant advancements to the state-of-the-art in computer vision. For classification tasks, CNNs have widely employed probabilistic output and have shown the significance of providing additional confidence for predictions. However, such probabilistic methodologies are not widely applicable for addressing regression problems using CNNs, as regression involves learning unconstrained continuous and, in many cases, multi-variate target variables. We propose a PRObabilistic Parametric rEgression Loss (PROPEL) that facilitates CNNs to learn parameters of probability distributions for addressing probabilistic regression problems. PROPEL is fully differentiable and, hence, can be easily incorporated for end-to-end training of existing CNN regression architectures using existing optimization algorithms. The proposed method is flexible as it enables learning complex unconstrained probabilities while being generalizable to higher dimensional multi-variate regression problems. We utilize a PROPEL-based CNN to address the problem of learning hand and head orientation from uncalibrated color images. Our experimental validation and comparison with existing CNN regression loss functions show that PROPEL improves the accuracy of a CNN by enabling probabilistic regression, while significantly reducing required model parameters by 10x, resulting in improved generalization as compared to the existing state-of-the-art.

Single View Learning in Action Recognition

Gaurvi Goyal, Nicoletta Noceti, Francesca Odone

Responsive image

Auto-TLDR; Cross-View Action Recognition Using Domain Adaptation for Knowledge Transfer

Slides Poster Similar

Viewpoint is an essential aspect of how an action is visually perceived, with the motion appearing substantially different for some viewpoint pairs. Data driven action recognition algorithms compensate for this by including a variety of viewpoints in their training data, adding to the cost of data acquisition as well as training. We propose a novel methodology that leverages deeply pretrained features to learn actions from a single viewpoint using domain adaptation for knowledge transfer. We demonstrate the effectiveness of this pipeline on 3 different datasets: IXMAS, MoCA and NTU RGBD+, and compare with both classical and deep learning methods. Our method requires low training data and demonstrates unparalleled cross-view action recognition accuracies for single view learning.

Deep Ordinal Regression with Label Diversity

Axel Berg, Magnus Oskarsson, Mark Oconnor

Responsive image

Auto-TLDR; Discrete Regression via Classification for Neural Network Learning

Slides Similar

Regression via classification (RvC) is a common method used for regression problems in deep learning, where the target variable belongs to a set of continuous values. By discretizing the target into a set of non-overlapping classes, it has been shown that training a classifier can improve neural network accuracy compared to using a standard regression approach. However, it is not clear how the set of discrete classes should be chosen and how it affects the overall solution. In this work, we propose that using several discrete data representations simultaneously can improve neural network learning compared to a single representation. Our approach is end-to-end differentiable and can be added as a simple extension to conventional learning methods, such as deep neural networks. We test our method on three challenging tasks and show that our method reduces the prediction error compared to a baseline RvC approach while maintaining a similar model complexity.

Tilting at Windmills: Data Augmentation for Deeppose Estimation Does Not Help with Occlusions

Rafal Pytel, Osman Semih Kayhan, Jan Van Gemert

Responsive image

Auto-TLDR; Targeted Keypoint and Body Part Occlusion Attacks for Human Pose Estimation

Slides Poster Similar

Occlusion degrades the performance of human poseestimation. In this paper, we introduce targeted keypoint andbody part occlusion attacks. The effects of the attacks are system-atically analyzed on the best performing methods. In addition, wepropose occlusion specific data augmentation techniques againstkeypoint and part attacks. Our extensive experiments show thathuman pose estimation methods are not robust to occlusion anddata augmentation does not solve the occlusion problems.

Temporal Attention-Augmented Graph Convolutional Network for Efficient Skeleton-Based Human Action Recognition

Negar Heidari, Alexandros Iosifidis

Responsive image

Auto-TLDR; Temporal Attention Module for Efficient Graph Convolutional Network-based Action Recognition

Slides Poster Similar

Graph convolutional networks (GCNs) have been very successful in modeling non-Euclidean data structures, like sequences of body skeletons forming actions modeled as spatio-temporal graphs. Most GCN-based action recognition methods use deep feed-forward networks with high computational complexity to process all skeletons in an action. This leads to a high number of floating point operations (ranging from 16G to 100G FLOPs) to process a single sample, making their adoption in restricted computation application scenarios infeasible. In this paper, we propose a temporal attention module (TAM) for increasing the efficiency in skeleton-based action recognition by selecting the most informative skeletons of an action at the early layers of the network. We incorporate the TAM in a light-weight GCN topology to further reduce the overall number of computations. Experimental results on two benchmark datasets show that the proposed method outperforms with a large margin the baseline GCN-based method while having 2.9 times less number of computations. Moreover, it performs on par with the state-of-the-art with up to 9.6 times less number of computations.

Weakly Supervised Body Part Segmentation with Pose Based Part Priors

Zhengyuan Yang, Yuncheng Li, Linjie Yang, Ning Zhang, Jiebo Luo

Responsive image

Auto-TLDR; Weakly Supervised Body Part Segmentation Using Weak Labels

Slides Similar

Human body part segmentation refers to the task of predicting the semantic segmentation mask for each body part. Fully supervised body part segmentation methods achieve good performances but require an enormous amount of effort to annotate part masks for training. In contrast to high annotation costs needed for a limited number of part mask annotations, a large number of weak labels such as poses and full body masks already exist and contain relevant information. Motivated by the possibility of using existing weak labels, we propose the first weakly supervised body part segmentation framework. The core idea is first converting the sparse weak labels such as keypoints to the initial estimate of body part masks, and then iteratively refine the part mask predictions. We name the initial part masks estimated from poses the "part priors". with sufficient extra weak labels, our weakly supervised framework achieves a comparable performance (62.0% mIoU) to the fully supervised method (63.6% mIoU) on the Pascal-Person-Part dataset. Furthermore, in the extended semi-supervised setting, the proposed framework outperforms the state-of-art methods. Moreover, we extend our proposed framework to other keypoint-supervised part segmentation tasks such as face parsing.

Exploiting the Logits: Joint Sign Language Recognition and Spell-Correction

Christina Runkel, Stefan Dorenkamp, Hartmut Bauermeister, Michael Möller

Responsive image

Auto-TLDR; A Convolutional Neural Network for Spell-correction in Sign Language Videos

Slides Poster Similar

Machine learning techniques have excelled in the automatic semantic analysis of images, reaching human-level performances on challenging bechmarks. Yet, the semantic analysis of videos remains challenging due to the significantly higher dimensionality of the input data, respectively, the significantly higher need for annotated training examples. By studying the automatic recognition of German sign language videos, we demonstrate that on the relatively scarce training data of 2.800 videos, modern deep learning architectures for video analysis (such as ResNeXt) along with transfer learning on large gesture recognition tasks, can achieve about 75% character accuracy. Considering that this leaves us with a probability of under 25% that a five letter word is spelled correctly, spell-correction systems are crucial for producing readable outputs. The contribution of this paper is to propose a convolutional neural network for spell-correction that expects the softmax outputs of the character recognition network (instead of a misspelled word) as an input. We demonstrate that purely learning on softmax inputs in combination with scarce training data yields overfitting as the network learns the inputs by heart. In contrast, training the network on several variants of the logits of the classification output i.e. scaling by a constant factor, adding of random noise, mixing of softmax and hardmax inputs or purely training on hardmax inputs, leads to better generalization while benefitting from the significant information hidden in these outputs (that have 98% top-5 accuracy), yielding a readable text despite the comparably low character accuracy.

Subspace Clustering for Action Recognition with Covariance Representations and Temporal Pruning

Giancarlo Paoletti, Jacopo Cavazza, Cigdem Beyan, Alessio Del Bue

Responsive image

Auto-TLDR; Unsupervised Learning for Human Action Recognition from Skeletal Data

Slides Similar

This paper tackles the problem of human action recognition, defined as classifying which action is displayed in a trimmed sequence, from skeletal data. Albeit state-of-the-art approaches designed for this application are all supervised, in this paper we pursue a more challenging direction: Solving the problem with unsupervised learning. To this end, we propose a novel subspace clustering method, which exploits covariance matrix to enhance the action’s discriminability and a timestamp pruning approach that allow us to better handle the temporal dimension of the data. Through a broad experimental validation, we show that our computational pipeline surpasses existing unsupervised approaches but also can result in favorable performances as compared to supervised methods.

DeepPear: Deep Pose Estimation and Action Recognition

Wen-Jiin Tsai, You-Ying Jhuang

Responsive image

Auto-TLDR; Human Action Recognition Using RGB Video Using 3D Human Pose and Appearance Features

Slides Poster Similar

Human action recognition has been a popular issue recently because it can be applied in many applications such as intelligent surveillance systems, human-robot interaction, and autonomous vehicle control. Human action recognition using RGB video is a challenging task because the learning of actions is easily affected by the cluttered background. To cope with this problem, the proposed method estimates 3D human poses first which can help remove the cluttered background and focus on the human body. In addition to the human poses, the proposed method also utilizes appearance features nearby the predicted joints to make our action prediction context-aware. Instead of using 3D convolutional neural networks as many action recognition approaches did, the proposed method uses a two-stream architecture that aggregates the results from skeleton-based and appearance-based approaches to do action recognition. Experimental results show that the proposed method achieved state-of-the-art performance on NTU RGB+D which is a largescale dataset for human action recognition.

Movement-Induced Priors for Deep Stereo

Yuxin Hou, Muhammad Kamran Janjua, Juho Kannala, Arno Solin

Responsive image

Auto-TLDR; Fusing Stereo Disparity Estimation with Movement-induced Prior Information

Slides Poster Similar

We propose a method for fusing stereo disparity estimation with movement-induced prior information. Instead of independent inference frame-by-frame, we formulate the problem as a non-parametric learning task in terms of a temporal Gaussian process prior with a movement-driven kernel for inter-frame reasoning. We present a hierarchy of three Gaussian process kernels depending on the availability of motion information, where our main focus is on a new gyroscope-driven kernel for handheld devices with low-quality MEMS sensors, thus also relaxing the requirement of having full 6D camera poses available. We show how our method can be combined with two state-of-the-art deep stereo methods. The method either work in a plug-and-play fashion with pre-trained deep stereo networks, or further improved by jointly training the kernels together with encoder--decoder architectures, leading to consistent improvement.

Partially Supervised Multi-Task Network for Single-View Dietary Assessment

Ya Lu, Thomai Stathopoulou, Stavroula Mougiakakou

Responsive image

Auto-TLDR; Food Volume Estimation from a Single Food Image via Geometric Understanding and Semantic Prediction

Slides Poster Similar

Food volume estimation is an essential step in the pipeline of dietary assessment and demands the precise depth estimation of the food surface and table plane. Existing methods based on computer vision require either multi-image input or additional depth maps, reducing convenience of implementation and practical significance. Despite the recent advances in unsupervised depth estimation from a single image, the achieved performance in the case of large texture-less areas needs to be improved. In this paper, we propose a network architecture that jointly performs geometric understanding (i.e., depth prediction and 3D plane estimation) and semantic prediction on a single food image, enabling a robust and accurate food volume estimation regardless of the texture characteristics of the target plane. For the training of the network, only monocular videos with semantic ground truth are required, while the depth map and 3D plane ground truth are no longer needed. Experimental results on two separate food image databases demonstrate that our method performs robustly on texture-less scenarios and is superior to unsupervised networks and structure from motion based approaches, while it achieves comparable performance to fully-supervised methods.

Shape Consistent 2D Keypoint Estimation under Domain Shift

Levi Vasconcelos, Massimiliano Mancini, Davide Boscaini, Barbara Caputo, Elisa Ricci

Responsive image

Auto-TLDR; Deep Adaptation for Keypoint Prediction under Domain Shift

Slides Poster Similar

Recent unsupervised domain adaptation methods based on deep architectures have shown remarkable performance not only in traditional classification tasks but also in more complex problems involving structured predictions (e.g. semantic segmentation, depth estimation). Following this trend, in this paper we present a novel deep adaptation framework for estimating keypoints under \textit{domain shift}, i.e. when the training (\textit{source}) and the test (\textit{target}) images significantly differ in terms of visual appearance. Our method seamlessly combines three different components: feature alignment, adversarial training and self-supervision. Specifically, our deep architecture leverages from domain-specific distribution alignment layers to perform target adaptation at the feature level. Furthermore, a novel loss is proposed which combines an adversarial term for ensuring aligned predictions in the output space and a geometric consistency term which guarantees coherent predictions between a target sample and its perturbed version. Our extensive experimental evaluation conducted on three publicly available benchmarks shows that our approach outperforms state-of-the-art domain adaptation methods in the 2D keypoint prediction task.

Minimal Solvers for Indoor UAV Positioning

Marcus Valtonen Örnhag, Patrik Persson, Mårten Wadenbäck, Kalle Åström, Anders Heyden

Responsive image

Auto-TLDR; Relative Pose Solvers for Visual Indoor UAV Navigation

Slides Poster Similar

In this paper we consider a collection of relative pose problems which arise naturally in applications for visual indoor UAV navigation. We focus on cases where additional information from an onboard IMU is available and thus provides a partial extrinsic calibration through the gravitational vector. The solvers are designed for a partially calibrated camera, for a variety of realistic indoor scenarios, which makes it possible to navigate using images of the ground floor. Current state-of-the-art solvers use more general assumptions, such as using arbitrary planar structures; however, these solvers do not yield adequate reconstructions for real scenes, nor do they perform fast enough to be incorporated in real-time systems. We show that the proposed solvers enjoy better numerical stability, are faster, and require fewer point correspondences, compared to state-of-the-art solvers. These properties are vital components for robust navigation in real-time systems, and we demonstrate on both synthetic and real data that our method outperforms other methods, and yields superior motion estimation.

LFIR2Pose: Pose Estimation from an Extremely Low-Resolution FIR Image Sequence

Saki Iwata, Yasutomo Kawanishi, Daisuke Deguchi, Ichiro Ide, Hiroshi Murase, Tomoyoshi Aizawa

Responsive image

Auto-TLDR; LFIR2Pose: Human Pose Estimation from a Low-Resolution Far-InfraRed Image Sequence

Slides Poster Similar

In this paper, we propose a method for human pose estimation from a Low-resolution Far-InfraRed (LFIR) image sequence captured by a 16 × 16 FIR sensor array. Human body estimation from such a single LFIR image is a hard task. For training the estimation model, annotation of the human pose to the images is also a difficult task for human. Thus, we propose the LFIR2Pose model which accepts a sequence of LFIR images and outputs the human pose of the last frame, and also propose an automatic annotation system for the model training. Additionally, considering that the scale of human body motion is largely different among body parts, we also propose a loss function focusing on the difference. Through an experiment, we evaluated the human pose estimation accuracy using an original data set, and confirmed that human pose can be estimated accurately from an LFIR image sequence.

P2 Net: Augmented Parallel-Pyramid Net for Attention Guided Pose Estimation

Luanxuan Hou, Jie Cao, Yuan Zhao, Haifeng Shen, Jian Tang, Ran He

Responsive image

Auto-TLDR; Parallel-Pyramid Net with Partial Attention for Human Pose Estimation

Slides Poster Similar

The target of human pose estimation is to determine the body parts and joint locations of persons in the image. Angular changes, motion blur and occlusion etc. in the natural scenes make this task challenging, while some joints are more difficult to be detected than others. In this paper, we propose an augmented Parallel-Pyramid Net (P^2Net) with an partial attention module. During data preprocessing, we proposed a differentiable auto data augmentation (DA^2) method in which sequences of data augmentations are formulated as a trainable and operational Convolution Neural Network (CNN) component. DA^2 improves the training efficiency and effectiveness. A parallel pyramid structure is followed to compensate the information loss introduced by the network. For the information loss problem in the backbone network, we optimize the backbone network by adopting a new parallel structure without increasing the overall computational complexity. To further refine the predictions after completion of global predictions, an Partial Attention Module (PAM) is defined to extract weighted features from different scale feature maps generated by the parallel pyramid structure. Compared with the traditional up-sampling refining, PAM can better capture the relationship between channels. Experiments corroborate the effectiveness of our proposed method. Notably, our method achieves the best performance on the challenging MSCOCO and MPII datasets.

Simple Multi-Resolution Representation Learning for Human Pose Estimation

Trung Tran Quang, Van Giang Nguyen, Daeyoung Kim

Responsive image

Auto-TLDR; Multi-resolution Heatmap Learning for Human Pose Estimation

Slides Poster Similar

Human pose estimation - the process of recognizing human keypoints in a given image - is one of the most important tasks in computer vision and has a wide range of applications including movement diagnostics, surveillance, or self-driving vehicle. The accuracy of human keypoint prediction is increasingly improved thanks to the burgeoning development of deep learning. Most existing methods solved human pose estimation by generating heatmaps in which the ith heatmap indicates the location confidence of the ith keypoint. In this paper, we introduce novel network structures referred to as multi-resolution representation learning for human keypoint prediction. At different resolutions in the learning process, our networks branch off and use extra layers to learn heatmap generation. We firstly consider the architectures for generating the multi-resolution heatmaps after obtaining the lowest-resolution feature maps. Our second approach allows learning during the process of feature extraction in which the heatmaps are generated at each resolution of the feature extractor. The first and second approaches are referred to as multi-resolution heatmap learning and multi-resolution feature map learning respectively. Our architectures are simple yet effective, achieving good performance. We conducted experiments on two common benchmarks for human pose estimation: MS-COCO and MPII dataset.

A Globally Optimal Method for the PnP Problem with MRP Rotation Parameterization

Manolis Lourakis, George Terzakis

Responsive image

Auto-TLDR; A Direct least squares, algebraic PnP solver with modified Rodrigues parameters

Poster Similar

The perspective-n-point (PnP) problem is of fundamental importance in computer vision. A global optimality condition for PnP that is independent of a particular rotation parameterization was recently developed by Nakano. This paper puts forward a direct least squares, algebraic PnP solution that extends Nakano's work by combining his optimality condition with the modified Rodrigues parameters (MRPs) for parameterizing rotation. The result is a system of polynomials that is solved using the Groebner basis approach. An MRP vector has twice the rotational range of the classical Rodrigues (i.e., Cayley) vector used by Nakano to represent rotation. The proposed solver provides strong guarantees that the full rotation singularity associated with MRPs is avoided. Furthermore, detailed experiments provide evidence that our solver attains accuracy that is indistinguishable from Nakano's Cayley-based solution with a moderate increase in computational cost.

Can You Trust Your Pose? Confidence Estimation in Visual Localization

Luca Ferranti, Xiaotian Li, Jani Boutellier, Juho Kannala

Responsive image

Auto-TLDR; Pose Confidence Estimation in Large-Scale Environments: A Light-weight Approach to Improving Pose Estimation Pipeline

Slides Poster Similar

Camera pose estimation in large-scale environments is still an open question and, despite recent promising results, it may still fail in some situations. The research so far has focused on improving subcomponents of estimation pipelines, to achieve more accurate poses. However, there is no guarantee for the result to be correct, even though the correctness of pose estimation is critically important in several visual localization applications, such as in autonomous navigation. In this paper we bring to attention a novel research question, pose confidence estimation, where we aim at quantifying how reliable the visually estimated pose is. We develop a novel confidence measure to fulfill this task and show that it can be flexibly applied to different datasets, indoor or outdoor, and for various visual localization pipelines. We also show that the proposed techniques can be used to accomplish a secondary goal: improving the accuracy of existing pose estimation pipelines. Finally, the proposed approach is computationally light-weight and adds only a negligible increase to the computational effort of pose estimation.

Real Time Fencing Move Classification and Detection at Touch Time During a Fencing Match

Cem Ekin Sunal, Chris G. Willcocks, Boguslaw Obara

Responsive image

Auto-TLDR; Fencing Body Move Classification and Detection Using Deep Learning

Slides Similar

Fencing is a fast-paced sport played with swords which are Epee, Foil, and Saber. However, such fast-pace can cause referees to make wrong decisions. Review of slow-motion camera footage in tournaments helps referees’ decision making, but it interrupts the match and may not be available for every organization. Motivated by the need for better decision making, analysis, and availability, we introduce the first fully-automated deep learning classification and detection system for fencing body moves at the moment a touch is made. This is an important step towards creating a fencing analysis system, with player profiling and decision tools that will benefit the fencing community. The proposed architecture combines You Only Look Once version three (YOLOv3) with a ResNet-34 classifier, trained on ImageNet settings to obtain 83.0\% test accuracy on the fencing moves. These results are exciting development in the sport, providing immediate feedback and analysis along with accessibility, hence making it a valuable tool for trainers and fencing match referees.

Derivation of Geometrically and Semantically Annotated UAV Datasets at Large Scales from 3D City Models

Sidi Wu, Lukas Liebel, Marco Körner

Responsive image

Auto-TLDR; Large-Scale Dataset of Synthetic UAV Imagery for Geometric and Semantic Annotation

Slides Poster Similar

While in high demand for the development of deep learning approaches, extensive datasets of annotated UAV imagery are still scarce today. Manual annotation, however, is time-consuming and, thus, has limited the potential for creating large-scale datasets. We tackle this challenge by presenting a procedure for the automatic creation of simulated UAV image sequences in urban areas and pixel-level annotations from publicly available data sources. We synthesize photo-realistic UAV imagery from Goole Earth Studio and derive annotations from an open CityGML model that not only provides geometric but also semantic information. The first dataset we exemplarily created using our approach contains 144000 images of Berlin, Germany, with four types of annotations, namely semantic labels as well as depth, surface normals, and edge maps. In the future, a complete pipeline regarding all the technical problems will be provided, together with more accurate models to refine some of the empirical settings currently, to automatically generate a large-scale dataset with reliable ground-truth annotations over the whole city of Berlin. The dataset, as well as the source code, will be published by then. Different methods will also be facilitated to test the usability of the dataset. We believe our dataset can be used for, and not limited to, tasks like pose estimation, geo-localization, monocular depth estimation, edge detection, building/surface classification, and plane segmentation. A potential research pipeline for geo-localization based on the synthetic dataset is provided.

The Role of Cycle Consistency for Generating Better Human Action Videos from a Single Frame

Runze Li, Bir Bhanu

Responsive image

Auto-TLDR; Generating Videos with Human Action Semantics using Cycle Constraints

Slides Poster Similar

This paper addresses the challenging problem of generating videos with human action semantics. Unlike previous work which predict future frames in a single forward pass, this paper introduces the cycle constraints in both forward and backward passes in the generation of human actions. This is achieved by enforcing the appearance and motion consistency across a sequence of frames generated in the future. The approach consists of two stages. In the first stage, the pose of a human body is generated. In the second stage, an image generator is used to generate future frames by using (a) generated human poses in the future from the first stage, (b) the single observed human pose, and (c) the single corresponding future frame. The experiments are performed on three datasets: Weizmann dataset involving simple human actions, Penn Action dataset and UCF-101 dataset containing complicated human actions, especially in sports. The results from these experiments demonstrate the effectiveness of the proposed approach.

Rethinking ReID:Multi-Feature Fusion Person Re-Identification Based on Orientation Constraints

Mingjing Ai, Guozhi Shan, Bo Liu, Tianyang Liu

Responsive image

Auto-TLDR; Person Re-identification with Orientation Constrained Network

Slides Poster Similar

Person re-identification (ReID) aims to identify the specific pedestrian in a series of images or videos. Recently, ReID is receiving more and more attention in the fields of computer vision research and application like intelligent security. One major issue downgrading the ReID model performance lies in that various subjects in the same body orientations look too similar to distinguish by the model, while the same subject viewed in different orientations looks rather different. However, most of the current studies do not particularly differentiate pedestrians in orientation when designing the network, so we rethink this problem particularly from the perspective of person orientation and propose a new network structure by including two branches: one handling samples with the same body orientations and the other handling samples with different body orientations. Correspondingly, we also propose an orientation classifier that can accurately distinguish the orientation of each person. At the same time, the three-part loss functions are introduced for orientation constraint and combined to optimize the network simultaneously. Also, we use global and local features int the training stage in order to make use of multi-level information. Therefore, our network can derive its efficacy from orientation constraints and multiple features. Experiments show that our method not only has competitive performance on multiple datasets, but also can let retrieval results aligned with the orientation of the query sample rank higher, which may have great potential in the practical applications.

Vertex Feature Encoding and Hierarchical Temporal Modeling in a Spatio-Temporal Graph Convolutional Network for Action Recognition

Konstantinos Papadopoulos, Enjie Ghorbel, Djamila Aouada, Bjorn Ottersten

Responsive image

Auto-TLDR; Spatio-Temporal Graph Convolutional Network for Skeleton-Based Action Recognition

Slides Poster Similar

Spatio-temporal Graph Convolutional Networks (ST-GCNs) have shown great performance in the context of skeleton-based action recognition. Nevertheless, ST-GCNs use raw skeleton data as vertex features. Such features have low dimensionality and might not be optimal for action discrimination. Moreover, a single layer of temporal convolution is used to model short-term temporal dependencies but can be insufficient for capturing both long-term. In this paper, we extend the Spatio-Temporal Graph Convolutional Network for skeleton-based action recognition by introducing two novel modules, namely, the Graph Vertex Feature Encoder (GVFE) and the Dilated Hierarchical Temporal Convolutional Network (DH-TCN). On the one hand, the GVFE module learns appropriate vertex features for action recognition by encoding raw skeleton data into a new feature space. On the other hand, the DH-TCN module is capable of capturing both short-term and long-term temporal dependencies using a hierarchical dilated convolutional network. Experiments have been conducted on the challenging NTU RGB-D 60, NTU RGB-D 120 and Kinetics datasets. The obtained results show that our method competes with state-of-the-art approaches while using a smaller number of layers and parameters; thus reducing the required training time and memory.

P2D: A Self-Supervised Method for Depth Estimation from Polarimetry

Marc Blanchon, Desire Sidibe, Olivier Morel, Ralph Seulin, Daniel Braun, Fabrice Meriaudeau

Responsive image

Auto-TLDR; Polarimetric Regularization for Monocular Depth Estimation

Slides Poster Similar

Monocular depth estimation is a recurring subject in the field of computer vision. Its ability to describe scenes via a depth map while reducing the constraints related to the formulation of perspective geometry tends to favor its use. However, despite the constant improvement of algorithms, most methods exploit only colorimetric information. Consequently, robustness to events to which the modality is not sensitive to, like specularity or transparency, is neglected. In response to this phenomenon, we propose using polarimetry as an input for a self-supervised monodepth network. Therefore, we propose exploiting polarization cues to encourage accurate reconstruction of scenes. Furthermore, we include a term of polarimetric regularization to state-of-the-art method to take specific advantage of the data. Our method is evaluated both qualitatively and quantitatively demonstrating that the contribution of this new information as well as an enhanced loss function improves depth estimation results, especially for specular areas.

Self-Supervised Detection and Pose Estimation of Logistical Objects in 3D Sensor Data

Nikolas Müller, Jonas Stenzel, Jian-Jia Chen

Responsive image

Auto-TLDR; A self-supervised and fully automated deep learning approach for object pose estimation using simulated 3D data

Slides Poster Similar

Localization of objects in cluttered scenes with machine learning methods is a fairly young research area. Despite the high potential of object localization for full process automation in Industry 4.0 and logistical environments, 3D data sets for such applications to train machine learning models are not openly available and less publications have been made on that topic. To the authors knowledge, this is the first publication that describes a self-supervised and fully automated deep learning approach for object pose estimation using simulated 3D data. The solution covers the simulated generation of training data, the detection of objects in point clouds using a fully convolutional feedforward network and the computation of the pose for each detected object instance.