Alessio Elmi
Paper download is intended for registered attendees only, and is
subjected to the IEEE Copyright Policy. Any other use is strongly forbidden.
Papers from this author
Light3DPose: Real-Time Multi-Person 3D Pose Estimation from Multiple Views
Alessio Elmi, Davide Mazzini, Pietro Tortella
Auto-TLDR; 3D Pose Estimation of Multiple People from a Few calibrated Camera Views using Deep Learning
Abstract Slides Poster Similar
We present an approach to perform 3D pose estimation of multiple people from a few calibrated camera views. Our architecture, leveraging the recently proposed unprojection layer, aggregates feature-maps from a 2D pose estimator backbone into a comprehensive representation of the 3D scene. Such intermediate representation is then elaborated by a fully-convolutional volumetric network and a decoding stage to extract 3D skeletons with sub-voxel accuracy. Our method achieves state of the art MPJPE on the CMU Panoptic dataset using a few unseen views and obtains competitive results even with a single input view. We also assess the transfer learning capabilities of the model by testing it against the publicly available Shelf dataset obtaining good performance metrics. The proposed method is inherently efficient: as a pure bottom-up approach, it is computationally independent of the number of people in the scene. Furthermore, even though the computational burden of the 2D part scales linearly with the number of input views, the overall architecture is able to exploit a very lightweight 2D backbone which is orders of magnitude faster than the volumetric counterpart, resulting in fast inference time. The system can run at 6 FPS, processing up to 10 camera views on a single 1080Ti GPU.