Greg Slabaugh

Papers from this author

CURL: Neural Curve Layers for Global Image Enhancement

Sean Moran, Steven Mcdonagh, Greg Slabaugh

Responsive image

Auto-TLDR; CURL: Neural CURve Layers for Image Enhancement

Slides Poster Similar

We present a novel approach to adjust global image properties such as colour, saturation, and luminance using human-interpretable image enhancement curves, inspired by the Photoshop curves tool. Our method, dubbed neural CURve Layers (CURL), is designed as a multi-colour space neural retouching block trained jointly in three different colour spaces (HSV, CIELab, RGB) guided by a novel multi-colour space loss. The curves are fully differentiable and are trained end-to-end for different computer vision problems including photo enhancement (RGB-to-RGB) and as part of the image signal processing pipeline for image formation (RAW-to-RGB). To demonstrate the effectiveness of CURL we combine this global image transformation block with a pixel-level (local) image multi-scale encoder-decoder backbone network. In an extensive experimental evaluation we show that CURL produces state-of-the-art image quality versus recently proposed deep learning approaches in both objective and perceptual metrics, setting new state-of-the-art performance on multiple public datasets.

PROPEL: Probabilistic Parametric Regression Loss for Convolutional Neural Networks

Muhammad Asad, Rilwan Basaru, S M Masudur Rahman Al Arif, Greg Slabaugh

Responsive image

Auto-TLDR; PRObabilistic Parametric rEgression Loss for Probabilistic Regression Using Convolutional Neural Networks

Slides Similar

In recent years, Convolutional Neural Networks (CNNs) have enabled significant advancements to the state-of-the-art in computer vision. For classification tasks, CNNs have widely employed probabilistic output and have shown the significance of providing additional confidence for predictions. However, such probabilistic methodologies are not widely applicable for addressing regression problems using CNNs, as regression involves learning unconstrained continuous and, in many cases, multi-variate target variables. We propose a PRObabilistic Parametric rEgression Loss (PROPEL) that facilitates CNNs to learn parameters of probability distributions for addressing probabilistic regression problems. PROPEL is fully differentiable and, hence, can be easily incorporated for end-to-end training of existing CNN regression architectures using existing optimization algorithms. The proposed method is flexible as it enables learning complex unconstrained probabilities while being generalizable to higher dimensional multi-variate regression problems. We utilize a PROPEL-based CNN to address the problem of learning hand and head orientation from uncalibrated color images. Our experimental validation and comparison with existing CNN regression loss functions show that PROPEL improves the accuracy of a CNN by enabling probabilistic regression, while significantly reducing required model parameters by 10x, resulting in improved generalization as compared to the existing state-of-the-art.