Alexandros Iosifidis

Papers from this author

Data Normalization for Bilinear Structures in High-Frequency Financial Time-Series

Dat Thanh Tran, Juho Kanniainen, Moncef Gabbouj, Alexandros Iosifidis

Responsive image

Auto-TLDR; Bilinear Normalization for Financial Time-Series Analysis and Forecasting

Slides Poster Similar

Financial time-series analysis and forecasting have been extensively studied over the past decades, yet still remain as a very challenging research topic. Since the financial market is inherently noisy and stochastic, a majority of financial time-series of interests are non-stationary, and often obtained from different modalities. This property presents great challenges and can significantly affect the performance of the subsequent analysis/forecasting steps. Recently, the Temporal Attention augmented Bilinear Layer (TABL) has shown great performances in tackling financial forecasting problems. In this paper, by taking into account the nature of bilinear projections in TABL networks, we propose Bilinear Normalization (BiN), a simple, yet efficient normalization layer to be incorporated into TABL networks to tackle potential problems posed by non-stationarity and multimodalities in the input series. Our experiments using a large scale Limit Order Book (LOB) consisting of more than 4 million order events show that BiN-TABL outperforms TABL networks using other state-of-the-arts normalization schemes by a large margin.

Not All Domains Are Equally Complex: Adaptive Multi-Domain Learning

Ali Senhaji, Jenni Karoliina Raitoharju, Moncef Gabbouj, Alexandros Iosifidis

Responsive image

Auto-TLDR; Adaptive Parameterization for Multi-Domain Learning

Slides Poster Similar

Deep learning approaches are highly specialized and require training separate models for different tasks. Multi-domain learning looks at ways to learn a multitude of different tasks, each coming from a different domain, at once. The most common approach in multi-domain learning is to form a domain agnostic model, the parameters of which are shared among all domains, and learn a small number of extra domain-specific parameters for each individual new domain. However, different domains come with different levels of difficulty; parameterizing the models of all domains using an augmented version of the domain agnostic model leads to unnecessarily inefficient solutions, especially for easy to solve tasks. We propose an adaptive parameterization approach to deep neural networks for multi-domain learning. The proposed approach performs on par with the original approach while reducing by far the number of parameters, leading to efficient multi-domain learning solutions.

Supervised Domain Adaptation Using Graph Embedding

Lukas Hedegaard, Omar Ali Sheikh-Omar, Alexandros Iosifidis

Responsive image

Auto-TLDR; Domain Adaptation from the Perspective of Multi-view Graph Embedding and Dimensionality Reduction

Slides Poster Similar

Getting deep convolutional neural networks to perform well requires a large amount of training data. When the available labelled data is small, it is often beneficial to use transfer learning to leverage a related larger dataset (source) in order to improve the performance on the small dataset (target). Among the transfer learning approaches, domain adaptation methods assume that distributions between the two domains are shifted and attempt to realign them. In this paper, we consider the domain adaptation problem from the perspective of multi-view graph embedding and dimensionality reduction. Instead of solving the generalised eigenvalue problem to perform the embedding, we formulate the graph-preserving criterion as loss in the neural network and learn a domain-invariant feature transformation in an end-to-end fashion. We show that the proposed approach leads to a powerful Domain Adaptation framework which generalises the prior methods CCSA and d-SNE, and enables simple and effective loss designs; an LDA-inspired instantiation of the framework leads to performance on par with the state-of-the-art on the most widely used Domain Adaptation benchmarks, Office31 and MNIST to USPS datasets.

Temporal Attention-Augmented Graph Convolutional Network for Efficient Skeleton-Based Human Action Recognition

Negar Heidari, Alexandros Iosifidis

Responsive image

Auto-TLDR; Temporal Attention Module for Efficient Graph Convolutional Network-based Action Recognition

Slides Poster Similar

Graph convolutional networks (GCNs) have been very successful in modeling non-Euclidean data structures, like sequences of body skeletons forming actions modeled as spatio-temporal graphs. Most GCN-based action recognition methods use deep feed-forward networks with high computational complexity to process all skeletons in an action. This leads to a high number of floating point operations (ranging from 16G to 100G FLOPs) to process a single sample, making their adoption in restricted computation application scenarios infeasible. In this paper, we propose a temporal attention module (TAM) for increasing the efficiency in skeleton-based action recognition by selecting the most informative skeletons of an action at the early layers of the network. We incorporate the TAM in a light-weight GCN topology to further reduce the overall number of computations. Experimental results on two benchmark datasets show that the proposed method outperforms with a large margin the baseline GCN-based method while having 2.9 times less number of computations. Moreover, it performs on par with the state-of-the-art with up to 9.6 times less number of computations.